

# SPICE Device Model Si5903DC

### **Vishay Siliconix**

## **Dual P-Channel 2.5-V (G-S) MOSFET**

#### **CHARACTERISTICS**

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS

- · Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

#### **DESCRIPTION**

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model schematic is extracted and optimized over the -55 to  $125^{\circ}$ C temperature ranges under the pulsed 0-to-5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched  $C_{\rm gd}$  model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device(s).

#### SUBCIRCUIT MODEL SCHEMATIC





This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

Document Number: 71534 www.vishay.com 07-Oct-99 **1** 

## **SPICE Device Model Si5903DC**

## **Vishay Siliconix**



| SPECIFICATIONS (T <sub>J</sub> = 25°C UNLESS OTHERWISE NOTED) |                     |                                                                                                                                               |         |      |
|---------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------|------|
| Parameter                                                     | Symbol              | Test Conditions                                                                                                                               | Typical | Unit |
| Static                                                        |                     |                                                                                                                                               |         |      |
| Gate Threshold Voltage                                        | $V_{GS(th)}$        | $V_{DS} = V_{GS}, I_{D} = -250 \mu A$                                                                                                         | 1.02    | V    |
| On-State Drain Current <sup>a</sup>                           | I <sub>D(on)</sub>  | $V_{DS} \le -5 \text{ V}, V_{GS} = -4.5 \text{ V}$                                                                                            | 20      | А    |
| Drain-Source On-State Resistance <sup>a</sup>                 | r <sub>DS(on)</sub> | $V_{GS} = -4.5 \text{ V}, I_D = -2.1 \text{ A}$                                                                                               | 0.133   | Ω    |
|                                                               |                     | $V_{GS} = -3.6 \text{ V}, I_D = -2.0 \text{ A}$                                                                                               | 0.153   |      |
|                                                               |                     | $V_{GS} = -2.5 \text{ V}, I_D = -1.7 \text{ A}$                                                                                               | 0.216   |      |
| Forward Transconductance <sup>a</sup>                         | <b>g</b> fs         | $V_{DS} = -10 \text{ V}, I_{D} = -2.1 \text{ A}$                                                                                              | 5       | S    |
| Diode Forward Voltage <sup>a</sup>                            | $V_{SD}$            | $I_{\rm S}$ = -0.9 A, $V_{\rm GS}$ = 0 V                                                                                                      | -0.80   | V    |
| Dynamic <sup>b</sup>                                          |                     |                                                                                                                                               |         |      |
| Total Gate Charge                                             | Qg                  | $V_{DS}$ = -10 V, $V_{GS}$ = -4.5 V, $I_{D}$ = -2.1 A                                                                                         | 3       | nC   |
| Gate-Source Charge                                            | $Q_{gs}$            |                                                                                                                                               | 0.9     |      |
| Gate-Drain Charge                                             | $Q_{gd}$            |                                                                                                                                               | 0.6     |      |
| Turn-On Delay Time                                            | t <sub>d(on)</sub>  | $V_{DD}$ = -10 V, $R_{L}$ = 10 $\Omega$ $I_{D} \cong$ -1 A, $V_{GEN}$ = -4.5 V, $R_{G}$ = 6 $\Omega$ $I_{F}$ = -0.9 A, di/dt = 100 A/ $\mu$ s | 16      | ns   |
| Rise Time                                                     | t <sub>r</sub>      |                                                                                                                                               | 19      |      |
| Turn-Off Delay Time                                           | $t_{d(off)}$        |                                                                                                                                               | 22      |      |
| Fall Time                                                     | t <sub>f</sub>      |                                                                                                                                               | 25      |      |
| Source-Drain Reverse Recovery Time                            | t <sub>rr</sub>     |                                                                                                                                               | 36      |      |

www.vishay.com Document Number: 71534 07-Oct-99

a. Pulse test; pulse width  $\leq$  300  $\mu$ s, duty cycle  $\leq$  2%. b. Guaranteed by design, not subject to production testing.





## Vishay Siliconix

#### COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)













Note: Dots and squares represent measured data.

Document Number: 71534 www.vishay.com 07-Oct-99 3