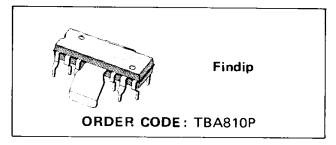


TBA810P

7W AUDIO AMPLIFIER

NOT FOR NEW DESIGN

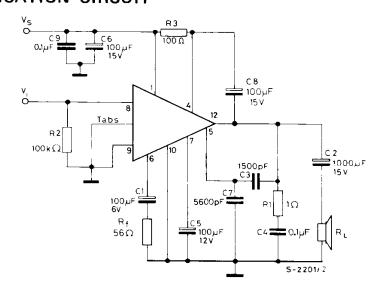
The TBS810P is an improvement of TBA810S.


It offers:

- Higher output power (R_L = 4Ω and 2Ω)
- Low noise
- Polarity inversion protection
- Fortuitous open ground protection
- High supply voltage rejection (40dB min.)

The TBA810P is a monolithic integrated circuit in a 12-lead quad in-line plastic package, intended for use as a low frequency class B amplifier.

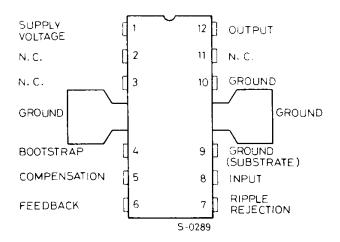
The TBA810P provides 7W output power at $16V/4\Omega$; 7W at $14.4/2\Omega$.


It gives high output current (up to 3A), high efficiency (75% at 60W output) very low harmonic and crossover distortion. The circuit is provided with a thermal limiting circuit and can withstand a short-circuit on the load for supply voltages up to 15V.

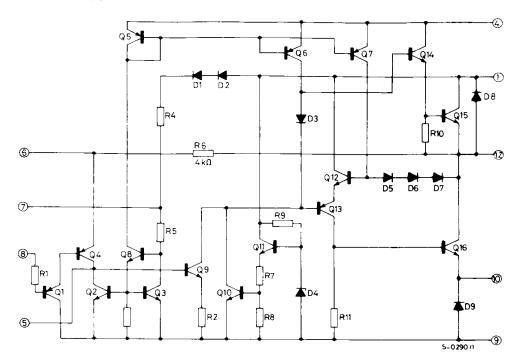
ABSOLUTE MAXIMUM RATINGS

V_s	Supply voltage		20	V
I _o	Output peak current (non repetitive)		4	Α
l _o	Output peak current (repetitive)		3	Α
P_{tot}	Power dissipation at T _{amb} ≤ 80°C		1	Ŵ
	$T_{tab} \leq 90^{\circ}C$		5	W
T_{stg}, T_j	Storage and junction temperature	-40 to	150	°C

TEST AND APPLICATION CIRCUIT


June 1988

1/3


231

CONNECTION DIAGRAM

(Top view)

SCHEMATIC DIAGRAM

THERMAL DATA

R _{th j-tab}	Thermal resistance junction-tab	max	12	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	70*	°C/W

^{*} Obtained with tabs soldered to printed circuit with minimized copper area

2/3 SGS-THOMSO MICRORIES SCHRONI

232

ELECTRICAL CHARACTERISTICS (Refer to the test circuit; $V_s = 14.4V$, $T_{amb} = 25$ °C unless otherwise specified)

	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vs	Supply voltage (pin 1)		4	-	20	V
V _o	Quiescent output voltage (pin 2)		6.4	7.2	8	V
¹ d	Quiescent drain current			12	20	mA
I _b	Input bias current			0.4		μΑ
P _o	Output power	$d = 10\%$ $R_{L} = 4\Omega$ $R_{L} = 2\Omega$	5.5 5.5	6 7		w
V _{i (rms)}	Input saturation voltage		220			mV
Ri	Input resistance (pin 8)			5		MΩ
В	Frequency response (-3dB)	$R_{L} = 4\Omega/2\Omega$ $C_{3} = 820pF$ $C_{3} = 150pF$	40 to 20,000 40 to 10,000			Hz Hz
d	Distortion	$P_o = 50$ mW to 2.5W $R_L = 4\Omega/2\Omega$ f = 1KHz		0.3		%
G _v	Voltage gain (open loop)	$R_L = 4\Omega$ f = 1KHz		80		dB
G _v	Voltage gain (closed loop)	$R_L = 4\Omega/2\Omega$ f = 1KHz	34	37	40	dB
e _N	Input noise voltage	V _s = 16V B (-3dB) = 40 to 15,000Hz		2		μ∨
i _N	Input noise current			80		pА
η	Efficiency	$P_0 = 6W$ $R_L = 4\Omega$ $f = 1KHz$	_	75		%
SVR	Supply voltage rejection	$R_L = 4\Omega$ $V_{ripple} = 1V_{rms}$ $f_{ripple} = 10Hz$	40	48		dB

Fig. 1 - Output power vs. supply voltage

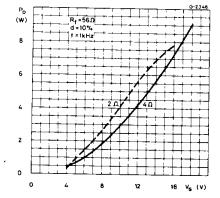


Fig. 2 - Maximum power dissipation vs. supply voltage (sine wave operation)

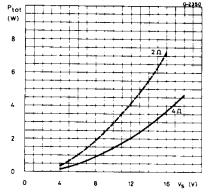
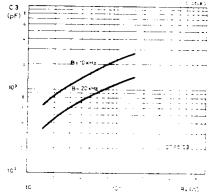



Fig. 3 - Value of C3 vs. feedback resistance for various values of B

SGS-THOMSON MICROELECTRONICS

3/3

233