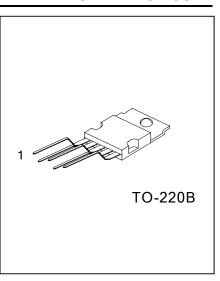
TDA2050

LINEAR INTEGRATED CIRCUIT

32W HI-FI AUDIO POWER AMPLIFIER

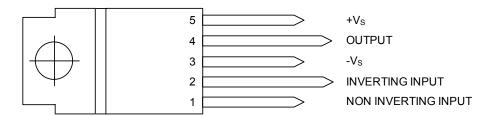

■ DESCRIPTION

The UTC **TDA2050** is a monolithic integrated circuit with high power capability and is designed to use as an class AB audio amplifier. It can deliver typically 50W music power into 4 Ω load over 1 sec at V_S=22.5V, f = 1KHz.

The device is most suitable for both Hi-Fi and high class TV sets on the strength of its high supply voltage and very low harmonic and crossover distortion.

■ FEATURES

- * High output power (50W Music Power IEC 268.3 Rules)
- * High operating supply voltage (50V)
- * Single or split supply operations
- * Very low distortion
- * Short circuit protection (OUT to GND)
- * Thermal shutdown

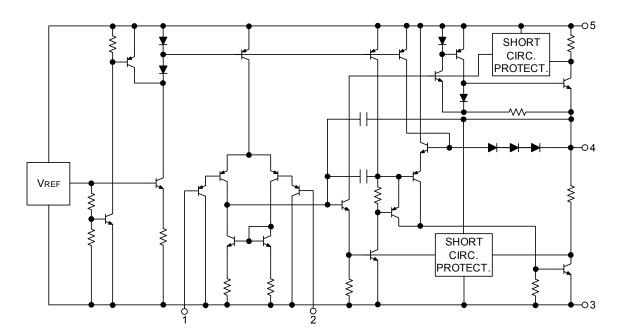


*Pb-free plating product number: TDA2050L

■ ORDERING INFORMATION

Ordering	Dackago	Packing		
Normal	Lead Free Plating	Package	Packing	
TDA2050-TB5-T	TDA2050L-TB5-T	TO-220B	Tube	

■ PIN CONFIGURATION



*TAB CONNECTED TO PIN 3

www.unisonic.com.tw
Copyright © 2005 Unisonic Technologies Co., LTD

QW-R107-036,A

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	Vs	±25	V
Input Voltage	V_{IN}	Vs	
Differential Input Voltage	V _{IN(DIFF)}	±15	$^{\circ}\mathbb{C}$
Output Peak Current (internally limited)	l _{out}	5	$^{\circ}\mathbb{C}$
Power Dissipation T _C = 75°C	P _D	25	W
Junction Temperature	TJ	+125	$^{\circ}\mathbb{C}$
Storage Temperature	T _{STG}	-40 ~ +150	$^{\circ}\mathbb{C}$

Note:1.Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Thermal Resistance junction-case	heta JC	3	°C/W

■ ELECTRICAL CHARACTERISTICS

(Refer to the Test Circuit, $V_S = \pm 18V$, $Ta = 25^{\circ}C$, f = 1 kHz, unless otherwise specified.)

PARAMETE	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage		Vs		±4.5		±25	V
Quiescent Drain Current		I _D	$V_S = \pm 4.5V$ $V_S = \pm 25V$		18 21	50 90	mA
Input Bias Current		Ι _Β	V _S = ±22V		0.4	0.5	μA
Input Offset Voltage		V _{IN(OS)}	V _S = ±22V			±15	mV
Input Offset Current		I _{IN(OS)}	V _S = ±22V			±200	nΑ
RMS Output Power	D = 0.5%	Po	$R_L = 4\Omega$ $R_L = 8\Omega$ $R_L = 8\Omega$, $V_S = \pm 22V$ $R_I = 4\Omega$	24 22	27 18 25 35		W
	D = 10%	P ₀	$R_L = 8\Omega$ $R_L = 8\Omega$, $V_S = \pm 22V$		22 32		
Music Power IEC268.3	3 RULES		$D = 10\%$, $T = 1s$, $V_S = \pm 22.5V$, $R_L = 4\Omega$		50		
Total Harmonic Distortion		THD	$R_L = 4\Omega$ $f = 1kHz$, $P_O = 0.1 \sim 24W$ $f = 100Hz \sim 10kHz$, $P_O = 0.1 \sim 18W$ $R_L = 8\Omega$, $V_S = \pm 22V$ $f = 1kHz$, $P_O = 0.1 \sim 20W$ $f = 100Hz \sim 10kHz$, $P_O = 0.1 \sim 15W$		0.03	0.5 0.5	%
Slew Rate		SR	, , ,	5	8		V/µs
Open Loop Voltage G					80		dB
Closed Loop Voltage Gain		Gv		30	30.5	31	dB
Power Bandwidth (-3dB)		B_W	$R_L = 4\Omega$, $V_{IN} = 200$ mV	20 ~ 80000		Hz	
Total Input Noise		e _N	Curve A B = 22Hz ~ 22kHz		4 5	10	μV
Input Resistance (pin 1)		R _{IN}		500			kΩ
Supply Voltage Rejection		SVR	$R_S = 22K\Omega$, f =100Hz, $V_{RIPPLE} = 0.5Vrms$		45		dB
Efficiency		η	$P_{O} = 28W, R_{L} = 4\Omega$ $P_{O} = 25W, R_{L} = 8\Omega, V_{S} = \pm 22V$		65 67		%

^{2.}The device is guaranteed to meet performance specification within 0° C \sim 70 $^{\circ}$ C operating temperature range and assured by design from -40° C \sim 85 $^{\circ}$ C.

TYPICAL APPLICATION CIRCUIT

FOR SPLIT SUPPLY APPLICATION SUGGESTIONS

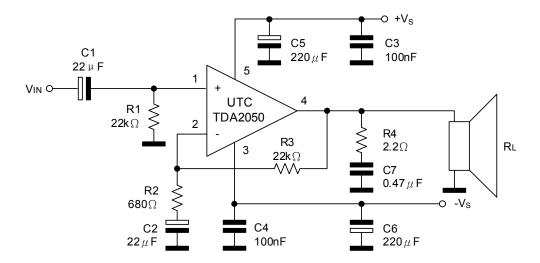


Figure.1 Split Supply Typical Application Circuit

The following table demonstrates the recommended values of the external components are those shown on above circuit. Different values can be used.

COMPONENT	DUDDOCE	RECOMMENDED VALUE			
COMPONENT	PURPOSE	TYPICAL	LARGER	SMALLER	
R1	Input Impedance	22kΩ	Increase of Input Impedance	Decrease of Input	
IXI				Impedance	
R2	Feedback Resistor	680Ω	Decrease of Gain*	Increase of Gain	
R3		22kΩ	Increase of Gain	Decrease of Gain*	
R4	Frequency Stability	2.2Ω	Danger of Oscillations		
C1	Input Decoupling DC	1µF		Higher Low-frequency cut-off	
C2	Inverting Input DC	22115	Increase of Switch ON/OFF	Higher Low-frequency cut-off	
C2	Decoupling	22µF	Noise	Higher Low-frequency cut-off	
C3, C4	Supply Voltage Bypass	100nF		Danger of Oscillations	
C5, C6	Supply Voltage Bypass	220µF		Danger of Oscillations	
C7	Frequency Stability	0.47µF		Danger of Oscillations	

^{*} The gain must be higher than 24dB

■ TYPICAL APPLICATION CIRCUIT(CONT.)

FOR SINGLE SUPPLY APPLICATION SUGGESTIONS

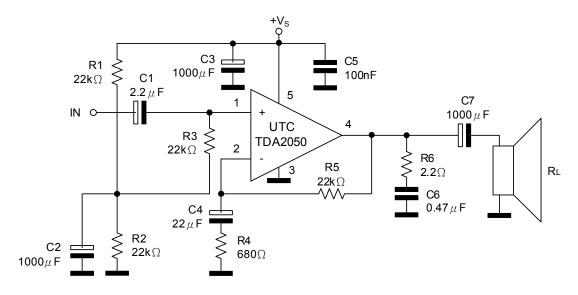
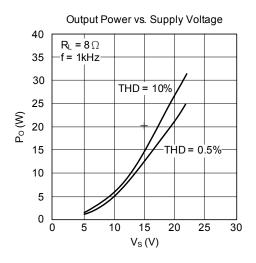
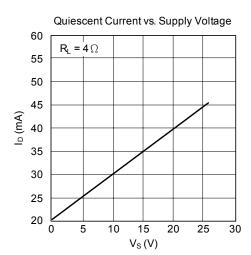
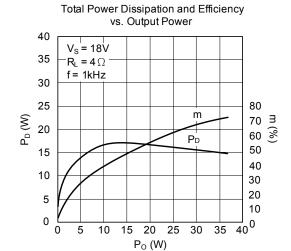


Figure.2 Single Supply Typical Application Circuit

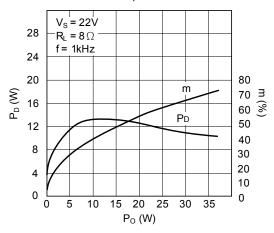

The following table demonstrates the recommended values of the external components are those shown on above circuit. Different values can be used.


COMPONENT	PURPOSE	RECOMMENDED VALUE			
COMPONENT	PURPUSE	TYPICAL	LARGER	SMALLER	
R1, R2, R3	Biasing Resistor	22kΩ			
R4	Feedback Resistor	22kΩ	Increase of Gain	Decrease of Gain*	
R5		680Ω	Decrease of Gain*	Increase of Gain	
R6	Frequency Stability	2.2Ω	Danger of Oscillations		
C1	Input Decoupling DC	2.2µF		Higher Low-frequency cut-off	
C2	Supply Voltage	100µF	Worse Turn-off Transient		
C2	Rejection	ΙυυμΓ	Worse Turn-on Delay		
C3	Supply Voltage Bypass	1000µF		Danger of Oscillations	
				Worse of Turn-off Transient	
C4	Inverting Input DC	22µF	Increase of Switch ON/OFF	Higher Low-frequency cut-off	
05	Decoupling	400		Department Occillations	
C5	Supply Voltage Bypass	100nF		Danger of Oscillations	
C6	Frequency Stability	0.47µF		Danger of Oscillations	
C7	Output DC Decoupling	1000µF		Higher Low-frequency cut-off	


^{*} The gain must be higher than 24dB


NOTE: If the supply voltage is lower than 40V and the load is 8Ω (or more), a lower value of C2(i.e. 22μ F) can be used. C7 can be larger than 1000μ F only if the supply voltage does not exceed 40V.

■ TYPICAL CHARACTERISTICS (Split Supply Test Circuit, unless otherwise specified)



Total Power Dissipation and Efficiency vs. Output Power

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

