AN5290S

Antenna diversity IC for on-vehicle TV

■ Overview
The AN5290S is an on-vehicle television antenna-diversity IC in which the noise detection circuit and antenna changeover circuit are integrated on a single chip. It is destined for NTSC/PAL system.

Features

- Built-in vertical and horizontal synchronizing circuit
- It outputs changeover pulse for noise canceler.
- Built-in antenna changeover stop function

Applications

- On-vehicle televisions

Package

- SOP024-P-0375C

Block Diagram

Pin Descriptions

Pin No.	Description	Pin No.	Description
1	Antenna selection level holding capacitance	12	VCO oscillation time-constant setting
2	Sync. separation video signal input	13	Antenna selection output 4
3	Horizontal sync. signal AFC output	14	Antenna selection output 3
4	Horizontal sync. signal oscillation time-	15	Antenna selection output 2
	constant setting	16	Antenna selection output 1
5	Horizontal sync. signal output	17	Power supply
6	Output for noise canceler	18	Noise comparator level setting/diversity off
7	Vertical sync. signal output	19	Noise level hold capacitor
8	GND	20	Noise comparator input
9	Vertical sync. signal separation time constant	21	2nd noise amplifier output
	setting	22	Video clamp input
10	Vertical sync. signal oscillation time constant	23	1st noise amplifier output
	setting	24	Video signal input
11	Charge pump integral time-constant setting		

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage	V_{CC}	5.6	V
Supply current	I_{CC}	30.0	mA
Power dissipation *	P_{D}	168	mW
Operating ambient temperature	$\mathrm{T}_{\mathrm{opr}}$	-30 to +80	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

Note) 1. Except for the power dissipation, operating ambient temperature, and storage temperature, all ratings are for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$.
2. In order to protect the IC, do not use the IC by rotating it 180 degrees.
3. To protect the IC, do not connect the open collector pins (pin 5 , pin 6 , pin 7 , pin 13 , pin 14 , pin 15 and pin 16) directly to the power supply. Use the protection resistors ($1 \mathrm{k} \Omega$ or larger for pin 5 , pin 6 and pin 7 , and 200Ω or larger for pin 13 , pin 14 , pin 15 and pin 16). Use the IC within the range of its power dissipation.
4. * $: \mathrm{T}_{\mathrm{a}}=80^{\circ} \mathrm{C}$.

Recommended Operating Range

Parameter	Symbol	Range	Unit
Supply voltage	V_{CC}	4.5 to 5.5	V

Electrical Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Quiescent current without load	I_{CC}	Without input	12.0	20.0	28.0	mA
Horizontal sync. oscillation frequency *	f_{H}	Without input, pin 5 frequency	15.58	15.68	15.78	kHz
PLL sync. oscillation frequency	$12 \mathrm{f}_{\mathrm{H}}$	Without input, pin 12 frequency	186	188.2	190	kHz
Vertical sync. oscillation frequency	f_{V}	Without input, pin 7 frequency	36.0	42.0	48.0	Hz
Electric field judgment period	f_{FJ}	Without input, pin 21 frequency	36.0	42.0	48.0	Hz
Output frequency for N.C.	f_{NC}	Asynchronous, at changing over antenna, pin 6 frequency	36.0	42.0	48.0	Hz
Antenna selection 1 on voltage	$\mathrm{V}_{\text {ASION }}$	Voltage, when pin 16 is on	-	0.2	0.5	V
Antenna selection 1 off voltage	$\mathrm{V}_{\text {ASIOFF }}$	Voltage, when pin 16 is off	4.9	5.0	-	V
Antenna selection 2 on voltage	$\mathrm{V}_{\text {AS2ON }}$	Voltage, when pin 15 is on	-	0.2	0.5	V
Antenna selection 2 off voltage	$\mathrm{V}_{\text {AS2OFF }}$	Voltage, when pin 15 is off	4.9	5.0	-	V
Antenna selection 3 on voltage	$\mathrm{V}_{\text {AS3ON }}$	Voltage, when pin 14 is on	-	0.2	0.5	V
Antenna selection 3 off voltage	$\mathrm{V}_{\text {AS3OFF }}$	Voltage, when pin 14 is off	4.9	5.0	-	V
Antenna selection 4 on voltage	$\mathrm{V}_{\text {AS4ON }}$	Voltage, when pin 13 is on	-	0.2	0.5	V
Antenna selection 4 off voltage	$\mathrm{V}_{\text {AS4OFF }}$	Voltage, when pin 13 is off	4.9	5.0	-	V

Note) * : The Horizontal oscillation frequency is a frequency after adjustment.

- Design reference data

Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
1st amplifier voltage gain	$\mathrm{A}_{\mathrm{N} 1}$	$\mathrm{V}_{\mathrm{IN}}=10 \mathrm{mV}[\mathrm{p}-\mathrm{p}], \mathrm{f}_{\mathrm{IN}}=10 \mathrm{kHz}$, at 1st amp. active	-	17.0	-	dB
2nd amplifier voltage gain	$\mathrm{A}_{\mathrm{N} 2}$	$\mathrm{V}_{\mathrm{IN}}=10 \mathrm{mV}[\mathrm{p}-\mathrm{p}], \mathrm{f}_{\mathrm{IN}}=10 \mathrm{kHz}$, at 2st amp. active	-	17.5	-	dB
Output voltage, when 2nd amplifier is on	$\mathrm{V}_{\mathrm{NON} 2}$	At 2st amp. active, pin 21 DC voltage	-	1.51	-	V
Output voltage, when 2nd amplifier is off	$\mathrm{V}_{\mathrm{NOF} 2}$	At 2nd amp. inactive, pin 21 DC voltage	-	4.20	-	V
Antenna input amplifier voltage gain	A_{C}	$\mathrm{V}_{\mathrm{IN}}=50$ mV[p-p], $\mathrm{f}_{\mathrm{IN}}=10 \mathrm{kHz}$, at input amp. active	-	5.5	-	dB
Level hold output bias voltage	$\mathrm{V}_{\mathrm{NOB} 2}$	At input amp. active, pin 1 DC voltage	-	1.43	-	V
Antenna switch output sink current 1	$\mathrm{I}_{\mathrm{AS} 1}$	Antenna selection output pin, max. current, when pin 16 is on	10.0	-	-	mA
Antenna switch output sink current 2	$\mathrm{I}_{\mathrm{AS} 2}$	Antenna selection output pin, max. current, when pin 15 is on	10.0	-	-	mA
Antenna switch output sink current 3	$\mathrm{I}_{\mathrm{AS} 3}$	Antenna selection output pin, max. current, when pin 14 is on	10.0	-	-	mA
Antenna switch output sink current 4	$\mathrm{I}_{\mathrm{AS} 4}$	Antenna selection output pin, max. current, when pin 13 is on	10.0	-	-	mA

Technical Information

Note) The following characteristics are the reference value for design and not guaranteed value. The timing chart is for explaining the IC operation plainly. Those vary depending on input condition.

1. Timing chart 1

- When NTSC reception (in horizontal and vertical synchronization) antenna is selected.

Electric field judgment and antenna selection timing when the change over from ANT- 1 to ANT-3 by the antenna selection is done.

(In the above timing chart, the 1st field video signal is not an internal signal but an input signal, and some signals which do not outputted to pins, as VCO signal, are included.)

Technical Information (continued)

2. Timing chart 2

- When PAL reception (in horizontal and vertical synchronization) antenna is selected.

Electric field judgment and antenna selection timing when the change over from ANT-1 to ANT-3 by the antenna selection is done.

The antenna selection sequence is as follows:
\qquad

- Application Circuit Example

The circuit shows an example of application circuit and circuit constant but does not guarantee the design of massproduction set.

Request for your special attention and precautions in using the technical information and semiconductors described in this book

(1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
(2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products, and no license is granted under any intellectual property right or other right owned by our company or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
(3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
Consult our sales staff in advance for information on the following applications:

- Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
- Any applications other than the standard applications intended.
(4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
(5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
(6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
(7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd.

