# THIS DOCUMENT IS FOR MAINTENANCE PURPOSES ONLY AND IS NOT RECOMMENDED FOR NEW DESIGNS



DS3125-2.0 June 1993

# **MV5087**

# DTMF GENERATOR

The MV5087 is fabricated using ISO-CMOS high density technology and offers low power and wide voltage operation. An inexpensive 3.58MHz TV crystal completes the reference oscillator. From this frequency are derived 8 different sinusoidal frequencies which, when appropriately mixed, provide Dual-Tone Multi-Frequency (DTMF) tones.

GEC PLESSEY

<u>S</u>EMICONDUCTORS

Inputs are compatible with either a standard 2-of-8 or a single contact (form A) keyboard. The keyboard entries determine the correct division of the reference frequency by the row and column counters.

D-to-A conversion, using R-2R ladder networks, results in astaircase approximation of a sinewave with low total distortion.

Frequency and amplitude stability over operating voltage and temperature range are maintained within industry specifications.

# **FEATURES**

- Pin-for-Pin Replacement for MK5087
- Low Standby Power
- Minimum External Parts Count
- 3.5V to 10V Operation
- 2-of-8 Keyboard or Calculator-Type Single Contact (Form A) Keyboard Input
- On-Chip Regulation of Output Tone
- Mute and Transmitter Drivers On-Chip
- High Accuracy Tones Provided by 3.58MHz Crystal Oscillator
- Pin-Selectable Inhibit of Single Tone Generation



Figure 1: Pin connections - top view

## **APPLICATIONS**

#### **DTMF Signalling for**

- **Telephone Sets**
- Mobile Radio
- Remote Control
- Point-of-Sale and Banking Terminals
- Process Control



Figure 2: Functional block diagram

# ABSOLUTE MAXIMUM RATINGS

|                                                                                                                               | Min.                                              | Max.                                                        |                                                                                | Min. | Max.   |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------|------|--------|
| V <sub>DD</sub> - V <sub>SS</sub><br>Voltage on any pin<br>Current on any pin<br>Operating temperature<br>Storage temperature | -0.3V<br>V <sub>SS</sub> - 0.3V<br>-40°C<br>-65°C | 10.5V<br>V <sub>DD</sub> + 0 3V<br>10 mA<br>+85°C<br>+150°C | Power dissipation<br>Derate 16 mW/°C above 75°C<br>(All leads soldered to PCB) |      | 850 mW |

# DC ELECTRICAL CHARACTERISTICS

# Test conditions (unless othenwise stated):

 $T_{amb} = +25^{\circ}C$ ,  $V_{DD} = 3.5V$  to 10V

|    | Characteristics          |                    | Symbol           | Min.               | Тур. | Max.                | Units |                          |                        |                |
|----|--------------------------|--------------------|------------------|--------------------|------|---------------------|-------|--------------------------|------------------------|----------------|
|    | Operating Supply Voltage |                    | V <sub>DD</sub>  | 3.5                |      | 10                  | V     | Ref. to V <sub>SS</sub>  |                        |                |
| Ľ  |                          |                    |                  |                    | 0.2  | 100                 | uA    | $V_{DD} = 3.5V$          | No Key D               | epressed       |
| ЪЧ | Standby Supply           | Current            | I <sub>DDS</sub> |                    | 0.5  | 200                 | uA    | $V_{DD} = 10V$           | All output             | s Unloaded     |
| ร  |                          |                    |                  |                    | 1.0  | 2.0                 | mA    | $V_{DD} = 3.5V$          | One Key                | Depressed      |
|    | Operating Supply         | / Current          | I <sub>DD</sub>  |                    | 5.0  | 10.0                | mA    | $V_{DD} = 10V$           | All output             | s Unloaded     |
|    | SINGLE TONE              | Input High Voltage | V <sub>IH</sub>  | $0.7V_{DD}$        |      | V <sub>DD</sub>     | V     |                          |                        |                |
|    | INHIBIT                  | Input Low Voltage  | V <sub>IL</sub>  | 0                  |      | $0.3V_{DD}$         | V     |                          |                        |                |
| S  |                          | Input Resistance   | R <sub>IN</sub>  |                    | 60   |                     | KΩ    |                          |                        |                |
| 5  | ROW 1-4                  | Input High Voltage | V <sub>IH</sub>  | $0.9V_{\text{DD}}$ |      |                     | V     |                          |                        |                |
| R  |                          | Input Low Voltage  | V <sub>IL</sub>  |                    |      | $0.3V_{\text{DD}}$  | V     |                          |                        |                |
|    | COLUMN 1-4               | Input High Voltage | V <sub>IH</sub>  | $0.7V_{DD}$        |      |                     | V     | _                        |                        |                |
|    |                          | Input Low Voltage  | V <sub>IL</sub>  |                    |      | $0.1 V_{\text{DD}}$ | V     |                          |                        |                |
|    | XMITR                    | Source Current     | I <sub>OH</sub>  | -15                | -25  |                     | mA    | $V_{DD} = 3.5V, \lambda$ | / <sub>OH</sub> = 2.5V | No Keyboard    |
|    |                          |                    |                  | -50                | -100 |                     | mA    | $V_{DD} = 10V, V$        | <sub>OH</sub> = 8V     | Entry          |
| TS |                          | Leakage Current    | I <sub>oz</sub>  |                    | 0.1  | 10                  | uA    | $V_{DD} = 10V, V$        | <sub>OH</sub> = 0V     | Keyboard Entry |
| P. | MUTE                     | Sink Current       | I <sub>OL</sub>  | 0.5                |      |                     | mA    | $V_{DD} = 3.5V, \lambda$ | $V_{\rm OL} = 0.5 V$   | No Keyboard    |
| 5  |                          |                    |                  | 1.0                |      |                     | mA    | $V_{DD} = 10V, V$        | <sub>OL</sub> = 0.5V   | Entry          |
| 0  |                          | Source Current     | I <sub>OH</sub>  | -0.5               |      |                     | mA    | $V_{DD} = 3.5V, \lambda$ | / <sub>OH</sub> = 3.0V | Keyboard Entry |
|    |                          |                    |                  | -1.0               |      |                     | mA    | $V_{DD} = 10V, V$        | <sub>OH</sub> = 9.5V   |                |

# AC ELECTRICAL CHARACTERISTICS

Test conditions (unless othenwise stated):

 $T_{amb} = +25^{\circ}C, V_{DD} = 3.5V \text{ to } 10V$ 

| Characteristic | S                             | Symbol          | Min. | Тур. | Max. | Units                        |                                                                                   |
|----------------|-------------------------------|-----------------|------|------|------|------------------------------|-----------------------------------------------------------------------------------|
| TONE OUT       | Row Tone<br>Output Voltage    | V <sub>OR</sub> | 320  | 400  | 500  | mV <sub>RMS</sub>            | Single Tone $R_L = 1K\Omega$                                                      |
|                | Column Tone<br>Output Voltage | V <sub>oc</sub> | 400  | 500  | 630  | $\mathrm{mV}_{\mathrm{RMS}}$ |                                                                                   |
|                | External Load                 | RL              | 700  |      |      | Ω                            | $V_{DD} = 3.5V$                                                                   |
|                | Impedance                     |                 | 300  |      |      | Ω                            | $V_{DD} = 10V$                                                                    |
| OUTPUT DIST    | ORTION                        |                 |      |      | -20  | dB                           | Total out-of-band power relative to<br>sum of row and column<br>fundamental power |
| PRE EMPHAS     | IS, High Band                 |                 | 1    |      | 3    | dB                           |                                                                                   |
| Tone Output R  | lise Time                     | t <sub>r</sub>  |      | 3    | 5    | ms                           |                                                                                   |

# **PIN FUNCTIONS**

| PIN         | NAME                   | DESCRIPTION                                                                                                                                                                                                                                                                       |
|-------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | V <sub>DD</sub>        | Positive Power Supply                                                                                                                                                                                                                                                             |
| 2           | XMITR                  | Emitter output of a bipolar transistor whose collector is connected to $V_{DD}$ . With no keyboard input this output remains at $V_{DD}$ and a keyboard input changes the output to a high impedance state. The state of Single Tone Inhibit input has no effect on XMITR output. |
| 3,4,5,9     | Column 1-4             | These inputs are held at $V_{SS}$ by resistors RC and sense a valid logic level (approx $^{1}/_{2}$ $V_{DD}$ ) when tied to a ROW input.                                                                                                                                          |
|             | V <sub>SS</sub>        | Negative Power Supply (OV)                                                                                                                                                                                                                                                        |
| 7,8         | OSC In,<br>OSC Out     | On-chip inverter completes the oscillator when a 3,579545 MHz crystal is connected to these pins. OSC In is the inverter input and OSC Out is the output.                                                                                                                         |
| 10          | Mute                   | This CMOS Output switches to $V_{SS}$ with no keyboard input and to $V_{DD}$ with a keyboard input. This output is unaffected by the state of Single Tone Inhibit.                                                                                                                |
| 11,12,13,14 | Row 1-4                | These inputs are held at $V_{DD}$ by resistors $R_R$ and sense a valid logic level (Approx $^{1}\!/_{2}V_{DD})$ when tied to a column input.                                                                                                                                      |
| 15          | Single Tone<br>Inhibit | This input has a pull-up resistor to $V_{\text{DD}}$ and when left unconnected or tied to $V_{\text{DD}}$ , single or dual tones may be generated. When Vss is applied dual tones only are generated and no input combinations will cause generation of a single tone.            |
| 16          | Tone Out               | Emitter output of a bipolar NPN transistor whose collector is tied to $V_{DD}$ . Input to this transistor is from an op-amp which mixes, and regulates the output level of, the row and column tones.                                                                             |

#### **ROW AND COLUMN INPUTS**

These inputs are compatible with the standard 2-of-8 keyboard, single contact (form A) keyboard and electronic input. Figures 3 and 4 show these input configurations, and Fig. 5 shows the internal structure of these inputs.

When operating with a keyboard, dual tones are generated when any single button is pushed. Single tones are generated when more than one button is pushed in any row



Figure 4: Electronic input

ROW

or column. No tones are generated when diagonallypositioned buttons are simultaneously pressed.

An electronic input to a single column generates that single column tone. Inputs to multiple columns generates no tone. An electronic input to a single row generates no tone and a single row tone may be generated only by activating 2 columns and the desired row.



Figure 5: Row and column inputs

 $\rm V_{\rm DD}$ 

V<sub>SS</sub>

# MV5087

#### **OUTPUT FREQUENCY**

Table 1 shows the output frequency deviation from the standard DTMF frequencies when a 3.58MHz crystal is used as the reference.

The row and column output waveforms are digitally synthesised using R-2R D-to-A converters (see Fig.6), resulting in a 'staircase' approximation to a sinewave. An opamp mixes these tones to produce a dual-tone waveform. Single tone distortion is typically better than 7% and all distortion components of the mixed dual-tone should be 30dB relative to the strongest fundamental (column tone).

|        | Standard<br>DTMF<br>(Hz) |      | Tone Output<br>Frequency Using<br>3.5795545 MHz<br>Crystal | % Deviation<br>from Standard |       |  |
|--------|--------------------------|------|------------------------------------------------------------|------------------------------|-------|--|
|        | f <sub>1</sub>           | 697  | 701.3                                                      | +0.62                        |       |  |
|        | f <sub>2</sub>           | 770  | 771.4                                                      | +0.19                        | Low   |  |
| Row    | f <sub>3</sub>           | 852  | 857.2                                                      | +0.61                        | Group |  |
|        | f <sub>4</sub>           | 941  | 935.1                                                      | -0.63                        |       |  |
|        | f <sub>5</sub>           | 1209 | 1215.9                                                     | +0.57                        |       |  |
| Column | f <sub>6</sub>           | 1336 | 1331.7                                                     | -0.32                        | High  |  |
| Column | f <sub>7</sub>           | 1477 | 1471.9                                                     | -0.35                        | Group |  |
|        | f <sub>8</sub>           | 1633 | 1645.0                                                     | +0.73                        | -     |  |

Table 1: Output frequency deviation



Figure 6: Typical sinewave output (a) Row tones (b) Column tones

#### **DISTORTION MEASUREMENTS**

THD for the single tone is defined by:

$$\frac{100\left(\sqrt{V_{2f}^2 + V_{3f}^2 + V_{4f}^2 + \dots + V_{nf}^2}\right)\%}{V_{\text{fundamental}}}$$

Where V2f --- Vnf are the Fourier components of the waveform.

THD for the dual tone is defined by:

$$\frac{100\left(\sqrt{V_{2R}^2 + V_{3R}^2 + V_{nR}^2 + V_{2C}^2 + V_{3C}^2 - V_{nc}^2 + V_{IMD}^2}\right)}{\sqrt{V_{ROW}^2 + V_{COL}^2}}$$

where V<sub>ROW</sub> is the row fundamental amplitude

V<sub>COL</sub> is the column fundamental amplitude

 $V_{2R}$ — $V_{nR}$  are the Fourier component amplitudes of the row frequencies

 $V_{2C}$ — $V_{nC}$  are the Fourier component amplitudes of the column frequencies

V<sub>IMD</sub> is the sum of all intermodulation components.

4



Figure 7: Connection diagram