

# Low Voltage Speech Circuit with Tone Ringer Interface

### **Description**

TELEFUNKEN microelectronic's low voltage speech and ringer interface circuit, U4037B performs all necessary speech, line interface functions and the tone ringer required in an electronic telephone set.

The circuit is line powered and contains all components necessary for amplification of signals and adaption to the line. The power supply of U4037B provides the MCU during the ringing and the speech mode.

#### **Features**

#### **Speech Circuit**

- Adjustable dc characteristic
- Symmetrical input of microphone amplifier
- Receiving amplifier for dynamic or piezo-electric earpieces
- Automatic line loss compensation
- MCU controlled earphone gain 8 dB
- Anti-clipping in transmit direction

#### **Tone Ringer Interface**

- Adjustable volume via 2 bit D/A converter
- Adjustable threshold
- MCU power supply

#### **Benefits**

• Low number of external components

### **Applications**

Standard, telephones, fax machines



## **Block Diagram / Applications**

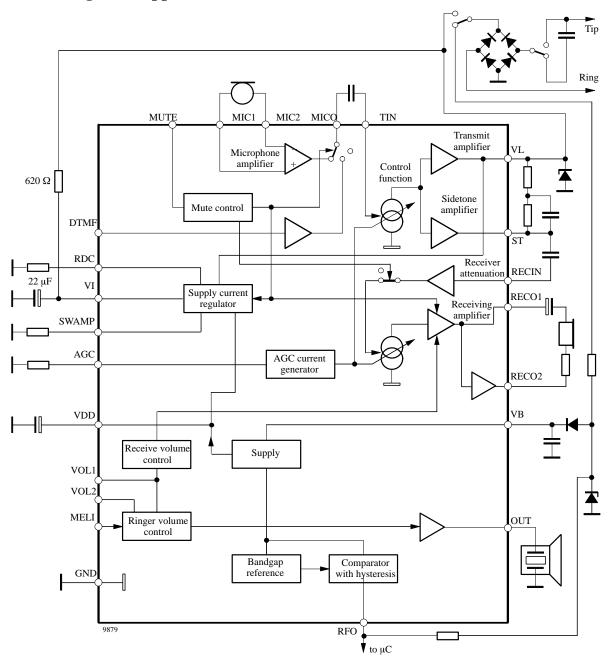



Figure 1. Block diagram



## **Pin Description**

| Pin | Symbol          | Function                                                                                                                                                           |
|-----|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | OUT             | Buzzer output                                                                                                                                                      |
|     | MELI            | Melody input                                                                                                                                                       |
|     | RECO1<br>RECO2  | Output of the receiver amplifier<br>Suitable for dynamic or piezoelec-<br>tronic transducers                                                                       |
|     | GND             | Ground                                                                                                                                                             |
|     | ST              | The output of the sidetone cancellation signal, which requires a balanced impedance of 8 to 10 times the subscribers line impedance to be connected to Pin $V_L$ . |
|     | TIN             | Input to the line output driver amplifier, transmit a.g.c. applied to this stage                                                                                   |
|     | MICO            | Transmit pre-amplifier output                                                                                                                                      |
|     | MIC 1,<br>MIC 2 | Inputs of symmetrical microphone amplifier with high common mode rejection ratio                                                                                   |
|     | V <sub>DD</sub> | Regulated output voltage of for biasing the MCU                                                                                                                    |
|     | RECIN           | Receive amplifier input The receiving amplification is regulated by an a.g.c.                                                                                      |
|     | $V_{ m L}$      | Positive supply voltage input to the device The current through this pin is modulated by the transmit signal.                                                      |

| Pin | Symbol           | Function                                                                                                                                                                                                                                                              |
|-----|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | SWAMP            | An external resistor (1 W) is required from this pin to GND to control the dc input impedance of the circuit. It has a nominal value of $56 \Omega$ for low voltage operation.                                                                                        |
|     | VOI1<br>VOI2     | Volume adjustment of ringer and earphone amplifier                                                                                                                                                                                                                    |
|     | RFO              | Output for ringing frequency detection                                                                                                                                                                                                                                |
|     | VI               | This internal voltage bias line must be connected to $V_L$ via an external resistor, $R_B$ , which dominates the ac input impedance of the circuit and should be 620 $\Omega$ for an 600 $\Omega$ input impedance or 910 $\Omega$ for a 900 $\Omega$ input impedance. |
|     | R <sub>AGC</sub> | The range of transmit and receive gain variations between short and long loops may be adjusted by connecting a resistor R <sub>AGC</sub> from this pin to (GND). This pin can be left open to set a.g.c. out of action.                                               |
|     | DTMF             | DTMF input                                                                                                                                                                                                                                                            |
|     | MUTE             | Control input for DTMF operation                                                                                                                                                                                                                                      |
|     | VB               | Ringer supply                                                                                                                                                                                                                                                         |
|     | RDC              | Input for setting the DC characteristic                                                                                                                                                                                                                               |



## **Electrical Characteristics speech circuit**

Reference point Pin GND, f=1000 Hz, 0 dBm = 775 mV<sub>rms</sub>,  $R_{DC}=60$  k $\Omega$ ,  $T_{amb}=25$ °C, unless otherwise specified

|                                                                  | 8 mA<br>20 mA<br>30 mA<br>73 mA                     | $V_{L}$            | 1.8<br>3.0<br>3.6<br>7.7 | 2.1<br>3.3 | 2.6<br>3.6 | V<br>V           |
|------------------------------------------------------------------|-----------------------------------------------------|--------------------|--------------------------|------------|------------|------------------|
| $\begin{split} I_L = \\ I_L = \end{split}$ Transmit and sidetone | 30 mA                                               |                    | 3.6                      | 3.3        |            | V                |
| $\overline{I_L} = \\$ Transmit and sidetone                      |                                                     |                    |                          |            |            |                  |
| Transmit and sidetone                                            | 73 mA                                               |                    | 7.7                      | 1          | 4.5        | V                |
| <u> </u>                                                         |                                                     |                    |                          |            | 9.7        | V                |
| Input resistance R <sub>i</sub>                                  |                                                     |                    |                          |            |            |                  |
|                                                                  |                                                     | Ri                 | 30                       | 50         | 75         | kΩ               |
|                                                                  | 30 mA                                               | $G_s$              | 47                       | 48         | 49         | dB               |
|                                                                  | $I_{C} = 0 \Omega$ , $I_{L} = 73 \text{ mA}$        | $\Delta G_{s}$     | -5                       | -6         | -7         | dB               |
|                                                                  | 15 mA, $V_L = 775 \text{ mVrms}$                    | $d_s$              |                          |            | 2          | %                |
|                                                                  | 19 mA, d < 5 %,<br>c = 10 mV, RDC = 100 kΩ          | V <sub>1max</sub>  | 1.8                      | 3          | 4.2        | dBm              |
| Anti-clipping attack time V <sub>mic</sub>                       | c = 20  mV, C = 470  nF                             |                    |                          | 0.5        |            | ms               |
| Release time Each                                                | n 3 dB overdrive                                    |                    |                          | 9          |            | ms               |
| Noise at line weighted $I_L >$ psophometrically                  | $30 \text{ mA}, G_S = 48 \text{ dB}$                | n <sub>o</sub>     |                          |            | -72        | dBmp             |
| Sidetone reduction $I_L \ge$                                     | 20 mA                                               | $G_{STA}$          | 10                       | 15         | 20         | dB               |
| DTMF-amplifier                                                   |                                                     | ,                  |                          |            |            |                  |
| Volume range d ≥ 5%                                              |                                                     | $V_0$              | 1                        |            |            | V <sub>RMS</sub> |
| Receiving amplifier                                              |                                                     |                    |                          |            |            |                  |
| Gain IL ≥                                                        | ≥ 20 mA                                             | $G_R$              |                          | 4          |            | dB               |
| Amplification of DTMF signal from DTMF IN to RECO1/2 $I_F \ge$   | 2 15 mA, mute active                                | G <sub>RM</sub>    | -15                      | -12        | _9         | dB               |
|                                                                  | 15 mA, C <sub>L</sub> = 4.7 nF,<br>00 to 3400 Hz    | $\Delta G_{ m RF}$ |                          |            | ±0.5       | dB               |
| Gain change with current $I_L =$                                 | 15 to 100 mA                                        | $\Delta_{ m GR}$   |                          |            | ±0.5       | dB               |
|                                                                  | $_{0} = -10 \text{ to } +60^{\circ}\text{C},$ 15 mA | $\Delta_{ m GR}$   |                          |            | ±0.5       | dB               |
|                                                                  | 2 15 mA, V <sub>gen</sub> = 11 V <sub>rms</sub>     |                    |                          |            | 2.2        | V <sub>rms</sub> |
|                                                                  | 73 mA                                               | $\Delta G_R$       | -5                       | -6         | -7         | dB               |
| Receiving noise at earphone $I_L =$ psophometrially weighted     | 73 mA                                               | n <sub>i</sub>     |                          | -80        | -71        | dBm              |
| Gain change when muted $I_{I} \ge$                               | ≥ 20 mA                                             | G <sub>RM</sub>    |                          | 40         |            | dB               |
|                                                                  | ≟ 20 mA                                             | $V_0$              | 0.8                      | 0.9        | 1          | V <sub>rms</sub> |
| Supply voltage                                                   |                                                     |                    |                          |            |            |                  |
|                                                                  | ≥ 20 mA                                             | V <sub>DDS</sub>   |                          |            |            |                  |
|                                                                  | speech mode                                         |                    |                          | 3          |            | V<br>V           |
| Mute suppression $I_{L} \ge$                                     | ≥ 20 mA                                             | G <sub>SM</sub>    | 60                       |            |            | dB               |



## **Electrical Characteristics of Tone Ringer Interface**

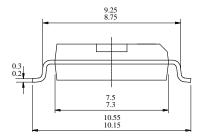
| Parameters                   | Test Conditions / Pin     | Symbol       | Min | Тур | Max | Unit  |
|------------------------------|---------------------------|--------------|-----|-----|-----|-------|
| Supply current, outputs open | $V_{RING} = 14 \text{ V}$ | $I_S$        | 1.5 | 2.0 | 2.5 | mA    |
| Switch-on threshold          |                           |              |     | 11  |     | V     |
| Switch-off threshold         |                           |              |     | 6.5 |     | V     |
| Volume adjustment range      |                           | VOI1<br>VOI2 |     | 40  |     | dB(A) |
| Supply voltage for MCU       | $I_{DD} < 1 \text{ mA}$   |              |     | 3.2 |     | V     |

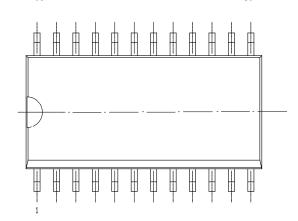
## **Ordering Information**

| Туре   | Package |
|--------|---------|
| U4037B | SO24    |

# **Package Information**

Package SO24


Dimensions in mm


15.5
15.3

2.45

0.49
0.35

13.97







95 11492



#### **Ozone Depleting Substances Policy Statement**

It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to

- 1. Meet all present and future national and international statutory requirements.
- Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

**TEMIC TELEFUNKEN microelectronic GmbH** semiconductor division has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

**TEMIC** can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423

**TELEFUNKEN Semiconductors** 

6(6)

Preliminary Information Rev. A1, 08-Oct-96