3875081 G E SOLID STATE 01E 17785 Triacs _ SC141, SC146 Series File Number 1167 # 6-A and 10-A Silicon Triacs Three-Lead Plastic Types for Power-Control and Power-Switching Applications Features: - 800 V, 125 Deg. C T₃ operating High dv/dt and di/dt capability Low switching losses - High pulse current capability - Low forward and reverse leakage - Sipos oxide glass multilayer passivation system Advanced unisurface construction Precise Ion implanted diffusion source JEDEC TO-220AB The RCA-SC141 and SC146 series triacs are gate-controlled full-wave silicon switches. These devices are designed to switch from an off-state to an on-state for either polarity of applied voltage with positive or negative gate triggering voltages. They have an on-state current rating of 6-A at $T_c = 75^{\circ}$ C (SC141 series) and 10-A at $T_c = 80^{\circ}$ (SC146 series) and repetitive off-state voltage ratings, of 200, 400, 500, 600, and 800 volts. All devices utilize the JEDEC TO-220AB (VERSAWATT) plastic package. MAXIMUM RATINGS, Absolute-Maximum Values: | | SC141B
SC146B | SC141D
SC146D
400 | SC141E
SC146E
500 | SC141M
SC146M
600 | SC141N
SC146N
800 | v | |---|------------------|-------------------------|-------------------------|-------------------------|-------------------------|--| | V _{DROM} • T _J = -40 to 125°С | 200 | | | | | - | | $I_{\text{TIRMSI}} \theta = 360^{\circ}$:
For SC141 series, $T_{\text{C}} = 75^{\circ}\text{C}$ | | | 6 | | | Α | | For SC141 series, T _C = 75°C | | _ | | | | Α | | For SC141 series, $T_C = 75^{\circ}C$ | | | See Fig. 4 | | | | | For other conditions | | | 000 i ig. i | | | | | I _{TSM} : For one full cycle of applied principal voltage, | | | | SC146 Se | vlos | | | at current and temperature shown above for IT (RMS): | SC | 141 Series | | 120 | | Α | | 60 Hz (sinusoidal) | | 80
75 | | 110 | | Â | | 50 Hz (sinusoidal) | | 75 | See Fig. 5 | | | | | For more than one cycle of applied principal voltage | | | 366 i ig. 5 | | | | | di/dt: | | | 70 | | | . Α/μs | | $V_D = V_{DROM}$, $I_G = 200 \text{ mA}$, $t_r = 0.1 \mu\text{s}$ | | 141 Series | | SC146 Se | eries | • | | 2t [At Tc shown for ITIRMSI, half-sine wave]: | 30 | 25 | | 70 | | A ² s
A ² s
A ² s | | t = 10 ms | | 17 | • | 45 | | A ² s | | 2.5 ms | | 10 | | 25 | | A ² s | | 0.5 ms | | 10 | | | | | | I _{GTM} ** | | | 4 | | | . A | | For 1 µs max | | | 10 | | | _ W | | P _{GM} (For 1 µs max., I _{GTM} ≤ 4 A) | | | | | | . W | | PG/AN | | | | | | _ °C | | Tstg | | | | | | _ | | То | ••• | | 230 | | | _ °C | | Tr (During soldering for 10 s max.) | | | | | | | [•]For either polarity of main terminal 2 voltage (V_{MT2}) with reference to main terminal 1. ■For either polarity of gate voltage (V_G) with reference to main terminal 1. 1328 01E 17786 ### SC141, SC146 Series ELECTRICAL CHARACTERISTICS At Maximum Ratings Unless Otherwise Specified, and at Indicated Temperatures 01 | CHARACTERISTIC | | LIMITS For All Types Except as Specified Min. Typ. Max. | | | |--|------------|---|----------------|---------| | ¹DROM® | | | | | | V _{DROM} = Max. rated value, T _C = 25°C
= 125°C | - | _
_ | 0.1
0.5 | mA | | VTM [●] T _C = 25°C, i _T = 8.5 A (peak SC141 series = 14 A (peak) SC146 series | | <u>-</u> | 1.83
1.65 | v | | 1но• | | | | | | Gate open, initial principal current = 500 mA (dc)
$v_D = 12 \text{ V}, T_C = 25^{\circ}\text{C}$
= -40°C | _ | | 50
100 | | | I _L • | | | | 1 | | $R_{GK} = 100 \Omega$, $t_W = 50 \mu s$, $t_r = t_f = 5 \mu s$, $f = 1 \text{ kHz}$,
$T_C = 25^{\circ} \text{C}$ Mode V_{MT2} V_G | | | | mA | | 1 _C = 25 C Mode V _{MT2} V _G | _ | _ | 100 | | | 111 | - | _ | 100 | | | 1- + - | | | 200 | | | T _C =-40°C 1+ + + | - | _ | 200 | l | | 111
1- + - | - | - | 200
400 | l | | dv/dt [®] (Commutating) | 1- | | 400 | | | $v_D = V_{DROM}$, $I_{T(RMS)} = Max$, rated value,
di/dt = 3.2 A/ms, $I_C = 80^{\circ}C$ SC141 series | 4 | - | - | | | di/dt = 5.4 A/ms, T _C = 80°C SC146 series | | _ | | V/μs | | dv/dt^{\bullet} (Off-State)
$v_D = V_{DROM}$, $T_C = 100^{\circ}$ C, Exponential voltage rise
SC141 series
SC146 series | 30
100 | 100
250 | 1 1 | | | GT ⁶⁸ v _D = 12 V (dc) | | | | | | $T_C = 25^{\circ}C$ $R_L - \Omega$ Mode V_{MT2} V_G
100 1+ + +
100 111
50 1- + - | - | | 50
50
50 | mA | | T _C = -40°C 50 1+ + + | 1 <u>-</u> | | 80 | | | 50 111 | - | _ | 80 | | | 25 1- + - | | | 80 | | | $V_{GT}^{\bullet\bullet}$ $v_D = 12 \text{ V (dc)}$
$T_C = 25^{\circ}\text{C}$ $R_L - \Omega$ Mode V_{MT2} V_G | | - | | | | 100 1+ + + | - | - | 2.5 | | | 100 111
50 1- + | - | - | 2.5 | ٠, | | $T_{C} = -40^{\circ}C$ 50 1+ + + | +- | | 2.5 | V | | 50 111 | _ | _ | 3.5
3.5 | | | 25 1- + - | 1 _ | _ | 3.5 | | 793 # SC141, SC146 Series # ELECTRICAL CHARACTERISTICS (Cont'd) At Maximum Ratings Unless Otherwise Specified, and at Indicated Temperatures | CHARACTERISTIC | LIMITS
For All Types
Except as Specified | | | UNITS | | |--|--|------|------|-------|--| | | Min. | Тур. | Max. | | | | V_{GD}^{\bullet} $v_{D} = V_{DROM}$, $R_{L} = 1k\Omega$, $T_{C} = 100^{\circ}C$ (For all triggering modes) | 0.2 | | - | v | | | ^{t}gt
$^{v}D = ^{v}DROM$, $^{l}G = 80$ mA, $^{t}t_{r} = 0.1$ μs , $^{i}T = 25$ A (peak),
$^{T}C = 25$ C | _ | 1.6 | 2.5 | μs | | | Thermal Characteristics | | | | · | | |--|------------------------------|---|---------------|-------------|------| | R _θ JC | SC141 series
SC146 series | _ | _ | 3.0
2.2 | | | R _{OJA} | | - | _ | 75 | °c/w | | R _θ JC (ac)* During ac current conduction | SC141 series
SC146 series | _ |
 -
 - | 2.22
1.5 | | - For either polarity of main terminal 2 voltage (V_{MT2}) with reference to main terminal 1. For either polarity of gate voltage (V_{Q}) with reference to main terminal 1. This characteristic is useful in the calculation of junction-temperature rise above T_{Q} for ac current conduction and applies for a 50 or 60 Hz full sine wave of current. It can be calculated with the following formula: Apparent thermal resistance = $$\frac{T_{J(max.)} - T_{C}}{P_{T(AV)}}$$ where: $$T_{J(max.)} = \text{maximum junction temperature}$$ $$T_{C} = \text{case temperature}$$ $$P_{T(AV)} = \text{average on-state power}$$ Fig. 1 — Principal voltage-current characteristic. Fig. 3 — Power dissipation as a function of on-state current for SC146 series. - Power dissipation as a function of on-state current for SC141 series. Maximum allowable case-temperature as a function of on-state current for SC141 series. 1330 #### SC141, SC146 Series Fig. 5 — Maximum allowable case-temperature as a function of on-state current for SC146 series. Fig. 6 — Peak surge on-state current as a function of surge current duration for SC141 series. Fig. 7 — Peak surge on-state current and fusing current as a function of time for SC141 series. Fig. 8 — Peak surge on-state current as a function of surge current duration for SC146 series. Fig. 9 — Peak surge on-state current and fusing current as a function of time for SC146 series. Fig. 10 — Gate pulse characteristics for all triggering modes. 795 Triacs _ ## SC141, SC146 Series Fig. 11 — On-state current as a function of on-state voltage for SC141 series. Fig. 12 — On-state current as a function of on-state voltage for SC146 series. Fig. 13 — DC holding current as a function of case temperature. Fig. 14 — DC gate trigger current as a function of case temperature. Fig. 15 - Peak gate trigger current as a function of gate pulse width. Fig. 16 - DC gate-trigger voltage as a function of case temperature. 796 . 1332 # SC141, SC146 Series Fig. 17 – Thermal impedance as a function of sinewave current cycles. Fig. 18 — Relationship between supply voltage and principal current (inductive load) showing reference points for definition of commutating voltage (dv/dt). Fig. 19 — Rate-of-change of on-state current with time (defining di/dt). Fig. 20 — Relationship between off-state voltage, on-state current, and gate-trigger voltage showing reference points for definition of turn-on time (t_{gt}).