

Dolby Pro-Logic Surround Matrix Decoder

SSM-2125/SSM-2126

FEATURES

Noise Generator and Autobalance Circuits are Contained On-Chip

Autobalance On/Off Control

4-Channel Pro-Logic and Dolby 3 (Surround Channel Defeat) Modes Available

Selectable Center Channel Modes – Normal, Wideband, Phantom, Off

Direct Path Bypass (Normal 2-Channel Stereo Mode) Wide Channel Separation

Center to Left, Right Channels – 35 dB min (SSM-2125)

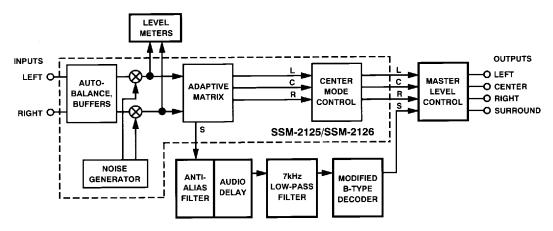
Any Channel to Another – 25 dB min (SSM-2126) Wide Dynamic Range – 103 dB typ Low Total Harmonic Distortion – 0.02% typ Available in a 48-Pin Plastic DIP CMOS and TTL Compatible Control Logic

APPLICATIONS

Direct View and Projection TV
Integrated A/V Amplifiers
Laserdisc and CD-V Players
Video Cassette Recorders
Stand-Alone Surround Decoders
Home Satellite Receiver/Descramblers

GENERAL DESCRIPTION

The SSM-2125 and SSM-2126 are Dolby* Pro-Logic Surround Decoders developed to provide multichannel outputs from Dolby Surround encoded stereo sources.


Over 2000 major films and an increasing number of broadcasts are available in Dolby Surround. Surround encoding is preserved in the stereo audio tracks of normal video discs, video cassettes, and television broadcasts, permitting the decoding to multichannel audio in the home.

Major design considerations of the SSM-2125/SSM-2126 are excellent audio performance and a high level of integration. In addition to the Adaptive Matrix and Center Mode Control, also included on-chip are the Automatic Balance Control and Noise Generator functions. A complete Pro-Logic system can be realized using the SSM-2125/SSM-2126 and few external components. Using SSM's extensive experience in the design of professional audio integrated circuits, the SSM-2125/SSM-2126 offers typical 103 dB dynamic range and 0.025% THD. A direct path bypass mode allows normal stereo operation with high fidelity without the need for external switching or parallel signal paths.

The SSM-2125 is a premium grade that is selected to a minimum channel separation specification of 35 dB for the center to left and right channels, and 25 dB for the remaining channels. The standard grade, the SSM-2126, provides minimum channel separation of 25 dB from any channel to another.

The SSM-2125/SSM-2126 is available only to licensees of Dolby Licensing Corporation, San Francisco, California, from whom licensing and application information must be obtained.

FUNCTIONAL BLOCK DIAGRAM

*Dolby is a registered trademark of Dolby Laboratories Licensing Corporation, San Francisco, California.

REV. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 617/329-4700 Fax: 617/326-8703 Twx: 710/394-6577
Telex: 924491 Cable: ANALOG NORWOODMASS

SSM-2125/SSM-2126 — SPECIFICATIONS $(V_s = \pm 6 \text{ V}, T_A = +25^{\circ}\text{C}, V_{IN} = 0 \text{ dBd at 1 kHz},^1)$ Center Mode Control: Wide, unless otherwise noted.)

				SSM-2125			SSM-2126		
Parameter Symbol Conditions		Conditions	Min	Тур	Max	Min	Тур	Max	Units
CHANNEL SEPARATION									
Center		C Input; R, L Outputs	35	48		25	35		dB
		C Input; S Output	25	35		25	35		dB
Right		R Input; L, C, S Outputs	25	35		25	35		dB
Left		L Input; C, R, S Outputs	25	35		25	35		dB
Surround		S Input; L, R, C Outputs	25	35		25	35		dB
CHANNEL OUTPUT LEVEL		$V_{IN} = 0$ dB; L, R, C, S Output			±0.5			±0.5	dBd
TOTAL HARMONIC									
DISTORTION	THD	All Channels		0.02	0.1		0.02	0.1	%
SIGNAL-TO-NOISE RATIO	SNR	$V_{IN} = 0 \text{ V, CCIR2K/ARM}$							
		All Channels	-83	-87		-80	-87		dBd
HEADROOM	HR	Clipping = 3% THD							
		All Channels	15	16		15	16		dBd
BYPASS MODE									
DYNAMIC RANGE		Clipping to Noise Floor		104			104		dB
NOISE SOURCE									
OUTPUT LEVEL		All Channels		-13.5			-13.5		dBd
NOISE SOURCE OUTPUT									
LEVEL MATCHING		Any Channel to Another		1			1		dB
AUTOBALANCE									
CAPTURE RANGE			±3	±3.8	±6		±3.8		dB
LOGIC THRESHOLD HI		Relative to L _{REF}	+2.4			+2.4			V
LO		1.02			+0.8			+0.8	V
OPERATING SUPPLY									
VOLTAGE	$V_{\rm s}$	Single Supply		+12			+12		V
		Dual Supply		±6			±6		V
SUPPLY CURRENT	I _{SY}	No Input Signal		40	50		40	50	mA
INPUT IMPEDANCE	Z _{IN}	L, R Inputs		5			5		kΩ
OUTPUT IMPEDANCE	Z _{OUT}	L, R, C, S Outputs		600			600		Ω

NOTE

ABSOLUTE MAXIMUM RATINGS

Supply Voltage +16 V or ±8 V
Logic Inputs
Storage Temperature Range55°C to +125°C
Operating Temperature Range20°C to +70°C
Junction Temperature +150°C
Lead Temperature Range (Soldering, 60 sec) +300°C
Thermal Resistance ¹
θ _{IA}
θ _{JC}
NOTE

 $^1\theta_{\mathrm{JA}}$ is specified for worst case mounting conditions, i.e., device in socket.

ORDERING GUIDE

Model	Temperature Range	Package Option		
SSM2125XXXP*	-20°C to +70°C	48-Pin P-DIP		
SSM2126XXXP*	-20°C to +70°C	48-Pin P-DIP		

NOTE

 $^{^{1}0 \}text{ dBd} = 500 \text{ mV rms}$ Dolby level output at any channel; Left and Right inputs: 500 mV rms (0 dBd); Center input: L = R = 354 mV rms (-3 dBd); Surround input: L = -R = 354 mV rms (-3 dBd).

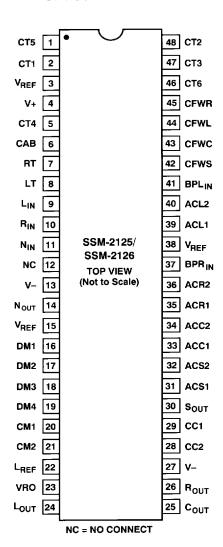

^{*}The SSM-2125/SSM-2126 is available only to licensees of Dolby Laboratories. Each customer will be assigned a special part number for ordering purposes. Contact local ADI sales office for further details.

Table I. External Component List

C1	Component	Value	Tolerance*	Comment (Noncritical Unless Otherwise Noted)
C3	C1	0.1 μF		
C4	C2			
C4	C3	680 pF		
C5	C4			
C6 680 pF 4.7 μF 20% Standard Electrolytic C8 0.22 μF 7 9 <td>C5</td> <td></td> <td></td> <td></td>	C5			
C7	I	•		
C8	I	-	20%	Standard Electrolytic
C9 $0.22 \mu F$ Film C10 $0.33 \mu F$ Film C11 $0.33 \mu F$ Film C12 $0.33 \mu F$ Film C13 $0.33 \mu F$ Film C14 $22 nF$ Film C15 $22 nF$ Film C16 $22 nF$ Film C17 $22 nF$ Film C18 $0.1 \mu F$ Film C19 $4.7 \mu F$ 20% Standard Electrolytic C20 $0.22 \mu F$ Standard Electrolytic C21 $0.22 \mu F$ Not Needed C22 $10 \mu F$ 20% Standard Electrolytic C23 $-$ Not Needed C24 $10 nF$ $2100 \mu F$ Standard Electrolytic C25 $10 nF$ $2100 \mu F$ Standard Electrolytic C28 $0.1 \mu F$ $2100 \mu F$ Standard Electrolytic C30** $0.1 \mu F$ $2100 \mu F$ Standard Electrolytic C32 $0.1 \mu F$ $2100 \mu F$ Standard Electrolytic C32 $0.1 \mu F$	I	-		-
C10 C11 C12 C13 C13 C14 C15 C15 C22 C16 C22 C17 C18 C19 C19 C19 C22 C21 C22 C21 C22 C21 C22 C24 C24	ľ			
C11	_			Film
C12				
C13	l l			
C14	I	•		
C15	I			
C16	_			
C17				
C18 C19 C19 C20 C20 C22 μF C21 C22 C22 C24 C24 C25 C26 C27 C26 C10 μF C27 C27 C28 C27 C28 C10 μF C29** C29** C29** C30 μF C31 C30 μF C31 C31 C31 C32 C31 C32 C31 C32 C31 C32 C31 C32 C32 C34 C34 C35 C35 C35 C37 C44 C57 C58 C59** C59** C69 μF C79** C79 μF C70 μ				
C19				1 11111
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			20%	Standard Electrolytic
C21 0.22 μF C22 10 μF C23 — Standard Electrolytic Not Needed No			20 70	Standard Licetrolytic
C22		•		
C23 — — Not Needed C24 10 nF — Not Needed C25 10 nF — Standard Electrolytic C26 100 μF ≥100 μF Standard Electrolytic C28 0.1 μF ≥100 μF Standard Electrolytic C30** 0.1 μF ≥100 μF Standard Electrolytic C31 100 μF ≥100 μF Standard Electrolytic C32 0.1 μF Standard Electrolytic R1 15 kΩ 5% R2 47 kΩ 5%		•	200/	Standard Flastrolytic
C24 10 nF C25 10 nF C26 10 nF C27 100 μF ≥100 μF C28 0.1 μF C29** 100 μF ≥100 μF C30** 0.1 μF C31 100 μF ≥100 μF C32 0.1 μF C33 5% C32 0.1 μF C34 5% 5% C35 5% C36 5% C37 5% 5% C38 5% 5% C39 5% 5% 5% 5% $\frac{1000 \mu \text{F}}{1000 \mu \text{F}}$ $\frac{15 k\Omega}{1000 \mu \text{F}}$ $\frac{15 k\Omega}{10000 \mu \text{F}}$ $\frac{15 k\Omega}{1000 \mu \text{F}}$ $\frac{15 k\Omega}{10000 \mu \text{F}}$ $\frac{15 k\Omega}{1000 \mu \text{F}}$		10 μΓ	20%	-
C25 10 nF 10 nF Standard Electrolytic C26 10 μF ≥100 μF Standard Electrolytic C27 0.1 μF ≥100 μF Standard Electrolytic C29** 100 μF ≥100 μF Standard Electrolytic C30** 0.1 μF ≥100 μF Standard Electrolytic C32 0.1 μF Standard Electrolytic R1 15 kΩ 5% R2 47 kΩ 5%			_	Not Needed
C26 10 nF $2 \times 100 \mu$ F Standard Electrolytic C27 100 μF $2 \times 100 \mu$ F Standard Electrolytic C28 0.1 μF $2 \times 100 \mu$ F Standard Electrolytic C30** 0.1 μF $2 \times 100 \mu$ F Standard Electrolytic C31 100 μF $2 \times 100 \mu$ F Standard Electrolytic C32 0.1 μF $2 \times 100 \mu$ F Standard Electrolytic R1 15 kΩ 5% R2 47 kΩ 5%				
C27 100 μF ≥100 μF Standard Electrolytic C28 0.1 μF ≥100 μF Standard Electrolytic C29** 100 μF ≥100 μF Standard Electrolytic C30** 0.1 μF ≥100 μF Standard Electrolytic C31 100 μF ≥100 μF Standard Electrolytic C32 0.1 μF Standard Electrolytic R1 15 kΩ 5% R2 47 kΩ 5%				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			> 100 E	Considered Flooring
C29** 100 μF ≥100 μF Standard Electrolytic C30** 0.1 μF ≥100 μF Standard Electrolytic C31 100 μF ≥100 μF Standard Electrolytic C32 0.1 μF 5% R1 15 kΩ 5% R2 47 kΩ 5%		•	≥100 µF	Standard Electrolytic
	I		100 5	0. 1 171 . 1
C31	I		≥100 µF	Standard Electrolytic
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
R1 15 kΩ 5% R2 47 kΩ 5%	I	•	≥100 μF	Standard Electrolytic
R2 47 kΩ 5%		•		
R3 15 k Ω 5%			- /-	
R4 $47 \text{ k}\Omega$ 5%		47 k Ω		
R5 $7.5 \text{ k}\Omega$ 5%	R5			
R6 $7.5 \text{ k}\Omega$ 5%	R6	7.5 k Ω	5%	
R7 – Not Needed	R7	_	—	
R8 – – Not Needed	R8	-	—	Not Needed
R9 22 kΩ 5%	R9	$22 \text{ k}\Omega$	5%	
R10 22 k Ω 5%	R10	$22~k\Omega$	5%	
R11 $10 \text{ M}\Omega$ 5%	R11	10 M Ω	5%	
R12 22 k Ω 5%	R12	22 k Ω	5%	

MOTES

PIN CONNECTIONS

^{*10%} unless otherwise indicated.

^{**}Used only in Dual Supply Application Circuit.

PIN DESCRIPTION

Pin # Name		Function		
1	CT5	Long Time Constant, C/S		
2	CT1	Short Time Constant, L/R Comparators		
3	V_{REF}	Reference Voltage: Ground or Pseudoground		
4	V+	Positive Supply		
5	CT4	Short Time Constant, C/S Comparators		
6	CAB	Autobalance Time Constant		
7	RT	Buffered, Autobalanced Right Channel Signal		
8	LT	Buffered, Autobalanced Left Channel Signal		
9	L_{IN}	Left Channel Input		
10	R_{IN}	Right Channel Input		
11	N_{IN}	Filtered Noise Input		
12	NC	Do Not Connect		
13	V-	Negative Supply (Ground in Single Supply)		
14	N_{OUT}	Noise Output		
15	V_{REF}	Reference Voltage: Ground or Pseudoground		
16	DM1	Digital Operating-Mode Control Input		
17	DM2	Digital Operating-Mode Control Input		
18	DM3	Digital Operating-Mode Control Input		
19	DM4	Digital Operating-Mode Control Input		
20	CM1	Digital Center-Mode Control Input		
21	CM2	Digital Center-Mode Control Input		
22	L_{REF}	Logic Reference Voltage		
		$(Threshold = L_{REF} + 1.4 V)$		
23	VRO	V _{REE} Out—Pseudoground Output		
24	L_{OUT}	Left Channel Output		
25	C_{OUT}	Center Channel Output		
26	R_{OUT}	Right Channel Output		
27	V-	Negative Supply (Ground in Single Supply)		
28	CC2	Center Normal-Mode Filter Input ($Z = 15 \text{ k}\Omega$		
29	CC1	Center Normal-Mode Filter Output		
30	S_{OUT}	Surround Channel Output		
31	ACS1	Surround Channel Steering Signal		
		AC Coupling and High-Pass Filter		
32	ACS2	Surround Channel Steering Signal		
		AC Coupling and High-Pass Filter		
33	ACC1	Center Channel Steering Signal		
		AC Coupling and High-Pass Filter		
34	ACC2	Center Channel Steering Signal		
		AC Coupling and High-Pass Filter		
35	ACR1	Right Channel Steering Signal		
		AC Coupling and High-Pass Filter		
36	ACR2	Right Channel Steering Signal		
		AC Coupling and High-Pass Filter		
37	BPR_{IN}	Filtered Right Channel Input to Steering		
	•••	Signal Generator		
38	V_{REF}	Reference Voltage: Ground or Pseudoground		

Pin #	Name	Function
39	ACL1	Left Channel Steering Signal AC Coupling
40	ACL2	and High-Pass Filter Left Channel Steering Signal AC Coupling
40	ACLZ	and High-Pass Filter
41	BPL_{IN}	Filtered Left Channel Input to Steering
		Signal Generator
42	CFWS	Surround Channel Full-Wave Rectifier
		Low-Pass Filter
43	CFWC	Center Channel Full-Wave Rectifier
		Low-Pass Filter
44	CFWL	Left Channel Full-Wave Rectifier
		Low-Pass Filter
45	CFWR	Right Channel Full-Wave Rectifier
		Low-Pass Filter
46	CT6	Short Time Constant, C/S
47	CT3	Short Time Constant, L/R
48	CT2	Long Time Constant, L/R

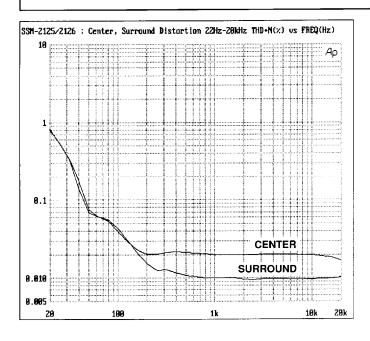


Figure 1. THD+N vs. Frequency,* Center and Surround Channels ($V_{IN}=0$ dBd, $R_{L}=100$ k Ω)

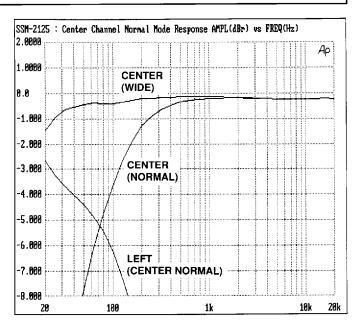


Figure 3. Bass-Splitting Filter Response (Center Channel Normal and Wide Modes)

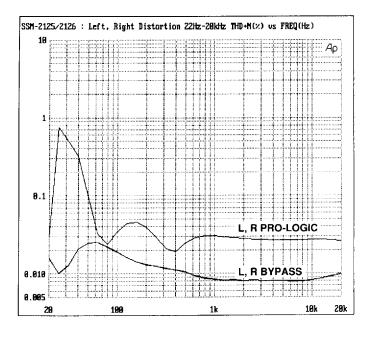


Figure 2. THD+N vs. Frequency,* Left and Right Channels ($V_{IN}=0$ dBd, $R_{L}=100$ k Ω)

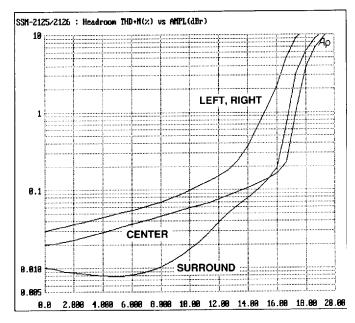


Figure 4. Headroom THD+N vs. Amplitude (0 dBr = 0 dBd = 500 mV rms)

^{*80} kHz low-pass filter used for Figures 1 and 2.

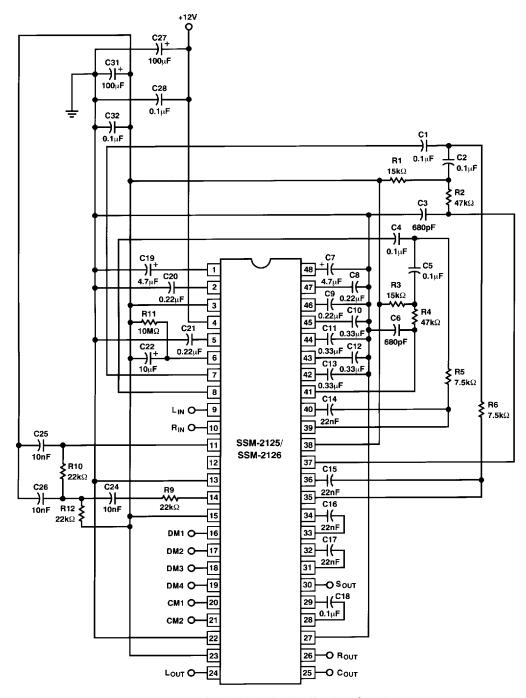


Figure 5. Single Supply Application Circuit

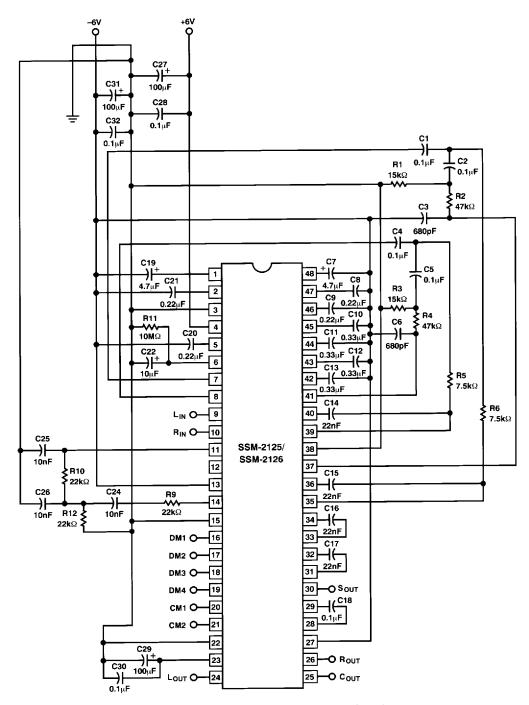


Figure 6. Dual Supply Application Circuit

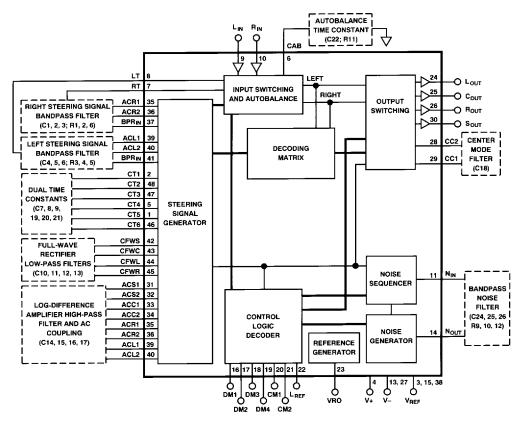


Figure 7. SSM-2125/SSM-2126 Block Diagram Showing External Component Functions

APPLICATIONS INFORMATION POWER SUPPLIES

The SSM-2125/SSM-2126 is designed to use either a dual $\pm 6~V$ or single +12~V supply, with a tolerance of $\pm 10\%$. Internal reference points on the IC and a 6 V reference, generated on-chip, are brought to external pins. When operated in dual supply mode, the reference inputs (labeled V_{REF}) are connected to the external ground. In single supply mode, the internal 6 V reference (labeled VRO) is wired to the V_{REF} pins, providing a pseudoground reference. In either mode, the internal reference VRO should be decoupled with a 100 μF electrolytic capacitor in parallel with a 0.1 μF ceramic capacitor.

Dual supply mode offers the highest fidelity operation and eliminates the necessity for input and output decoupling capacitors. All signals are ground referenced in dual supply mode, allowing dc coupling of the inputs and outputs. Additionally, the power on settling time is reduced when operating with dual supplies.

In single supply mode, decoupling capacitors are required, as the signals are referenced to the +6 V pseudoground reference. Any noise introduced onto the V_{REF} line will appear at the output, so careful decoupling of the reference is required to maintain excellent noise and distortion performance. The $100~\mu F$ V_{REF} decoupling capacitors should be placed close to the VRO pin (Pin 23), and $0.1~\mu F$ capacitors close to each V_{REF} pin.

DOLBY LEVEL

The discrete implementation of Dolby Pro-Logic Surround used a Dolby level of 500 mV. To maintain high audio quality and excellent signal-to-noise ratio, the SSM-2125/SSM-2126 was designed to operate with a 500 mV Dolby level. With this level, the SSM-2125/SSM-2126 provides 87 dBd SNR (CCIR2K/ARM) and 16 dB of headroom. In addition, the SSM-2125/SSM-2126 is capable of operation to the Pro-Logic specification at a Dolby level of 300 mV, with the result of reduced SNR and increased headroom. At the 300 mV level, SNR is typically 83 dBd with 20 dB of headroom. Either way, total dynamic range of the device is 103 dB (0 dBd = 500 mV).

AUTOBALANCE

Left and right signals with an imbalance less than ± 3.8 dB will activate the autobalance circuitry when DM3 = 1. Once activated, the circuit will correct up to 4 dB of balance error. Autobalance is available in both the Pro-Logic and stereo bypass modes. When autobalance is OFF, the autobalance VCAs are bypassed.

NOISE GENERATOR AND SEQUENCING

The SSM-2125/SSM-2126 noise source is best described as white noise passed through a 0.2 Hz comb filter and a 10 kHz low-pass filter. Thus, the noise is comprised of separate equal-amplitude peaks spaced at 0.2 Hz apart, as shown in Figure 8. Figure 9 shows overall frequency response of the filtered noise source.

8 REV. (

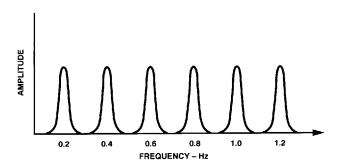


Figure 8. Comb-Filtered Noise Source Characteristics

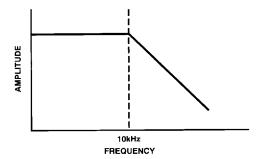


Figure 9. Overall Frequency Response of Filtered Noise Source

For systems that are not microprocessor controlled, Figure 10 suggests one option to implement automatic noise sequencing using standard logic. The CD4060 (or equivalent), although only partially used, was selected since it contains a clock and 2-bit binary counter on-chip. The timing interval is set by:

$$f = \frac{1}{2.2 R_1 C_3}$$

where $2R_1 < R_2 < 10R_1$.

The values shown in Figure 10 will provide a frequency of 2.9 Hz. One half of a CD4556 can be used to drive LED panel indicators if desired, as shown.

FUNCTIONAL MODES

The SSM-2125/SSM-2126 uses a positive logic system, whereby a voltage greater than 2.4 V above $L_{\rm REF}$ is considered a "1," and voltage levels between $L_{\rm REF}$ and 0.8 V are considered a "0." Tables II and III provide truth tables for logic inputs DM1 through DM4, and CM1 and CM2. "Dolby 3" mode, which disables surround steering, is available as shown. Normal operating mode for the decoder is with a "1" on all logic inputs. This provides 4-channel logic, autobalance ON, and center normal mode. Internal pullups will automatically set the chip into this state if the inputs are left unconnected.

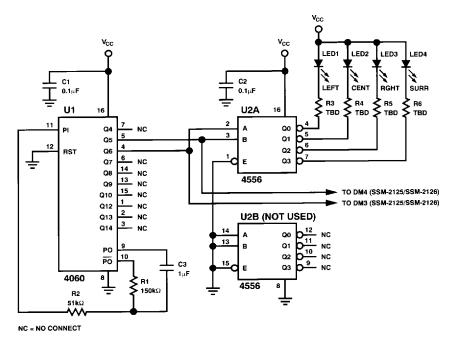
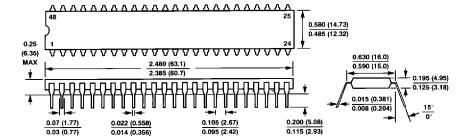


Figure 10. Automatic Noise Sequencing Circuit

Table II. Control States for DM1-DM4

DM1	DM2	DM3	DM4	Operating State	
1	1	1	1	Dolby 4-Channel ("Pro-Logic"), Autobalance On	
1	1	0	1	Dolby 4-Channel ("Pro-Logic"), Autobalance Off	
1	0	1	1	Dolby 3-Channel ("Dolby 3"), Autobalance On	
1	0	0	1	Dolby 3-Channel ("Dolby 3"), Autobalance Off	
0	1	1	1	Surround Channel Noise	
0	1	1	0	Right Channel Noise	
0	1	0	1	Center Channel Noise	
0	1	0	0	Left Channel Noise	
0	0	X	1	Mute	
0	0	1	0	Stereo Bypass, Autobalance On	
0	0	0	0	Stereo Bypass, Autobalance Off	


Table III. Center Channel Functional Modes

CM1	CM2	Mode
0	0	Center Channel Off
0	1	Center Channel Wideband
1	0	Phantom Center Channel
1	1	Normal Center Mode

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

48-Pin Plastic DIP

