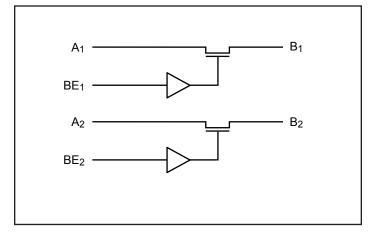
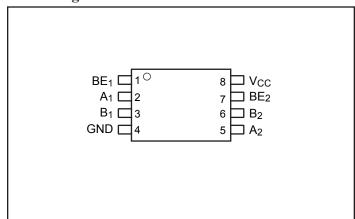


2-Bit Bus Switch with Individual Enables

Features


- Near-Zero propagation delay
- 5Ω switches connect inputs to outputs
- Direct bus connection when switches are ON
- Ultra Low Quiescent Power (0.2μA typical)
 - Ideally suited for notebook applications
- Packaging (Pb-free & Green available):
 - 8-pin 173-mil wide plastic TSSOP (L)
 8-pin 118-mil wide plastic MSOP (U)

Description


Pericom Semiconductor's PI5C3305 is a 2-bit bus switch designed with two individual 5Ω switches with fast individual enables. When enabled via the associated Bus Enable (BE) pin, the "A" pin is directly connected to the "B" pin for that particular gate. The bus switch introduces no additional propagation delay or additional ground bounce noise.

The PI5C3305 device has active HIGH enables.

Block Diagram

Pin Configuration

Pin Description

Pin Name	Description
BE_n	Switch Enable
A ₂ -A ₁	Bus A
B ₂ -B ₁	Bus B
V _{CC}	Power
GND	Ground

Truth Table⁽¹⁾

BEn	An	B _n	V _{CC}	Function
$X^{(2)}$	Hi-Z	Hi-Z	GND	Disconnect
L	Hi-Z	Hi-Z	V _{CC}	Disconnect
Н	B _n	An	V _{CC}	Connect

- H = High Voltage Level, L = Low Voltage Level Hi-Z = High Impedance, X = Don't Care
- 2. A pull-up resistor should be provided for power-up protection.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	65°C to +150°C
Ambient Temperature with Power Applied	
Supply Voltage to Ground Potential	0.5V to +7.0V
DC Input Voltage	0.5V to +7.0V
DC Output Current	120mA
Power Dissipation	0.5W

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics (Over the Operating Range, $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, $V_{CC} = 4\text{V}$ to 5.5V)

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Typ ⁽²⁾	Max.	Units
V_{IH}	Input HIGH Voltage	Guaranteed Logic HIGH Level		2.0		V
V_{IL}	Input LOW Voltage	Guaranteed Logic LOW Level		-0.5	0.8	
I _{IH}	Input HIGH Current	$V_{CC} = Max., V_{IN} = V_{CC}$			±1	
$I_{ m IL}$	Input LOW Current	$V_{CC} = Max., V_{IN} = GND$			±1	4
I _{OZ}	High Impedance Output Current	$0 \le A, B \le V_{CC}$			±1	μΑ
I _{ON}	Low Impedance Output Current	$0 \le A, B \le V_{CC}$			±1	
V_{H}	Input Hysteresis at Control Pins			250		mV
RON Switch On-Resistance ⁽³⁾	$V_{CC} = 4.5V, V_{IN} = 0.0V,$ $I_{ON} = 30mA \text{ or } 64mA$		4	7	0	
OIV		$V_{CC} = 4.5V, V_{IN} = 2.4V,$ $I_{ON} = -15mA$		8	15	Ω

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at $V_{CC} = 5.0V$, $T_A = 25$ °C ambient and maximum loading.
- 3. Measured by the voltage drop between A and B pin at indicated current through the switch. On-Resistance is determined by the lower of the voltages on the two (A, B) pins.

Capacitance ($T_A = 25^{\circ}C$, f = 1 MHz)

Parameters ⁽¹⁾	Description	Test Conditions	Typ. ⁽⁴⁾	Units	
C_{IN}	Input Capacitance		3		
C _{OFF}	A/B Capacitance, Switch Off	$V_{IN} = 0V$	5	pF	
C _{ON}	A/B Capacitance, Switch On		10		

Notes:

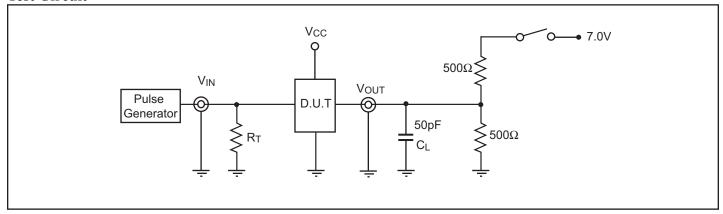
1. This parameter is determined by device characterization but is not production tested.

Power Supply Characteristics

Parameters	Description	Test Conditions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Units
I _{CC}	Quiescent Power Supply Current	$V_{CC} = Max.$	$V_{IN} = GND \text{ or } V_{CC}$		0.1	3.0	μА
ΔI_{CC}	Supply Current per Input @ TTL HIGH	VCC - Max.	$V_{IN} = 3.4V^{(3)}$			2.5	mA

Notes:

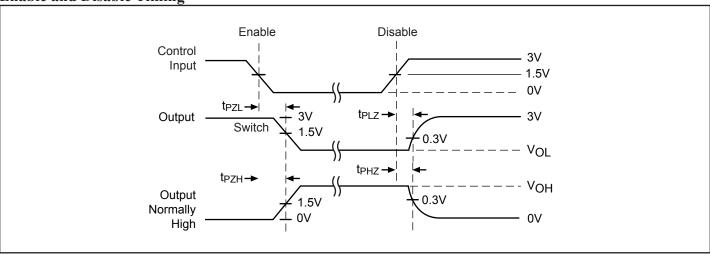
- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.
- 2. Typical values are at $V_{CC} = 5.0V$, $+25^{\circ}C$ ambient.
- 3. Per TTL driven input ($V_{IN} = 3.4V$, control inputs only); A and B pins do not contribute to I_{CC} .


Switching Characteristics Over Operating Range

Danamatana	Description		$V_{CC} = 5V \pm 10\%$		$V_{CC} = 4V$		T.T: 4 a
Parameters	Description	Test Conditions ⁽¹⁾	Min.	Max.	Min.	Max.	Units
t _{PLH} t _{PHL}	Propagation Delay ^(2, 3) A to B, B to A			0.25		0.25	
t _{PZH} t _{PZL}	Bus Enable Time	$C_{L} = 50 \text{pF}$ $R_{L} = 500 \Omega$	1.0	4.9		5.5	ns
t _{PHZ} t _{PLZ}	Bus Disable Time		1.0	4.2		4.5	

- 1. See test circuit and waveforms.
- 2. This parameter is guaranteed but not tested on Propagation Delays.
- 3. The bus switch contributes no propagational delay other than the RC delay of the On-Resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25ns for 50pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

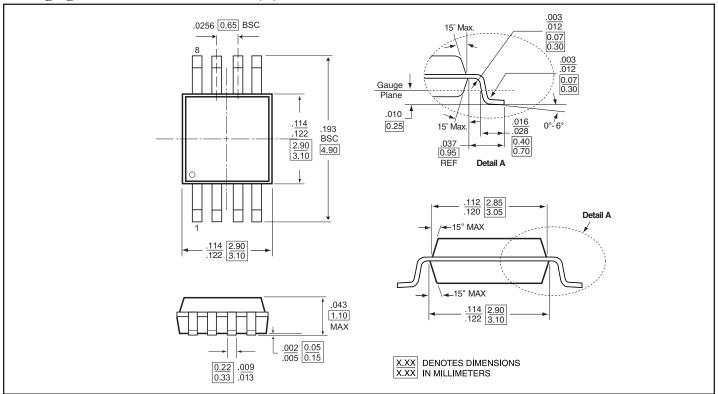
Test Circuit

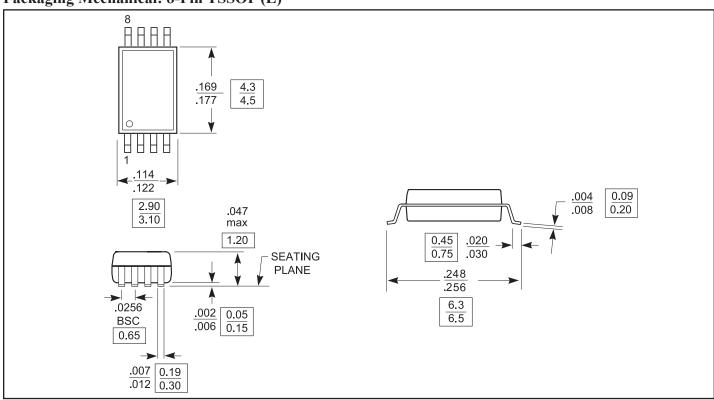

Switch Positions⁽¹⁾

Test	Switch
Open Drain Disable LOW Enable LOW	7V
All Other Inputs	Open

Notes:

1. C_L = Load Capacitance: inlcudes jig and proble capacitance. R_T = Termination Resistance: should be equal to the Z_{OUT} of the Pulse Generator.


Enable and Disable Timing


- Input Control Enable = Low; Input Control Disable = High
- Pulse Generator for All Pulses: Rate ≤ 1.0 MHz; $Z_{OUT} \leq 50\Omega$; t_F , t_R , ≤ 2.5 ns

Packaging Mechanical: 8-Pin MSOP (U)

Packaging Mechanical: 8-Pin TSSOP (L)

Ordering Information

Ordering Code	Package Code	Package Description
PI5C3305L	L	8-Pin TSSOP
PI5C3305LE	L	Pb-free & Green, 8-Pin TSSOP
PI5C3305UX	U	8-Pin MSOP
PI5C3305UEX	U	Pb-free & Green, 8-Pin MSOP

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- E = Pb-free & Green
- Adding an X suffix = Tape/Reel