3.3V, Wide Bandwidth, 1-Channel, 2:1 Mux/ DeMux Video Switch w/ Single Enable

Features

- R_{ON} is 4Ω typical
- Low bit-to-bit skew: 200ps
- Low Crosstalk: -27dB @ 250MHz
- Near-Zero propagation delay: 250ps
- Switching speed: 9ns
- Channel On Capacitance: 9pF (typical)
- V_{CC} Operating Range: +3.0 V to +3.6 V
- ESD $>2000 \mathrm{~V}$. . . Human Body Model
- >500 MHz bandwidth (or data frequency)
- Packaging:
-Pb-free \& Green, 12-contact TDFN (ZE)

Application

- Routes physical layer signals for high bandwidth digital video

Block Diagram

Description

Pericom Semiconductor's PI3DBV series of logic circuits are produced using the Company's advanced sub-micron CMOS technology, achieving industry leading performance.
The PI3DBV10 is a 2 - to 1 -Channel multiplexer/demultiplexer Video Switch with Hi-Z outputs. Industry leading advantages include a propagation delay of less than 250 ps, resulting from its low channel resistance and I/O capacitance. The device multiplexes differential outputs from a video source to one of two corresponding outputs, or switch two inputs to a common display. The switch is bidirectional and offers little or no attenuation of the high-speed signals at the outputs. It is designed for low bit-to-bit skew, high channel-to-channel noise isolation and is compatible with various standards, such as LVDS and TMDS.

Pin Description

Truth Table

Function	SEL
Y_{n} to ${ }_{\mathrm{n}} \mathrm{I}_{\mathrm{o}}$	L
Y_{n} to ${ }_{\mathrm{n}} \mathrm{I}_{1}$	H

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

```
Storage Temperature
``` \(\qquad\)
``` \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Supply Voltage to Ground Potential
``` \(\qquad\)
``` -0.5 V to +4.0 V
DC Input Voltage
``` \(\qquad\)
``` -0.5 V to +5.5 V
DC Output Current
``` \(\qquad\)
``` 120 mA
Power Dissipation
``` \(\qquad\)
``` 0.5 W

Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

\section*{DC Electrical Characteristics for Video Switching over Operating Range}
( \(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 10 \%\) )
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Paramenter & Description & Test Conditions & Min. & Type \({ }^{(2)}\) & Max. & Units \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & Input HIGH Voltage & Guaranteed HIGH level & 2.0 & - & - & \multirow{3}{*}{V} \\
\hline \(\mathrm{V}_{\text {IL }}\) & Input LOW Voltage & Guaranteed HIGH level & -5.0 & - & 0.8 & \\
\hline \(\mathrm{V}_{\text {IK }}\) & Clamp Diode Voltage & \(\mathrm{V}_{\mathrm{CC}}=\) Max., \(\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}\) & - & -0.7 & -1.2 & \\
\hline \(\mathrm{I}_{\text {IH }}\) & Input HIGH Current & \(\mathrm{V}_{\mathrm{CC}}=\) Max., \(\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}\) & - & - & \(\pm 5\) & \multirow[b]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline \(\mathrm{I}_{\text {IL }}\) & Input LOW Current & \(\mathrm{V}_{\mathrm{CC}}=\) Max., \(\mathrm{V}_{\text {IN }}=\mathrm{GND}\) & - & - & \(\pm 5\) & \\
\hline \(\mathrm{R}_{\mathrm{ON}}\) & Switch On-Resistance \({ }^{(3)}\) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., 1.25 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}} \\
& \mathrm{I}_{\mathrm{IN}}=-40 \mathrm{~mA}
\end{aligned}
\] & - & 4 & 8 & \multirow{3}{*}{\(\Omega\)} \\
\hline \(\mathrm{R}_{\text {FLAT(ON) }}\) & On-Resistance Flatness \({ }^{(4)}\) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{V}_{\mathrm{IN}} @ 1.5 \mathrm{~V} \text { and } \mathrm{V}_{\mathrm{CC}}, \\
& \mathrm{I}_{\mathrm{IN}}=-40 \mathrm{~mA}
\end{aligned}
\] & - & 1.0 & - & \\
\hline \(\Delta \mathrm{R}_{\mathrm{ON}}\) & On-Resistance match from center ports to any other port \({ }^{(4)}\) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., 1.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}, \\
& \mathrm{I}_{\mathrm{IN}}=-40 \mathrm{~mA}
\end{aligned}
\] & - & 0.9 & 2 & \\
\hline
\end{tabular}

Capacitance ( \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\) )
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameters \({ }^{(4)}\) & Description & Test Conditions & Type & Max. & Units \\
\hline \(\mathrm{C}_{\text {IN }}\) & Input Capacitance & \multirow{3}{*}{\(\mathrm{V}_{\text {IN }}=0 \mathrm{~V}\)} & 2.0 & 3.0 & \multirow{3}{*}{pF} \\
\hline CofF & Port I Capacitance, Switch OFF & & 4.0 & 6.0 & \\
\hline CON & Switch Capacitance, Switch ON & & 9.0 & 10.0 & \\
\hline
\end{tabular}

\section*{Notes:}
1. For max. or min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at \(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ambient and maximum loading.
3. Measured by the voltage drop between \(A\) and \(B\) pins at indicated current through the switch. On-Resistance is determined by the lower of the voltages on the two (A \& B) pins.
4. This parameter is determined by device characterization but is not production tested.

\section*{Power Supply Characteristics}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameters & Description & Test Conditions \({ }^{(\mathbf{1 )}}\) & Min. & Typ. \({ }^{(2)}\) & Max. & Units \\
\hline \(\mathrm{I}_{\mathrm{CC}}\) & Quiescent Power Supply Current & \(\mathrm{V}_{\mathrm{CC}}={\text { Max., } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}}}\) & - & - & 800 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}

Notes:
1. For max. or min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at \(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25 \mathrm{C}\) ambient and maximum loading.
3. Per TTL driven input (control inputs only); A and B pins do not contribute to \(\mathrm{I}_{\mathrm{CC}}\).

\section*{Dynamic Electrical Characteristics Over the Operating Range}
\(\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.\) to \(\left.+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameters & Description & Test Conditions & Min. & Typ. \({ }^{(1)}\) & Max. & Units \\
\hline \(\mathrm{X}_{\text {TALK }}\) & Crosstalk & \multirow[b]{2}{*}{\(\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{f}=250 \mathrm{MHz}\)} & - & -27 & - & \multirow{2}{*}{dB} \\
\hline OIRR & OFF Isolation & & - & -32 & - & \\
\hline BW & Bandwidth -3dB & \(\mathrm{R}_{\mathrm{L}}=100 \Omega\) & - & 500 & - & MHz \\
\hline
\end{tabular}

\section*{Switching Characteristics}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameters & Description & \begin{tabular}{l}
Test \\
Conditions
\end{tabular} & Min. & Typ. \({ }^{(1)}\) & Max. & Units \\
\hline tpD & Propagation Delay \({ }^{(2,3)}\) & & - & 0.25 & & \multirow{5}{*}{ns} \\
\hline \(\mathrm{t}_{\text {PZH, }}\), \({ }_{\text {PZL }}\) & Line Enable Time - SEL to \(\mathrm{Y}_{\mathrm{N}},{ }_{\mathrm{N}} \mathrm{I}_{0}, \mathrm{I}_{\mathrm{N}}\) & & 0.5 & - & 15.0 & \\
\hline \(\mathrm{t}_{\text {PHZ }}\), tPLZ & Line Disable Time - SEL to \(\mathrm{Y}_{\mathrm{N}}, \mathrm{N}^{1} \mathrm{I}_{0}, \mathrm{I}_{\mathrm{N}}\) & & 0.5 & - & 9.0 & \\
\hline tSK(0) & Output Skew between center port to any other port \({ }^{(2)}\) & & - & 0.1 & 0.2 & \\
\hline \({ }^{\text {tSK }}\) (p) & Skew between opposite transitions of the same output (tpHL
\[
- \text { tpLH }^{(2)}
\] & & - & 0.1 & 0.2 & \\
\hline
\end{tabular}

\section*{Notes:}
1. For max. or min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Guaranteed by design.
3. The bus switch contributes no propagational delay other than the RC delay of the On-Resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns for 10 pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interactions with the load on the driven side.

\section*{Test Circuit for Electrical Characteristics \({ }^{(1)}\)}


Notes:
1. \(\mathrm{C}_{\mathrm{L}}=\) Load capacitance: includes jig and probe capacitance.
2. \(\quad \mathrm{R}_{\mathrm{T}}=\) Termination resistance: should be equal to \(\mathrm{Z}_{\mathrm{OUT}}\) of the Pulse Generator
3. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
4. All input impulses are supplied by generators having the following characteristics: \(\mathrm{PRR} \leq \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{R}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{F}} \leq 2.5 \mathrm{~ns}\).
5. The outputs are measured one at a time with on transition per measurement.

\section*{Switch Positions}
\begin{tabular}{|c|c|}
\hline Test & Switch \\
\hline t \(_{\text {PLZ }}\), t \(_{\text {PZL }}\) (output on I-side) & 6.0 V \\
\hline t PHZ, tPZH (output on I-side) \(^{\text {Prop Delay }}\) & GND \\
\hline & Open \\
\hline
\end{tabular}

\section*{Test Circuit for Dynamic Electrical Characteristics}


\section*{Switching Waveforms}


Voltage Waveforms Propagation Delay Times


Output Skew - \(\mathbf{t s K}_{\text {SK }}\) (


Voltage Waveforms Enable and Disable Times


Pulse Skew - \(\mathbf{t}_{\mathbf{S K}(\mathrm{p})}\)

\section*{Applications Information}

\section*{Logic Inputs}

The logic control inputs can be driven up to +3.6 V regardless of the supply voltage. For example, given a +3.3 V supply, the output enables or select pins may be driven low to 0 V and high to 3.6 V . Driving IN Rail-to-Rail \(\mathbb{R}\) minimizes power consumption.

\section*{Power-Supply Sequencing}

Proper power-supply sequencing is advised for all CMOS devices. It is recommended to always apply \(\mathrm{V}_{\mathrm{CC}}\) before applying signals to the input/output or control pins.
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd

\section*{Package Mechanical: 12-Contact TDFN (ZE)}


\section*{Ordering Information}
\begin{tabular}{|c|c|c|c|}
\hline Ordering Code & Package Code & Package Type & Top Marking \\
\hline PI3DBV10ZEE & ZE & Pb-free \& Green, 12-contact TDFN & YK \\
\hline
\end{tabular}

Notes:
1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
2. Number of transistors \(=\mathrm{TBD}\)```

