

3.3V, 10-differential channel Dual-LVDS switch targeted for 24bit displays

Features

- Designed specifically to switch Dual-LVDS signals
- $V_{DD} = 3.3V + /-10\%$
- ESD tolerance on video I/O pins is up to 12kV HBM
- -3dB BW of 1.0GHz (typ)
- Low Xtalk, (-55dB typ)
- Low and Flat ON-STATE resistance (Ron = 3ohm, Ron(Flat) = 0.5ohm, typ)
- Low input/output capacitance (Con = 6.2pF, typ)
- Packaging (Pb-free and Green):
 - 80-pin BQSOP (BE)

Applications

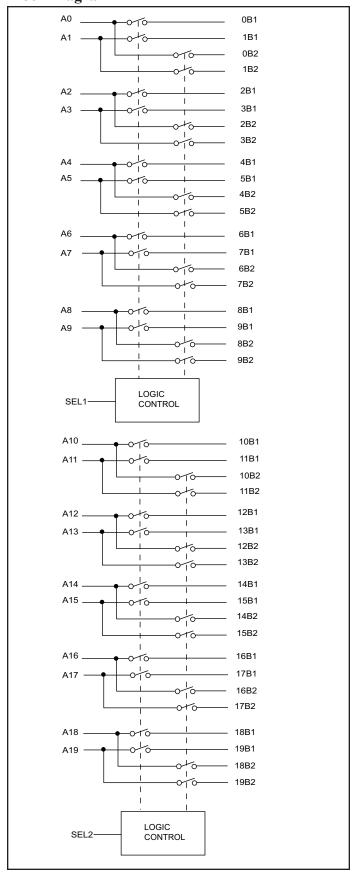
· Routes physical layer signals for high bandwidth

Truth Table

SELx	Ay
L	yB ₁
Н	$_{ m Y}{ m B}_{ m 2}$

Note:

1. If x=1, then y=0-9; if x=2, then y=10-19


Description

Pericom's PI3LVD1012 is a 10-differential channel LVDS mux/demux used to switch between multiple LVDS sources or end points. With new notebook architecture allowing users the ability to upgrade their graphics power, notebook designers need an effective way to switch between the upgraded graphics path. Pericom's LVDS switch allows users to switch between two graphics processors in a single notebook, driving the internal panel. PI3VLVD1012 can support 18bit or 24bit panels.

With the high bandwidth of $\sim 1.2 \, \mathrm{GHz}$, the signal integrity will remain strong even through the long FR4 trace through the notebook. In addition to high signal performance, the video signals are also protected against high ESD with integrated diodes to V_{DD} and GND that will support up to 12kV of ESD HBM protection.

Block Diagram

Pin Description

80-Pin BQSOP

1B1 🗀 1 O	80 🖂 0B2
0B1 2	79 🔲 1B2
GND 🔲 3	78 🔲 2B1
VDD 🔲 4	77 🔲 3B1
A0 🔲 5	76 🔲 2B2
A1 6	75 3B2
ŌĒ1 ☐ 7	74 GND
A2 2 8	73 4B1
A3 9	72
VDD 10	71
A4 11	70 5B2
A5 12	69 VDD
GND 13 A6 14	68 GB1
l	67 7B1
A7 15	66 GB2
SEL1 16	65 7B2
A8 17	64 BB1
A9 18	63 9B1
VDD 19	62 8B2
GND 20	61 9B2
GND 21	60 10B1
VDD 22	59 11B1
A10 23 A11 24	58
	4054
20	30
A12 26	55 🔲 13B1
A13 27	54 — 12B2
VDD 28	53 🔲 13B2
A14 29	52 GND
A15 30	51 4B1
GND 31	50 15B1
A16 32	49 — 14B2
A17 33	48 — 15B2
SEL2 34	47 VDD
A18 35	46 16B1
A19 36	45
VDD 37	44 16B2
GND 38	43
19B2 39	44
18B2 40	43 🔲 19B1

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	65°C to +150°C
Supply Voltage to Ground Potential	0.5V to +5.0V
DC Input Voltage	0.5V to +5.5V
DC Output Current	120mA
Power Dissipation	0.5W

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics for Video Switching over Operating Range

 $(T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}, V_{DD} = 3.3\text{V} \pm 10\%)$

Paramenter	Description	Test Conditions ⁽¹⁾	Min.	Typ.(2)	Max.	Units
V _{IH}	Input HIGH Voltage	Guaranteed HIGH level	2	-	-	
$V_{\rm IL}$	Input LOW Voltage	Guaranteed LOW level	-0.5	-	0.8	V
V _{IK}	Clamp Diode Voltage	$V_{DD} = Max., I_{SELx} = -18mA$	-	-0.7	-1.2	
I_{IH}	Input HIGH Current	$V_{DD} = Max., V_{SELx} = V_{DD}$	-	-	±5	
I_{IL}	Input LOW Current	$V_{DD} = Max., V_{SELx} = GND$	-	-	±5	μΑ
I _{OFF}	Power Down Leakage Current	$VDD = 0V, V_B = 0V, V_A \le 3.6$	-	-	±1	
R _{ON}	Switch On-Resistance(3)		-	3	ı	
R _{FLAT(ON)}	On-Resistance Flatness(4)	V_{DD} = Min., V_{input} @ 0V and 1.5V, I_{input} = -40mA	-	0.1	-	Ω
$\Delta R_{ m ON}$	On-Resistance match from center ports to any other port(4)		-	0.2	-	

Capacitance ($T_A = 25$ °C, f = 1MHz)

Parameters ⁽⁴⁾	Description	Test Conditions ⁽¹⁾	Typ. ⁽²⁾	Units
C_{IN}	Input Capacitance		2.5	
C _{OFF}	Switch I Capacitance, Switch OFF	$V_{SELx} = 0V$	2.2	pF
C _{ON}	Switch Capacitance, Switch ON		6.2	

Notes:

- 1. For max. or min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at $V_{DD} = 3.3V$, $T_A = 25$ °C ambient and maximum loading.
- 3. Measured by the voltage drop between input and output pins at indicated current through the switch.
- 4. This parameter is determined by device characterization but is not production tested.

3.3V, 10-differential channel Dual-LVDS switch targeted for 24bit displays

Power Supply Characteristics

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units
I_{DD}	Quiescent Power Supply Current	$V_{DD} = Max., V_{SELx} = GND \text{ or } V_{DD}$	-	0.7	1.5	mA

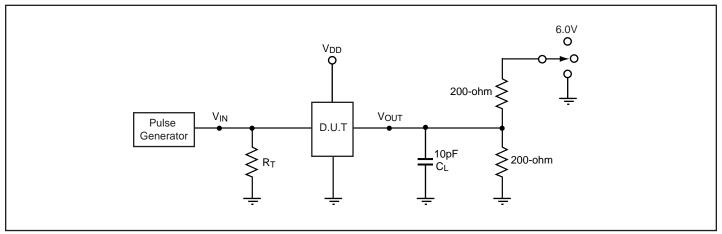
Notes:

- 1. For max, or min, conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at $V_{DD} = 3.3V$, $T_A = 25^{\circ}C$ ambient and maximum loading.

Dynamic Electrical Characteristics Over the Operating Range (T_A=-40° to +85°C, V_{DD}=3.3V±10%, GND=0V)

Parameter	Description	Test Conditions	Min.	Typ.(2)	Max.	Units
X _{TALK}	Crosstalk	f = 250MHz, See Fig. 2	-	-55	-	dB
O _{IRR}	OFF Isolation	f = 250MHz, See Fig. 3	-	-42	-	uБ
BW	Bandwidth –3dB	See Fig. 1	-	1	-	GHz

Switching Characteristics


Paramenter	Description	Min.	Typ.(2)	Max.	Units
t _{PD}	Propagation Delay(2,3)		0.25		
t _{PZH} , t _{PZL}	Line Enable Time - SEL to Input, Output	0.5	-	15	
t _{PHZ} , t _{PLZ}	Line Disable Time - SEL to Input, Output	0.5	-	9	ns
t _{SK(p)}	Skew between opposite transitions of the same output (t _{PHL} - t _{PLH}) (2)	-	0.1	0.2	

Notes:

- 1. For max. or min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Guaranteed by design.
- 3. The switch contributes no propagational delay other than the RC delay of the On-Resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25ns for 10pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the LVDS switch when used in a system is determined by the driving circuit on the driving side of the switch and its interactions with the load on the driven side.

Test Circuit for Electrical Characteristics⁽¹⁾

Notes:

- 1. $C_L = Load$ capacitance: includes jig and probe capacitance.
- 2. R_T = Termination resistance: should be equal to Z_{OUT} of the Pulse Generator
- 3. All input impulses are supplied by generators having the following characteristics: f = 10 MHz, $Z_O = 50\Omega$, $t_R \le 2.5$ ns, $t_F \le 2.5$ ns.
- 4. The outputs are measured one at a time with one transition per measurement.

Switch Positions

Test	Switch		
t _{PLZ} , t _{PZL}	6.0V		
t _{PHZ} , t _{PZH}	GND		
Prop Delay	Open		

Test Circuit for Dynamic Electrical Characteristics

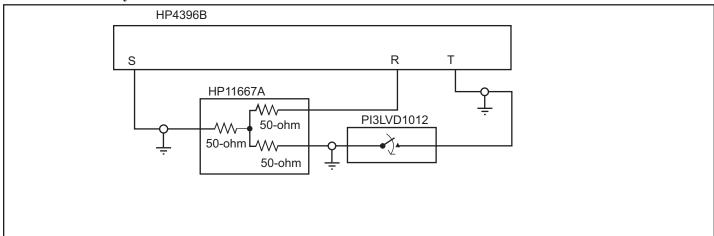


Figure 1. Bandwidth -3dB Testing



Figure 2. Crosstalk Test Setup

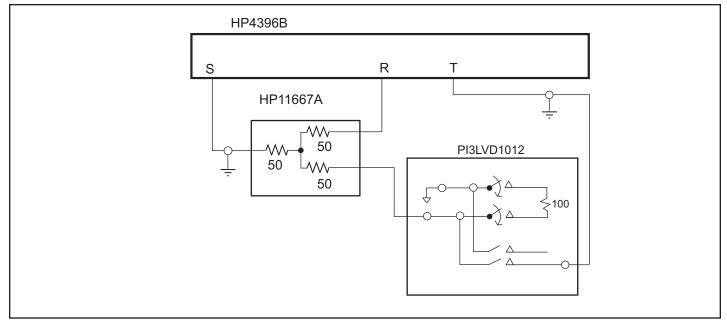
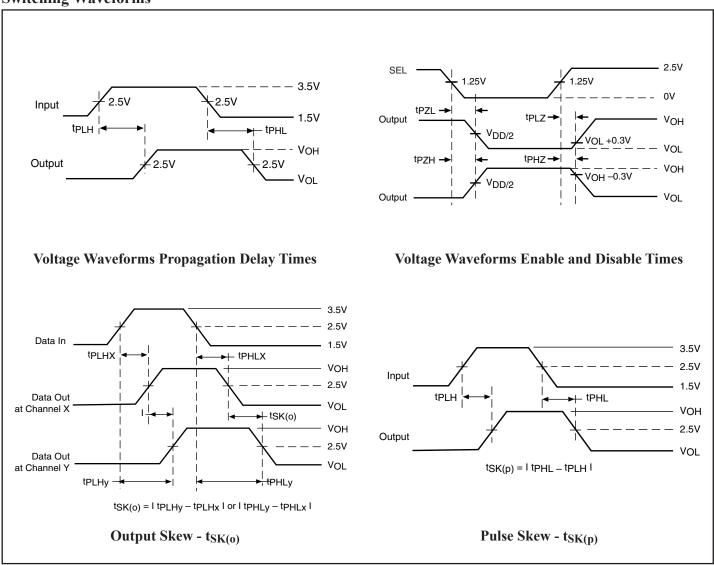



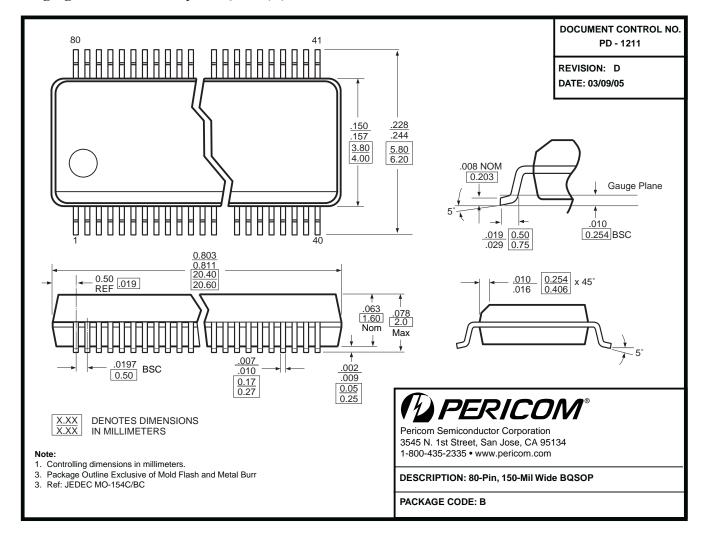
Figure 3. Off Isolation Test Setup

Switching Waveforms

Applications Information

Logic Inputs

The logic control inputs can be driven up to +3.6V regardless of the supply voltage. For example, given a +3.3V supply, the output enables or select pins may be driven low to 0V and high to 3.6V. Driving IN Rail-to-Rail® minimizes power consumption.


Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd

PS8927C

09/26/08

Packaging Mechanical: 80-pin BQSOP (B)

Ordering Information

08-0246

Ordering Code	Package Code	Package Description
PI3LVD1012BE	BE	Pb-free & Green, 80-pin BQSOP

Notes:

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/.

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com