Features

- Near-Zero propagation delay
- 5Ω switches connect inputs to outputs
- Ultra Low Quiescent Power ($0.1 \mu \mathrm{~A}$ typical)
- Ideally suited for notebook applications
- Pin compatible with 74 series 251 logic devices
- Packaging (Pb -free \& Green available):
- 16-pin 150-mil wide plastic QSOP (Q)
- 16-pin 150-mil wide plastic SOIC (W)
- 16-pin 173-mil wide plastic TSSOP (L)

Description

Pericom Semiconductor's PI3B3251 is a 3.3V Dual 8:1 Multiplexer/ Demultiplexer with three-state outputs that is pinout compatible with the PI74FCT251T, 74F251, and 74ALS/AS/LS 251. Inputs can be connected to outputs with low On-Resistance (5Ω) with no additional ground bounce noise or propagation delay.

Block Diagram

Pin Configuration

Truth Table ${ }^{(1)}$

E	Select			Y	Function
	S2	S1	S0		
H	X	X	X	Hi-Z	Disable
L	L	L	L	I_{0}	S2-0 $=0$
L	L	L	H	I_{1}	S2-0 $=1$
L	L	H	L	I_{2}	S2-0 $=2$
L	L	H	H	I_{3}	S2-0 $=3$
L	H	L	L	I_{4}	S2-0 $=4$
L	H	L	H	I_{5}	S2-0 $=5$
L	H	H	L	I_{6}	S2-0 $=6$
L	H	H	H	I_{7}	S2-0 $=7$

Pin Description

Pin Name	Description
I_{0-7}	Data Inputs
S_{0-2}	Select Inputs
$\overline{\mathrm{E}}$	Enable
Y	Data Outputs
GND	Ground
V_{CC}	Power

Note:

1. $\mathrm{H}=$ High Voltage Level, $\mathrm{L}=$ Low Voltage Level

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature .	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	-0.5 V to +4.6 V
DC Input Voltage	-0.5 V to +4.6 V
DC Output Current. 120mA
Power Dissipation... 0.5 W

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics (Over the Operating Range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 10 \%$)

Parameters	Description	Test Conditions ${ }^{(1)}$	Min.	Typ ${ }^{(2)}$	Max.	Units
V_{IH}	Input HIGH Voltage	Guaranteed Logic HIGH Level	2.0			V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	Guaranteed Logic LOW Level	-0.5		0.8	
$\mathrm{I}_{\text {IH }}$	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$			± 1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{GND}$			± 1	
IOZH	High Impedance Output Current	$0 \leq \mathrm{I}_{\mathrm{N}}, \mathrm{Y}_{\mathrm{N}} \leq \mathrm{V}_{\mathrm{CC}}$			± 1	
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$			-1.2	V
$\mathrm{R}_{\text {ON }}$	Switch On-Resistance ${ }^{(3)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Min., } \mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{ON}}=48 \mathrm{~mA} \text { or } 64 \mathrm{~mA} \end{aligned}$		5	8	Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{ON}}=15 \mathrm{~mA} \end{aligned}$		10	17	

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Measured by the voltage drop between I and Y pin at indicated current through the switch. On-Resistance is determined by the lower of the voltages on the two (I,Y) pins.

Capacitance $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right.$)

Parameters ${ }^{(1)}$	Description	Test Conditions	Typ.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	3.0	pF
$\mathrm{C}_{\text {I(OFF) }}$	$\mathrm{I}_{0}-\mathrm{I}_{7}$ Capacitance, Switch Off		8.0	
CY (OFF)	Y Capacitance, Switch Off		64.0	
$\mathrm{C}_{\text {I(ON) }}$	I_{0} - I_{7} Capacitance, Switch On		72.0	

Notes:

1. This parameter is determined by device characterization but is not production tested.

Power Supply Characteristics

Parameters	Description	Test Conditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Units
I_{CC}	Quiescent Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max.	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$ or V_{CC}		0.1	3	
$\Delta \mathrm{I}_{\mathrm{CC}}$	Supply Current per Input $@$ TTL HIGH	$\mathrm{V}_{\mathrm{CC}}=$ Max.	$\mathrm{V}_{\mathrm{IN}}=3.0 \mathrm{~V}^{(3)}$			750	$\mu \mathrm{~A}$

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.
2. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Per TTL driven input (control input only); I and Y pins do not contribute to $I_{C C}$.

Switching Characteristics over Operating Range

Parameters	Description	Conditions	Com.		Units
			Min.	Max.	
tpD	Propagation Delay ${ }^{(1,2)}$, In to Y	$\begin{aligned} \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$		0.25	ns
$\mathrm{t}_{\text {SY }}$	Bus Enable Time, Sn to Y		1	4.5	
$\begin{aligned} & \text { tPZH } \\ & \text { tpZL }^{2} \end{aligned}$	Bus Enable Time, $\overline{\mathrm{E}}$ to Y		1	3.5	
$\begin{aligned} & \text { tpHZ } \\ & \text { tpLZ } \end{aligned}$	Bus Disable Time, $\overline{\mathrm{E}}$ to Y		1	5.5	

Notes:

1. This parameter is guaranteed but not tested on Propagation Delays.
2. The bus switch contributes no propagational delay other than the RC delay of the On-Resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns for 50 pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

Applications Information

Logic Inputs

The logic control inputs can be driven up to +3.6 V regardless of the supply voltage. For example, given a +3.3 V supply, IN may be driven low to 0 V and high to 3.6 V . Driving IN Rail-to-Rail ${ }^{\circledR}$ minimizes power consumption.

Power-Supply Sequencing and Hot-Plug Information

Proper power-supply sequencing is recommended for all CMOS devices. Always apply V_{CC} and GND before applying signals to input/output or control pins.

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

Packaging Mechanical: 16-pin QSOP (Q)

Packaging Mechanical: 16-pin SOIC (W)

Packaging Mechanical: 16-pin TSSOP (L)

Ordering Information

Ordering Code	Package Code	Package Desciption
PI3B3251L	L	16-Pin TSSOP
PI3B3251LE	L	Pb-free \& Green, 16-Pin TSSOP
PI3B3251W	W	16-pin SOIC
PI3B3251Q	Q	16-pin QSOP
PI3B3251QE	Q	Pb-free \& Green, 16-pin QSOP

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- $\mathrm{E}=\mathrm{Pb}$-free \& Green
- Adding an X suffix = Tape/Reel

