

General Description

The MAX5883 is an advanced, 12-bit, 200Msps digitalto-analog converter (DAC) designed to meet the demanding performance requirements of signal synthesis applications found in wireless base stations and other communications applications. Operating from a single 3.3V supply, this DAC offers exceptional dynamic performance such as 77dBc spurious-free dynamic range (SFDR) at four = 10MHz. The DAC supports update rates of 200Msps at a power dissipation of less than 200mW.

The MAX5883 utilizes a current-steering architecture, which supports a full-scale output current range of 2mA to 20mA, and allows a differential output voltage swing between 0.1V_{P-P} and 1V_{P-P}.

The MAX5883 features an integrated 1.2V bandgap reference and control amplifier to ensure high accuracy and low noise performance. Additionally, a separate reference input pin enables the user to apply an external reference source for optimum flexibility and to improve gain accuracy.

The digital and clock inputs of the MAX5883 are designed for CMOS-compatible voltage levels. The MAX5883 is available in a 48-pin QFN package with an exposed paddle (EP) and is specified for the extended industrial temperature range (-40°C to +85°C).

Refer to the MAX5884 and MAX5885 data sheets for pin-compatible 14- and 16-bit versions of the MAX5883. For LVDS high-speed versions, refer to the MAX5886, MAX5887, and MAX5888 data sheets.

Applications

Base Stations: Single/Multicarrier UMTS, **CDMA**

Communications: LMDS, MMDS, Point-to-Point

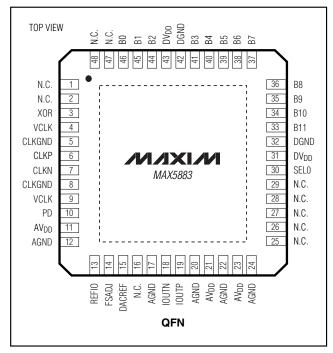
Microwave

Digital Signal Synthesis

Automated Test Equipment (ATE)

Instrumentation

Features


- ◆ 200Msps Output Update Rate
- **♦** Single 3.3V Supply Operation
- **♦ Excellent SFDR and IMD Performance** SFDR = 77dBc at fout = 10MHz (to Nyquist) IMD = -86dBc at four = 10MHz ACLR = 71dB at fout = 30.72MHz
- ♦ 2mA to 20mA Full-Scale Output Current
- ♦ CMOS-Compatible Digital and Clock Inputs
- ♦ On-Chip 1.2V Bandgap Reference
- **♦ Low Power Dissipation**
- ♦ 48-Pin QFN-EP Package

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX5883EGM	-40°C to +85°C	48 QFN-EP*

^{*}EP = Exposed paddle.

Pin Configuration

M/IXI/M

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

0.3V to +3.9V
0.3V to +3.9V
0.3V to +3.9V
0.3V to +0.3V
0.3V to AV _{DD} + 0.3V
1V to AV _{DD} + 0.3V
0.3V to VCLK + 0.3V
0.3V to $DV_{DD} + 0.3V$

Continuous Power Dissipation ($T_A = +70$ °C)	
48-Pin QFN (derate 27mW/°C above +70°C)	2162.2mW
Thermal Resistance (θJA)	+37°C/W
Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	60°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(AV_{DD} = DV_{DD} = VCLK = 3.3V, AGND = DGND = CLKGND = 0V, external reference, V_{REFIO} = 1.25V, R_L = 50\Omega, I_{OUT} = 20mA, f_{CLK} = 200Msps, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. $\geq +25^{\circ}C$ guaranteed by production test, $< +25^{\circ}C$ guaranteed by design and characterization. Typical values are at $T_A = +25^{\circ}C$.)

PARAMETER	SYMBOL	С	ONDITIONS	MIN	TYP	MAX	UNITS
STATIC PERFORMANCE				•			
Resolution					12		Bits
Integral Nonlinearity	INL	Measured differe	ntially		±0.3		LSB
Differential Nonlinearity	DNL	Measured differe	ntially		±0.2		LSB
Offset Error	OS			-0.025	±0.003	+0.025	%FS
Offset Drift					±50		ppm/°C
Full-Scale Gain Error	GE _{FS}	External reference	e, T _A ≥ +25°C	-3.5		+1.3	%FS
Gain Drift		Internal reference)		±100		nnm/°C
Gairi Dilit		External reference	е		±50		ppm/°C
Full-Scale Output Current	lout	(Note 1)		2		20	mA
Min Output Voltage		Single ended			-0.5		V
Max Output Voltage		Single ended			1.1		V
Output Resistance	R _{OUT}				1		MΩ
Output Capacitance	Cout				5		рF
DYNAMIC PERFORMANCE							
Output Update Rate	fCLK			1		200	Msps
Noise Chaptral Danaity		f _{CLK} = 100MHz	f _{OUT} = 16MHz, -12dB FS		-150		dB FS/
Noise Spectral Density		f _{CLK} = 200MHz	f _{OUT} = 80MHz, -12dB FS		-148		Hz
			f _{OUT} = 1MHz, 0dB FS		87		
Spurious-Free Dynamic Range to Nyquist	SFDR	$f_{CLK} = 100MHz$	f _{OUT} = 1MHz, -6dB FS		81		dBc
Tryquiot			f _{OUT} = 1MHz, -12dB FS		80		

2 ______*NIXIN*

ELECTRICAL CHARACTERISTICS (continued)

 $(AV_{DD} = DV_{DD} = VCLK = 3.3V, AGND = DGND = CLKGND = 0V, external reference, V_{REFIO} = 1.25V, R_L = 50\Omega, I_{OUT} = 20mA, f_{CLK} = 200Msps, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. $\geq +25^{\circ}C$ guaranteed by production test, $< +25^{\circ}C$ guaranteed by design and characterization. Typical values are at $T_A = +25^{\circ}C$.)

PARAMETER	SYMBOL	С	ONDITIONS	MIN	TYP	MAX	UNITS
			four = 10MHz, -12dB		77		İ
		f _{CLK} = 100MHz	$f_{OUT} = 30MHz, -12dB$		73		1
			f _{OUT} = 10MHz, -12dB		70		1
Spurious-Free Dynamic Range to Nyquist	SFDR	f _{CLK} = 200MHz	f _{OUT} > 16MHz, -12dB FS, T _A = +25°C	68	74		dBc
			$f_{OUT} = 30MHz, -12dB$		66		
			$f_{OUT} = 50MHz, -12dB$		68		
			f _{OUT1} = 9MHz, -6dB				
		f _{CLK} = 100MHz	f _{OUT2} = 10MHz, -6dB	·	-86		
Two-Tone IMD	TTIMD		$f_{OUT1} = 29MHz, -6dB$				dBc
		f _{CLK} = 200MHz	f _{OUT2} = 30MHz, -6dB		-74		
Four-Tone IMD, 1MHz Frequency Spacing	FTIMD	f _{CLK} = 150MHz	f _{OUT} = 32MHz, -12dB FS		-82		dBc
Adjacent Channel Leakage Power Ratio, 4.1MHz Bandwidth, W-CDMA Model	ACLR	f _{CLK} = 184.32MHz	f _{OUT} = 30.72MHz		71		dB
Output Bandwidth	BW _{-1dB}	(Note 2)			450		MHz
REFERENCE							•
Internal Reference Voltage Range	V _{REFIO}			1.1	1.22	1.34	V
Reference Input Compliance Range	VREFIOCR			0.125		1.25	V
Reference Input Resistance	R _{REFIO}				10		kΩ
Reference Voltage Drift	TCOREF				±50		ppm/°C
ANALOG OUTPUT TIMING							•
Output Fall Time	tFALL	90% to 10% (Not	e 3)		375		ps
Output Rise Time	trise	10% to 90% (Not	e 3)		375		ps
Output Voltage Settling Time	tSETTLE	Output settles to	0.025% FS (Note 3)		11		ns
Output Propagation Delay	tpD	(Note 3)			1.8		ns
Glitch Energy					1		pV-s
0.1.111		I _{OUT} = 2mA			30		1
Output Noise	Nout	I _{OUT} = 20mA			30		PA/√Hz
TIMING CHARACTERISTICS							•
Data to Clock Setup Time	tsetup	Referenced to ris	ing edge of clock (Note 4)	0.4			ns
Data to Clock Hold Time	tHOLD	Referenced to ris	ing edge of clock (Note 4)	1.25			ns
	l	1					1

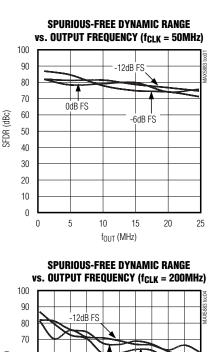
ELECTRICAL CHARACTERISTICS (continued)

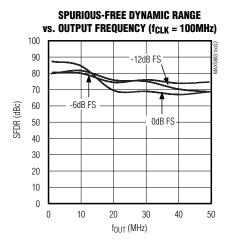
 $(AV_{DD} = DV_{DD} = VCLK = 3.3V, AGND = DGND = CLKGND = 0V, external reference, V_{REFIO} = 1.25V, R_L = 50\Omega, I_{OUT} = 20mA, f_{CLK} = 200Msps, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. $\geq +25^{\circ}C$ guaranteed by production test, $< +25^{\circ}C$ guaranteed by design and characterization. Typical values are at $T_A = +25^{\circ}C$.)

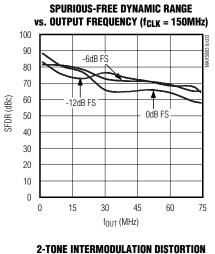
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Data Latency				3.5		Clock cycles
Minimum Clock Pulse Width High	tch	CLKP, CLKN		1.5		ns
Minimum Clock Pulse Width Low	tCL	CLKP, CLKN		1.5		ns
CMOS LOGIC INPUTS (B0-B11, I	PD, SELO, XO	OR)				
Input Logic High	V _{IH}		0.7 x DV _{DD}			V
Input Logic Low	VIL				0.3 x DV _{DD}	V
Input Leakage Current	I _{IN}		-15		+15	μΑ
Input Capacitance	CIN			5		рF
CLOCK INPUTS (CLKP, CLKN)						
D."		Sine wave		≥1.5		
Differential Input Voltage Swing	VCLK	Square wave		≥0.5		V _{P-P}
Differential Input Slew Rate	SRCLK	(Note 5)		>100		V/µs
Common-Mode Voltage Range	Vcom			1.5 ±20%		V
Input Resistance	R _{CLK}			5		kΩ
Input Capacitance	C _{CLK}			5		рF
POWER SUPPLIES	-					
Analog Supply Voltage Range	AV_{DD}		3.135	3.3	3.465	V
Digital Supply Voltage Range	DV _{DD}		3.135	3.3	3.465	V
Clock Supply Voltage Range	VCLK		3.135	3.3	3.465	V
		f _{CLK} = 100Msps, f _{OUT} = 1MHz		27		_
Analog Supply Current	I _{AVDD}	Power-down		0.3		mA
		f _{CLK} = 100Msps, f _{OUT} = 1MHz		7.5		mA
Digital Supply Current	IDVDD	Power-down		10		μA
	_	f _{CLK} = 100Msps, f _{OUT} = 1MHz		5.5		mA
Clock Supply Current	IVCLK	Power-down		10		μΑ
		f _{CLK} = 100Msps, f _{OUT} = 1MHz		132		·
Power Dissipation	PDISS	Power-down		1		mW
Power-Supply Rejection Ratio	PSRR	$AV_{DD} = VCLK = DV_{DD} = 3.3V \pm 5\% \text{ (Note 5)}$	-0.1		+0.1	%FS/V

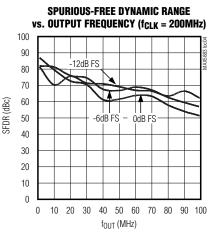
Note 1: Nominal full-scale current $I_{OUT} = 32 \times I_{REF}$.

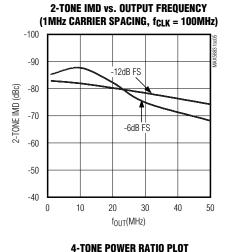
Note 2: This parameter does not include update-rate depending effects of sin(x)/x filtering inherent in the MAX5883.

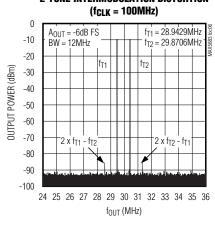

Note 3: Parameter measured single ended into a 50Ω termination resistor.

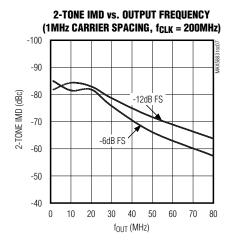

Note 4: Parameter guaranteed by design.

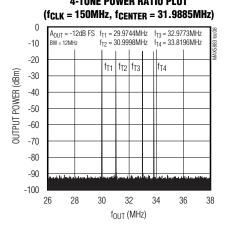

Note 5: Parameter defined as the change in midscale output caused by a ±5% variation in the nominal supply voltage.

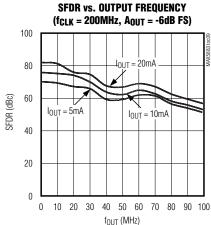

Typical Operating Characteristics

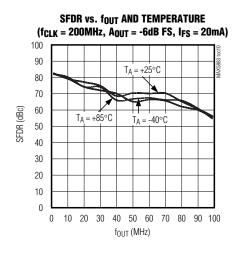

(AV_{DD} = DV_{DD} = VCLK = 3.3V, external reference, V_{RFFIQ} = 1.25V, R_L = 50Ω, I_{QUT} = 20mA, T_A = +25°C, unless otherwise noted.)

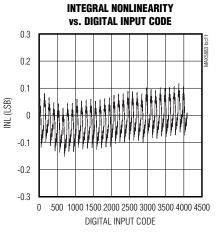


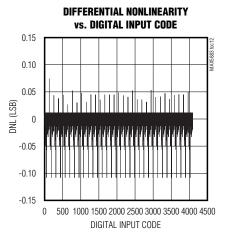




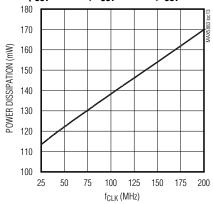


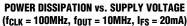


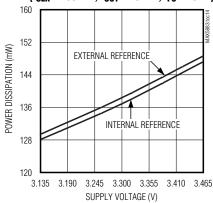



MIXIM

Typical Operating Characteristics (continued)


(AV_{DD} = DV_{DD} = VCLK = 3.3V, external reference, V_{REFIO} = 1.25V, R_L = 50Ω, I_{OUT} = 20mA, T_A = +25°C, unless otherwise noted.)





POWER DISSIPATION vs. CLOCK FREQUENCY (fout = 10MHz, Agut = 0dB FS, Igut = 20mA)

6 _______ /N/XI/N

Pin Description

PIN	NAME	FUNCTION
1, 2, 16, 25–29, 47, 48	N.C.	No connection. Do not connect to these pins. Do not tie these pins together.
3	XOR	XOR Input Pin. XOR = 1 inverts the digital input data. XOR = 0 leaves the digital input data unchanged. XOR has an internal pulldown resistor and may be left unconnected if not used.
4, 9	VCLK	Clock Supply Voltage. Accepts a supply voltage range of 3.135V to 3.465V. Bypass each pin with a 0.1µF capacitor to the nearest CLKGND.
5, 8	CLKGND	Clock Ground
6	CLKP	Converter Clock Input. Positive input terminal for the converter clock.
7	CLKN	Complementary Converter Clock Input. Negative input terminal for the converter clock.
10	PD	Power-Down Input. PD pulled high enables the DAC's power-down mode. PD pulled low allows for normal operation of the DAC.
11, 21, 23	AV _{DD}	Analog Supply Voltage. Accepts a supply voltage range of 3.135V to 3.465V. Bypass each pin with a 0.1µF capacitor to the nearest AGND.
12, 17, 20, 22, 24, EP	AGND	Analog Ground. Exposed paddle (EP) must be connected to AGND.
13	REFIO	Reference I/O. Output of the internal 1.2V precision bandgap reference. Bypass with a 0.1µF capacitor to AGND. Can be driven with an external reference source.
14	FSADJ	Full-Scale Adjust Input. This input sets the full-scale output current of the DAC. For 20mA full-scale output current, connect a $2k\Omega$ resistor between FSADJ and DACREF.
15	DACREF	Return Path for the Current Set Resistor. For 20mA full-scale output current, connect a $2k\Omega$ resistor between FSADJ and DACREF.
18	IOUTN	Complementary DAC Output. Negative terminal for differential current output. The full-scale output current range can be set from 2mA to 20mA.
19	IOUTP	DAC Output. Positive terminal for differential current output. The full-scale output current range can be set from 2mA to 20mA.
30	SEL0	Mode Select Input SEL0. This pin has an internal pulldown resistor; it can be left open to disable the segment-shuffling function (see the <i>Segment Shuffling</i> section).
31, 43	DV _{DD}	Digital Supply Voltage. Accepts a supply voltage range of 3.135V to 3.465V. Bypass each pin with a 0.1µF capacitor to the nearest DGND.
32, 42	DGND	Digital Ground
33	B11	Data Bit 11 (MSB)
34	B10	Data Bit 10
35	В9	Data Bit 9
36	B8	Data Bit 8
37	B7	Data Bit 7

Pin Description (continued)

PIN	NAME	FUNCTION
38	B6	Data Bit 6
39	B5	Data Bit 5
40	B4	Data Bit 4
41	В3	Data Bit 3
44	B2	Data Bit 2
45	B1	Data Bit 1
46	В0	Data Bit 0 (LSB)

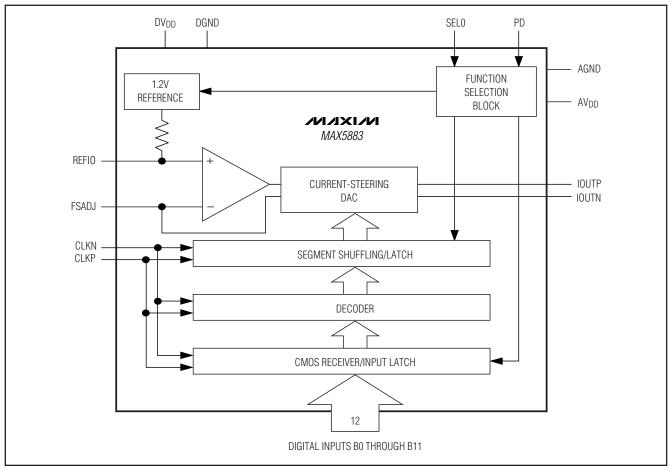


Figure 1. Simplified MAX5883 Block Diagram

NIXINN ______

Detailed Description

Architecture

The MAX5883 is a high-performance, 12-bit, current-steering DAC (Figure 1) capable of operating with clock speeds up to 200MHz. The converter consists of separate input and DAC registers, followed by a current-steering circuit. This circuit is capable of generating differential full-scale currents in the range of 2mA to 20mA. An internal current-switching network in combination with external 50Ω termination resistors convert the differential output currents into a differential output voltage with a peak-to-peak output voltage range of 0.1V to 1V. An integrated 1.2V bandgap reference, control amplifier, and user-selectable external resistor determine the data converter's full-scale output range.

Reference Architecture and Operation

The MAX5883 supports operation with the on-chip 1.2V bandgap reference or an external reference voltage source. REFIO serves as the input for an external, low-impedance reference source, and as the output if the DAC is operating with the internal reference. For stable operation with the internal reference, REFIO should be decoupled to AGND with a 0.1µF capacitor. Due to its limited output drive capability, REFIO must be buffered with an external amplifier, if heavier loading is required.

The MAX5883's reference circuit (Figure 2) employs a control amplifier, designed to regulate the full-scale current IOUT for the differential current outputs of the DAC. Configured as a voltage-to-current amplifier, the output current can be calculated as follows:

 $IOUT = 32 \times IREFIO - 1 LSB$ $IOUT = 32 \times IREFIO - (IOUT / 2^{12})$

where IREFIO is the reference output current (IREFIO = VREFIO/RSET) and IOUT is the full-scale output current of the DAC. Located between FSADJ and DACREF,

RSET is the reference resistor, which determines the amplifier's output current for the DAC. See Table 1 for a matrix of different IOUT and RSET selections.

Analog Outputs (IOUTP, IOUTN)

The MAX5883 outputs two complementary currents (IOUTP, IOUTN) that can be operated in a single-ended or differential configuration. A load resistor can convert these two output currents into complementary single-ended output voltages. The differential voltage existing between IOUTP and IOUTN can also be converted to a single-ended voltage using a transformer or a differential amplifier configuration. If no transformer is used, the output should have a 50Ω termination to the analog ground and a 50Ω resistor between the outputs.

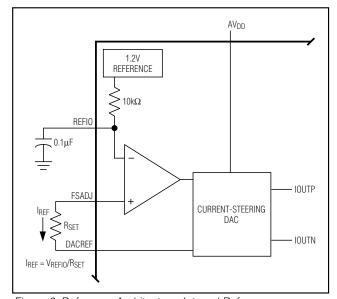


Figure 2. Reference Architecture, Internal Reference Configuration

Table 1. IOUT and RSET Selection Matrix Based on a Typical 1.200V Reference Voltage

FULL-SCALE CURRENT	REFERENCE CURRENT	R _{SET}	· (k Ω)	OUTPUT VOLTAGE
I _{OUT} (mA)	I _{REF} (μA)	CALCULATED	1% EIA STD	V _{IOUTP/N} * (mV _{P-P})
2	62.5	19.2	19.1	100
5	156.26	7.68	7.5	250
10	312.5	3.84	3.83	500
15	468.75	2.56	2.55	750
20	625	1.92	1.91	1000

^{*}Terminated into a 50Ω load.

Although not recommended because of additional noise pickup from the ground plane, for single-ended operation IOUTP should be selected as the output, with IOUTN connected to AGND. Note that a single-ended output configuration has a higher 2nd-order harmonic distortion at high output frequencies than a differential output configuration.

Figure 3 displays a simplified diagram of the MAX5883's internal output structure.

Clock Inputs (CLKP, CLKN)

The MAX5883 features a flexible differential clock input (CLKP, CLKN) operating from separate supplies (VCLK, CLKGND) to achieve the best possible jitter performance. The two clock inputs can be driven from a single-ended or a differential clock source. For single-ended operation, CLKP should be driven by a logic source, while CLKN should be bypassed to AGND with a $0.1\mu F$ capacitor.

The CLKP and CLKN pins are internally biased to VCLK/2. This allows the user to AC-couple clock sources directly to the device without external resistors to define the DC level. The input resistance of CLKP and CLKN is $>5k\Omega$.

See Figure 4 for a convenient and quick way to apply a differential signal created from a single-ended source (e.g., HP 8662A signal generator) and a wideband transformer. These inputs can also be driven from a CMOS-compatible clock source; however, it is recommended to use sinewave or AC-coupled ECL drive for best performance.

Data Timing Relationship

Figure 5 shows the timing relationship between differential, digital CMOS data, clock, and output signals. The MAX5883 features a 1.25ns hold, a 0.4ns setup,

Figure 3. Simplified Analog Output Structure

and a 1.8ns propagation delay time. There is a 3.5 clock-cycle latency between CLKP/CLKN transitioning high/low and IOUTP/IOUTN.

CMOS-Compatible Digital Inputs (B0-B11)

The MAX5883 features single-ended, CMOS-compatible receivers on the bus input interface. These CMOS inputs (B0–B11) allow for a voltage swing of 3.3V.

Segment Shuffling (SEL0)

Segment shuffling can improve the SFDR of the MAX5883 at higher output frequencies and amplitudes. Note that an improvement in SFDR can only be achieved at the cost of a slight increase in the DAC's noise floor.

Pin SEL0 controls the segment-shuffling function. If SEL0 is pulled low, the segment-shuffling function of the DAC is disabled. SEL0 can also be left open, because an internal pulldown resistor helps to deactivate the segment-shuffling feature. To activate the MAX5883 segment-shuffling function, SEL0 must be pulled high.

XOR Function (XOR)

The MAX5883 is equipped with a single-ended, CMOS-compatible XOR input, which may be left open (XOR provides an internal pulldown resistor) or pulled down to DGND, if not used. Input data is XORed with the bit applied to the XOR pin. Pulling XOR high inverts the input data. Pulling XOR low leaves the input data noninverted. By applying a pseudorandom bit stream to XOR and applying inverted data when XOR is high, the bit transitions of the digital input data can be decorrelated from the DAC output. This allows the user to troubleshoot possible spurious or harmonic distortion degradation due to digital feedthrough on the PC board.

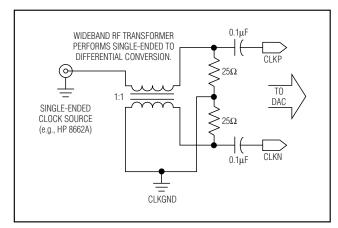


Figure 4. Differential Clock Signal Generation

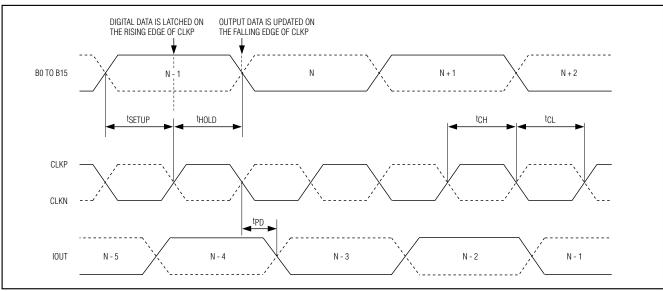


Figure 5. Detailed Timing Relationship

Power-Down Operation (PD)

The MAX5883 also features an active-high power-down mode, which allows the user to cut the DAC's current consumption. A single pin (PD) is used to control the power-down mode (PD = 1) or reactivate the DAC (PD = 0) after power-down.

Enabling the power-down mode of this 12-bit CMOS DAC allows the overall power consumption to be reduced to less than 1mW. The MAX5883 requires 10ms to wake up from power-down and enter a fully operational state.

Applications Information

Differential Coupling Using a Wideband RF Transformer

The differential voltage existing between IOUTP and IOUTN can also be converted to a single-ended voltage using a transformer (Figure 6) or a differential amplifier configuration. Using a differential transformer-coupled output, in which the output power is limited to 0dBm, can optimize the dynamic performance. However, make sure to pay close attention to the transformer core saturation characteristics when selecting a transformer for the MAX5883. Transformer core saturation can introduce strong 2nd-harmonic distortion, especially at low output frequencies and high signal amplitudes. It is also recommended to center tap the transformer to ground. If no transformer is used, each DAC output should be terminated to ground with a 50Ω

resistor. Additionally, a 100 $\!\Omega$ resistor should be placed between the outputs.

If a single-ended unipolar output is desirable, IOUTP should be selected as the output, with IOUTN grounded. However, driving the MAX5883 single ended is not recommended since additional noise is added (from the ground plane) in such configurations.

The distortion performance of the DAC depends on the load impedance. The MAX5883 is optimized for a 50Ω double termination. It can be used with a transformer output as shown in Figure 7 or just one 50Ω resistor from each output to ground and one 50Ω resistor between the outputs. This produces a full-scale output power of up to 0dBm, depending on the output current setting. Higher termination impedance can be used at the cost of degraded distortion performance and increased output noise voltage.

Adjacent Channel Leakage Power Ratio (ACLR) Testing for CDMA- and W-CDMA-Based Base Station Transceiver Systems (BTS)

The transmitter sections of BTS applications serving CDMA and W-CDMA architectures must generate carriers with minimal coupling of carrier energy into the adjacent channels. A transmit mask (Tx mask) exists for this application. The spread-spectrum modulation function applied to the carrier frequency generates a spectral response, which is uniform over a given bandwidth (up to 4MHz) for a W-CDMA-modulated carrier.

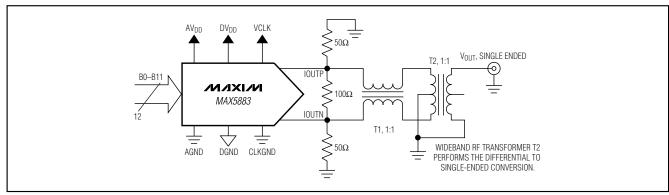


Figure 6. Differential to Single-Ended Conversion Using a Wideband RF Transformer

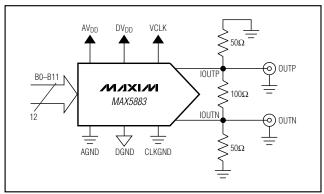


Figure 7. MAX5883 Differential Output Configuration

A dominant specification is ACLR, a parameter which reflects the ratio of the power in the desired carrier band to the power in an adjacent carrier band. The specification covers the first two adjacent bands, and is measured on both sides of the desired carrier.

According to the transmit mask for CDMA and W-CDMA architectures, the power ratio of the integrated carrier channel energy to the integrated adjacent channel energy must be >45dB for the first adjacent carrier slot (ACLR 1) and >50dB for the second adjacent carrier slot (ACLR 2). This specification applies to the output of the entire transmitter signal chain. The requirement for only the DAC block of the transmitter must be tighter, with a typical margin of >15dB, requiring the DAC's ACLR 1 to be better than 60dB.

Adjacent channel leakage is caused by a single spreadspectrum carrier, which generates intermodulation (IM) products between the frequency components located within the carrier band. The energy at one end of the carrier band generates IM products with the energy from the opposite end of the carrier band. For singlecarrier W-CDMA modulation, these IMD products are spread 3.84MHz over the adjacent sideband. Four contiguous W-CDMA carriers spread their IM products over a bandwidth of 20MHz on either side of the 20MHz total carrier bandwidth. In this four-carrier scenario, only the energy in the first adjacent 3.84MHz sideband is considered for ACLR 1. To measure ACLR, drive the converter with a W-CDMA pattern. Make sure that the signal is backed off by the peak-to-average ratio, such that the DAC is not clipping the signal. ACLR can then be measured with the ACLR measurement function built into your spectrum analyzer.

Figure 8 shows the ACLR performance for a single W-CDMA carrier ($f_{CLK} = 184.32 MHz$, $f_{OUT} = 30.72 MHz$) applied to the MAX5883 (including measurement system limitations*).

Figure 9 illustrates the ACLR test results for the MAX5883 with a four-carrier W-CDMA signal at an output frequency of 30.72MHz and a sampling frequency of 184.32MHz. Considerable care must be taken to ensure accurate measurement of this parameter.

Grounding, Bypassing, and Power-Supply Considerations

Grounding and power-supply decoupling can strongly influence the performance of the MAX5883. Unwanted digital crosstalk may couple through the input, reference, power supply, and ground connections, affecting dynamic performance. Proper grounding and power-

*Note that due to their own IM effects and noise limitations, spectrum analyzers introduce ACLR errors, which can falsify the measurement. For a single-carrier ACLR measurement greater than 70dB, these measurement limitations are significant, becoming even more restricting for multicarrier measurement. Before attempting an ACLR measurement, it is recommended consulting application notes provided by major spectrum analyzer manufacturers that provide useful tips on how to use their instruments for such tests.

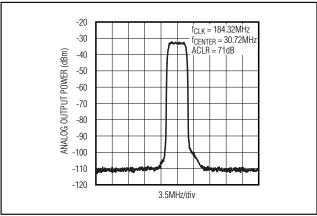


Figure 8. ACLR for W-CDMA Modulation, Single Carrier

supply decoupling guidelines for high-speed, high-frequency applications should be closely followed. This reduces EMI and internal crosstalk that can significantly affect the dynamic performance of the MAX5883.

Use of a multilayer printed circuit (PC) board with separate ground and power-supply planes is recommended. High-speed signals should run on lines directly above the ground plane. Since the MAX5883 has separate analog and digital ground buses (AGND, CLKGND, and DGND, respectively), the PC board should also have separate analog and digital ground sections with only one point connecting the two planes. Digital signals should be run above the digital ground plane and analog/clock signals above the analog/clock ground plane. Digital signals should be kept as far away from sensitive analog inputs, reference input sense lines, common-mode input, and clock inputs as practical. A symmetric design of clock input and analog output lines is recommended to minimize 2nd-order harmonic distortion components and optimize the DAC's dynamic performance. Digital signal paths should be kept short and run lengths matched to avoid propagation delay and data skew mismatches.

The MAX5883 supports three separate power-supply inputs for analog (AVDD), digital (DVDD), and clock (VCLK) circuitry. Each AVDD, DVDD, and VCLK input should at least be decoupled with a separate $0.1\mu F$ capacitor as close to the pin as possible and their opposite ends with the shortest possible connection to the corresponding ground plane (Figure 10). All three power-supply voltages should also be decoupled at the

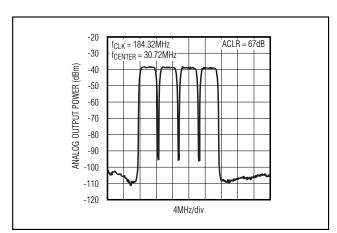


Figure 9. ACLR for W-CDMA Modulation, Four Carriers

point they enter the PC board with tantalum or electrolytic capacitors. Ferrite beads with additional decoupling capacitors forming a pi network could also improve performance.

The analog and digital power-supply inputs AV_{DD}, VCLK, and DV_{DD} of the MAX5883 allow a supply voltage range of 3.3V ±5%.

The MAX5883 is packaged in a 48-pin QFN-EP (package code: G4877-1), providing greater design flexibility, increased thermal efficiency**, and optimized AC performance of the DAC. The exposed pad (EP) enables the user to implement grounding techniques, which are necessary to ensure highest performance operation. **The EP must be soldered down to AGND.**

In this package, the data converter die is attached to an EP lead frame with the back of this frame exposed at the package bottom surface, facing the PC board side of the package. This allows a solid attachment of the package to the PC board with standard infrared (IR) flow soldering techniques. A specially created land pattern on the PC board, matching the size of the EP (5mm × 5mm), ensures the proper attachment and grounding of the DAC. Designing vias*** into the land area and implementing large ground planes in the PC board design allow for highest performance operation of the DAC. An array of at least 3 × 3 vias (≤0.3mm diameter per via hole and 1.2mm pitch between via holes) is recommended for this 48-pin QFN-EP package.

^{***}Vias connect the land pattern to internal or external copper planes. It is important to connect as many vias as possible to the analog ground plane to minimize inductance.

^{**}Thermal efficiency is not the key factor, since the MAX5883 features low-power operation. The exposed pad is the key element to ensure a solid ground connection between the DAC and the PC board's analog ground layer.

Static Performance Parameter Definitions

Integral Nonlinearity (INL)

Integral nonlinearity is the deviation of the values on an actual transfer function from either a best straight line fit (closest approximation to the actual transfer curve) or a line drawn between the end points of the transfer function, once offset and gain errors have been nullified. For a DAC, the deviations are measured at every individual step.

Differential Nonlinearity (DNL)

Differential nonlinearity is the difference between an actual step height and the ideal value of 1 LSB. A DNL error specification of less than 1 LSB guarantees no missing codes and a monotonic transfer function.

Offset Error

The offset error is the difference between the ideal and the actual offset current. For a DAC, the offset point is the average value at the output for the two midscale digital input codes with respect to the full scale of the DAC. This error affects all codes by the same amount.

Gain Error

A gain error is the difference between the ideal and the actual full-scale output voltage on the transfer curve, after nullifying the offset error. This error alters the slope of the transfer function and corresponds to the same percentage error in each step.

Settling Time

The settling time is the amount of time required from the start of a transition until the DAC output settles its new output value to within the converter's specified accuracy.

Glitch Eneray

A glitch is generated when a DAC switches between two codes. The largest glitch is usually generated around the midscale transition, when the input pattern transitions from 011...111 to 100...000. The glitch energy is found by integrating the voltage of the glitch at the midscale transition over time. The glitch energy is usually specified in pV-s.

Dynamic Performance Parameter Definitions

Signal-to-Noise Ratio (SNR)

For a waveform perfectly reconstructed from digital samples, the theoretical maximum SNR is the ratio of the full-scale analog output (RMS value) to the RMS quantization error (residual error). The ideal, theoretical maximum SNR can be derived from the DAC's resolution (N bits):

 $SNR_{dB} = 6.02_{dB} \times N + 1.76_{dB}$

However, noise sources such as thermal noise, reference noise, clock jitter, etc., affect the ideal reading; therefore, SNR is computed by taking the ratio of the RMS signal to the RMS noise, which includes all spectral components minus the fundamental, the first four harmonics, and the DC offset.

Spurious-Free Dynamic Range (SFDR)

SFDR is the ratio of RMS amplitude of the carrier frequency (maximum signal components) to the RMS value of their next-largest distortion component. SFDR is usually measured in dBc and with respect to the carrier frequency amplitude or in dB FS with respect to the DAC's full-scale range. Depending on its test condition, SFDR is observed within a predefined window or to Nyquist.

Two-/Four-Tone Intermodulation Distortion (IMD)

The two-tone IMD is the ratio expressed in dBc (or dB FS) of either input tone to the worst 3rd-order (or higher) IMD products. Note that 2nd-order IMD products usually fall at frequencies that can be easily removed by digital filtering; therefore, they are not as critical as 3rd-order IMDs. The two-tone IMD performance of the MAX5883 was tested with the two individual input tone levels set to at least -6dB FS and the four-tone performance was tested at an output frequency of 32MHz and amplitude of -12dB FS.

Adjacent Channel Leakage Power Ratio (ACLR)

Commonly used in combination with W-CDMA, ACLR reflects the leakage power ratio in dB between the measured power within a channel relative to its adjacent channel. ACLR provides a quantifiable method of determining out-of-band spectral energy and its influence on an adjacent channel when a bandwidth-limited RF signal passes through a nonlinear device.

Chip Information

TRANSISTOR COUNT: 10,721

PROCESS: CMOS

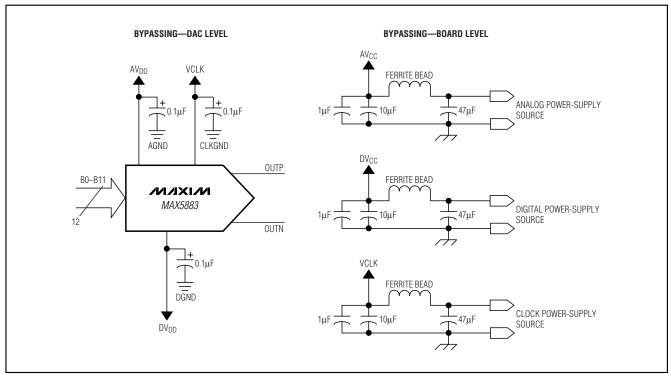
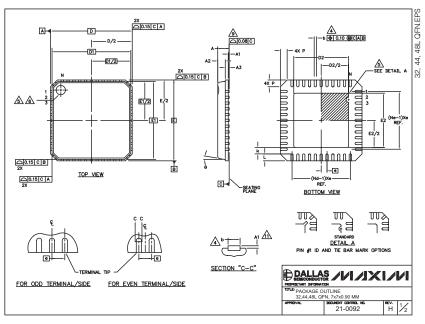



Figure 10. Recommended Power-Supply Decoupling and Bypassing Circuitry

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

PROPRIETARY INFORMATION	Third Milk NDK MAX MIN M				CI	MMON D	IMENSIO	VS			
A 0.80 0.90 1.00 0.80 0.90 1.00 0.80 0.90 1.00 0.80 0.90 1.00 0.01 0.05 0.00 0.01 0.05 0.00 0.01 0.05 0.00 0.01 0.05 0.00 0.01 0.05 0.00 0.07 0.00 0.05 0.00 0.07 0.00 0.05 0.00 0.07 0.00 0.05 0.00 0.07 0.00 0.05 0.00 0.07 0.00 0.05 0.00 0.07 0.00 0.05 0.00 0.00	A	PKG		32L 7x7	,		44L 7x	7		48L 7×7	7
A 0.00 0.01 0.05 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.0	A2 0.00 0.01 0.05 0.00 0.01 0.05 0.00 0.01 0.05 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.00 0.05 0.00 0.	YMBOL	MIN.	NOM.	MAX.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.
A2 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	A2 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Α	0.80	0.90	1.00	0.80	0.90	1.00	0.80	0.90	1.00
A2 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	A2 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.65 1.00 0.00 0.42 0.60 0.0	A1	0.00	0.01	0.05	0.00	0.01	0.05	0.00	0.01	0.05
A3 0.20 REF	A3 0.20 REF	A2	0.00	0.65	1.00	0.00	0.65	1.00	0.00	0.65	1.00
D 6-90 7.00 7.10 6-90 7.10 6-90 7.1	D 6.90 7.00 7.10 6.90 7.10 6.9	A3		0.20 REF			0.20 RE			0.20 RE	F
D 6-90 7-00 7-10 6-90 7-00 7-00 7-00 7-00 7-00 7-00 7-00 7	D 6-90 7.00 7.10 7.10 6-90 7.10 7.10 6-90 7.10 7.10 6-90 7.10 7.10 6-90 7.10 7.10 6-90 7.10 7.10 7.10 7.10 7.10 7.10 7.10 7.1	b	0.23	0.28	0.35	0.18	0.23	0.30	0.18	0.23	0.30
11 6.75 SSC	1.0 6.75 BSC 6.59 SSC 6.75 BSC 6.75	D	6.90	7.00	7.10	6.90	7.00	7.10	6.90	7.00	7.10
E 6.90 7.00 7.10 6.90 7.00 7.10 6.90 7.00 7.10	E 6.90 7.00 7.10 6.90 7.00 7.10 6.90 7.00 7.10 6.90 7.00 7.10 6.90 7.00 7.10 6.90 7.00 7.10 6.90 7.00 7.10 6.90 7.00 7.10 6.90 7.00 7.10 7.00 7.10 7.00 7.10 7.00 7.10 7.00 7.10 7.00 7.10 7.00 7.10	D1		5.75 BSC			6.75 BS			6.75 BS	С
ET 6.75 BSC 6.75 BSC 6.75 BSC 6.75 BSC 6.75 BSC 6.75 BSC 64877-1 4.95 S10 S25 S10	ET 6.75 BSC 6.75 BSC 6.75 BSC 6.75 BSC 6.75 BSC 64977-1 4.95 5.10 5.25 4.95 5.10 5.25 6.95 BSC 8.0 8.95 8.0 8.95 8.95 8.95 8.95 8.95 8.95 8.95 8.95	E	6.90	7.00	7.10	6.90	7.00	7.10	6.90	7.00	7.10
0.05 SS.C	0.65 S.C.	E1		5.75 BSC	:		6.75 BS	:		6.75 BS	С
No.	No. 10	e		0.65 BSC			0.50 BS	-		0.50 BS	¢ .
N	N	k	0.25	-	-	0.25	-	-	0.25	-	-
Not 8 11 12 12 12 19 10 14 12 19 10 14 12 19 10 14 12 19 10 14 12 10 14 12 10 14 12 10 14 12 10 14 12 10 14 12 10 14	Not 8 11 12 NOTES: 1. DETINICATION BY CITES PLATED HIMSINGS. N IS THE NUMBER OF TERMINALS. N IS THE NUMBER OF TH	L	0.35	0.55	0.75	0.35	0.55	0.75	0.30	0.40	0.50
NOTES: 1. DIE THICKNESS ALLOWABLE IS 0.505mm MAXIMUM (.012 INCHES MAXIMUM). 2. DIMENSIONING & TOLERANCES CONFORM TO ASME Y14.5M. — 1994. 5. N IS THE NUMBER OF TERMINALS. MIS THE NUMBER OF TERMINALS IN X—DIRECTION & No IS THE NUMBER OF TERMINALS IN Y—DIRECTION. MIS DIRECTION OF A PPILES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.20 AND 0.25mm FROM TERMINAL TIP. DENTIFIER SO PHOMAL BUT UNST BE LOCATED WITHOUT SOME INDICATED. DENTIFIER IS OPPIONAL BUT MUST BE LOCATED WITHOUT SOME INDICATED. DENTIFIER IS OPPIONAL BUT MUST BE LOCATED WITHOUT SOME INDICATED. DENTIFIER IS OPPIONAL BUT MUST BE LOCATED WITHOUT SOME INDICATED. DENTIFIER IS OPPIONAL BUT MUST BE LOCATED WITHOUT SOME INDICATED. DENTIFIER IS OPPIONAL BUT MUST BE LOCATED WITHOUT SOME INDICATED. DENTIFIER OF PROMISE SOME OF THIS FEATURE IS OPTIONAL 7. ALL DIMENSIONS ARE IN MILLIMETERS. D. PACKAGE WARPAGE MAX O.05mm. A. APPILED FOR EXPOSED PAD AND TERMINALS. EXCULDE EMERDED PART OF EXPOSED PAD FROM MEASURING.	NOTES: 1. DIE THICKNESS ALLOWABLE IS 0.305mm MAXIMUM (.012 INCHES MAXIMUM). 2. DIMERISIONING & TOLERANCES CONFORM TO ASME Y14.5M. — 1994. 3. N IS THE NUMBER OF TERMINALS IN X—DIRECTION & No IS THE NUMBER OF TERMINALS IN Y—DIRECTION. 3. N IS THE NUMBER OF TERMINALS IN X—DIRECTION & No IS THE NUMBER OF TERMINALS IN Y—DIRECTION. 4. DIRECTION DEPTH STOP PLATED TERMINAL AND IS MEASURED BETWEEN 0.20 AND 0.25mm FROM TERMINAL TIP. 5. DIRECTION DEPTH SUBJECT OF PLATED TERMINAL AND IS MEASURED BETWEEN 0.20 AND 0.25mm FROM TERMINAL TIP. 5. DIRECTION DEPTH SUBJECT OF PLATED TERMINAL AND IS MEASURED BETWEEN 0.20 AND 0.25mm FROM TERMINAL TIP. 5. DIRECTION DEPTH SUBJECT OF THE STUDY OF THE MODIFIED OF PIN §1 DETHT SUBJECT OF THE STUDY OF THE STUDY OF THE MODIFIED OF PIN §1 TO ALL DIMERSIONS ARE IN MILLIMETERS. 5. PACKAGE WARPAGE MAX 0.05mm. 5. PACKAGE WARPAGE PART OF EXPOSED PAD FROM MEASURING. 10. MEETS JESCE MO220 EXCEPT DIMENSION "5" MINIMUM.	N		32			44			48	
P 0.00 0.42 0.60 0.00 0.42 0.60 0.00 0.42 0.60 0.00 0.42 0.60 U D D 12 D	P 0.000 0.42 0.60 0.00 0.42 0.60 0.00 0.42 0.60 0.00 0.42 0.60 U 0° 12° 0° 12° 0° 12° 0° 12° 0° 12° 12° 12° 12° 12° 12° 12° 12° 12° 12	Nd		8			11			12	
U 0" 12" 0" 12" 0" 12" 0" 12" NOTES: 1. DIE THICKNESS ALLOWABLE IS 0.305mm MAXIMUM (.012 INCHES MAXIMUM). 2. DIMENSIONING & TOLERANCES CONFORM TO ASME Y14.5M. – 1994. 3. N IS THE NUMBER OF TERMINALS. 3. N IS THE NUMBER OF TERMINALS IN X-DIRECTION & No IS THE NUMBER OF TERMINALS IN Y-DIRECTION. 4. DIMENSION DA APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.20 AND 0.25mm FROM TERMINAL TIP. 5. DIACTOR SHOP THE CHIEF OF THE CHIEF CHIEF OF SUPFACE OF THE PACKAGE BY USBN (INDEXTATION MARK OR INK/LASER MARKED. DETAILS OF PIN \$1 DENTIFIER IS OPTIONAL BUT MUST BE LOCATED WITHIN ZONE INDICATED. 5. EXACUT SHAPE AND SIZE OF THIS FEATURE IS OPTIONAL 7. ALL DIMENSIONS ARE IN MULMETERS. 8. PACKAGE WARPAGE MAX 0.05mm. 6. PACKAGE WARPAGE MAX 0.05mm.	U 0° 12° 0° 12° 0° 12° 0° 12° NOTES: NOTES: 1. DIE THICKNESS ALLOWABLE IS 0.305mm MAXIMUM (.012 INCHES MAXIMUM). 2. DIMENSIONIG & TOLERANCES CONFORM TO ASME Y14.5M. — 1994. 3. M. IS THE NUMBER OF TERMINALS IN X-DIRECTION & No. IS THE NUMBER OF TERMINALS IN Y-DIRECTION. 3. M. IS THE NUMBER OF TERMINALS IN X-DIRECTION & No. IS THE NUMBER OF TERMINALS IN Y-DIRECTION. 4. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.20 AND 0.25mm FROM TERMINAL TIP. 4. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.20 AND 0.25mm FROM TERMINAL TIP. 5. PACKAGE WARPAGE MAX 0.05mm. 7. ALL DIMENSIONS ARE IN MILLIMETERS. 8. PACKAGE WARPAGE MAX 0.05mm. 4. APPLIED FOR EXPOSED PAD AND TERMINALS. 9. PACKAGE WARPAGE MAX 0.05mm. 4. APPLIED FOR EXPOSED PAD AND TERMINALS. 10. MEETS JEDEC MO220 EXCEPT DIMENSION ** MINIMUM.	Ne		- 8			11			12	
NOTES: 1. DIE THICKNESS ALLOWABLE IS 0.305mm MAXIMUM (.012 INCHES MAXIMUM). 2. DIMENSIONING & TOLERANCES CONFORM TO ASME Y14.5M. — 1994. 3. N. IS THE NUMBER OF TERMINALS. IN X—DIRECTION & No. IS THE NUMBER OF TERMINALS IN Y—DIRECTION. 3. N. IS THE NUMBER OF TERMINALS IN X—DIRECTION & No. IS THE NUMBER OF TERMINALS IN Y—DIRECTION. 4. DIMENSION D APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.20 AND 0.25mm FROM TERMINAL TIP. 5. THE TIME of IDENTIFEE MUST COST ON THE OF SUMPACE OF THE MACKAGE OF USING INDENTITION HAWN OR INKYLASER MARKED. IDETAILS OF PIN #1 1. DIEDTHIFER IS OPTIONAL, BUT MUST BE LOCATED WITHIN ZONE INDICATED. 5. PACKAGE OF USING INDENTITION HAWN OR INKYLASER MARKED. IDETAILS OF PIN #1 1. ALL DIMENSIONS ARE IN MILIMETERS. 5. PACKAGE WARPAGE MAX 0.05mm. 6. PACKAGE WARPAGE MAX 0.05mm. 7. ALL DIMENSIONS ARE IN MILIMETERS. 8. PACKAGE WARPAGE MAX 0.05mm. 9. PACKAGE WARPAGE MAX 0.05mm. 1. PACKAGE WARPAGE MAX 0.05mm. 1. PACKAGE WARPAGE MAX 0.05mm.	NOTES: 1. DIE THIODIESS ALLOWABLE IS 0.305mm MAXIMUM (.012 INCHES MAXIMUM). 2. DIMENSIONING & TOLERANCES CONFORM TO ASME Y14.5M. — 1994. 3. N IS THE NUMBER OF TERMINALS. IN X-DIRECTION & No IS THE NUMBER OF TERMINALS IN Y-DIRECTION. 4. DIMENSION D APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.20 AND 0.25mm FROM TERMINAL TIP. 5. N IS THE NUMBER OF TERMINAL AND IS MEASURED BETWEEN 0.20 AND 0.25mm FROM TERMINAL TIP. 5. DIRECTION IDENTIFIER MUST EXIST ON THE TOP SUBFACE OF THE PACKAGE BY USING INDENTATION MARK OR INKYLASER MARKED. DETAILS OF PIN §1 BICHTHIER IS OPTIONAL, BUT MUST BE LOCATED WITHIN ZONE INDICATED. 5. PACKAGE WARPAGE MAX 0.05mm. 5. PACKAGE WARPAGE MAX 0.05mm. 5. PACKAGE WARPAGE MAX 0.05mm. 5. PAPLED FOR EXPOSED PAD AND TERMINALS. EXCUDE EMBEDDED PART OF EXPOSED PAD A DRIVEN MEASURING. 10. MEETS JEDEC MOZZO EXCEPT DIMENSION "5" MINIMUM.	Р	0.00	0.42	0.60	0.00	0.42	0.60	0.00	0.42	0.60
1. DIE THICKNESS ALLOWABLE IS 0.306mm MAIRIM (0.12 INCHES MAXIMUM). 2. DIMENSIONING & TOLERANCES CONFORM TO ASME Y14.5M. — 1994. 3. IS THE HUMBER OF TERMINALS IN Y-DIRECTION & Ne IS THE NUMBER OF TERMINALS IN Y-DIRECTION. 3. IN IS THE HUMBER OF TERMINAL IN Y-DIRECTION & Ne IS THE NUMBER OF TERMINALS IN Y-DIRECTION. 4. IN IS THE HUMBER OF PARTICLE TERMINAL AND IS MEASURED BETWEEN 0.20 AND 0.25mm FROM TERMINAL TIP. 5. DIMENSION DE APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.20 AND 0.25mm FROM TERMINAL TIP. 5. DIMENSION IS OFFICIAL, BUT MUST BE UCCATED WITHIN 2018 INDICATED. 6. EXACUT SHAPE AND SIZE OF THIS FEATURE IS OPTIONAL. 7. ALL DIMENSIONS ARE IN MILLIMETERS. 8. PACKAGE WARPAGE MAX 0.000mm. 8. PAPELED FOR EXPOSED PAD AND TERMINALS. EXCULUSE REMIDEDED PAT OF EXPOSED PAD FROM MEASURING.	1. DIE THICKNESS ALLOWABLE IS 0.305mm MAXIMUM (.012 INCHES MAXIMUM). 2. DIDIENSKINING & TOLERANCES COMPONE TO ASME 111.5M. — 1994. 3. N IS THE MUMBER OF TERMINALS. N IS THE MUMBER OF TERMINAL AND IS MEASURED BETWEEN 0.20 AND 0.25mm FROM TERMINAL TIP. APPLIED TO THAT OF THE MUMBER OF THE PACKAGE POWER AND THE OF THIS FEATURE IS OPTIONAL. THE PACKAGE OF THIS FEATURE IS OPTIONAL. THE MUMBER OF THIS FEATURE OF EXPOSED PAD AND TERMINALS. THE MUMBER OF THIS FEATURE OF THE MUMBER O										
8. PACKAGE WARFAGE MAX 0.08mm. A) APPLIED FOR EXPOSED PAD AND TERMINALS. EXCLUDE EMBEDDED PART OF EXPOSED PAD FROM MEASURING.	8. PACKAGE WARPAGE MAX 0.08mm. A PPILED FOR EXPOSED PAD AND TERMINALS. EXCLUDE EMBEDGED PART OF EXPOSED PAD FROM MEASURING. 10. MEETS JEDEC MO220 EXCEPT DIMENSION "5" MINIMUM. TIME PACKAGE GUILLINE.	NOTI	S:								
APPLIED FOR EXPOSED PAD AND TERMINALS. EXCLUDE EMBEDDED PART OF EXPOSED PAD FROM MEASURING. **DIABLASS VIII **DIABLASS VIII **POWNTEN **PO	A APPLED FOR EXPOSED PAD AND TERMINALS. EXCLUDE EMBEDDED PART OF EXPOSED PAD FROM MEASURING. 10. MEETS JEDEC MO220 EXCEPT DIMENSION "5" MINIMUM. TIME PACKAGE OUTLINE.	NOTI 1. 2. 3.	S: DIE THI DIMENSI N IS I DIMENSI THE PIN PACKAG DENTIFI	IONING 8 THE NUM THE NUM ION 6 AI N #1 IDE IE BY US IER IS O	ALLOWA TOLER IBER OF BER OF PLIES INTIFIER SING INI PTIONAL	BLE IS ANCES (TERMIN TERMIN TO PLATI MUST E DENTATIO , BUT M	CONFORM ALS. ALS IN) ED TERMI EXIST ON IN MARK IUST BE	MAXIMU TO ASM DIRECT NAL AND THE TO OR INK, LOCATED	IM (.01 IE Y14.: ION & IS ME P SURF 'LASER WITHIN	5M. – 1 Ne IS TI ASURED ACE OF MARKED I ZONE I	S MAXII 994. HE NUM BETWEI THE
PROPRIETARY INFORMATION	10. MEETS JEDEC MO220 EXCEPT DIMENSION "6" MINIMUM. TITLE PACKAGE OUTLINE,	NOTI 1. 2. 3. 4. 5.	S: DIE THI DIMENSI N IS THE PIP PACKAG DENTIFF	IONING & THE NUM THE NUM ION 10 AI THE BY US THE BY US THE BY US SHAPE A	ALLOW/ TOLER BER OF PLIES INTIFIER ING INI PTIONAL	BLE IS ANCES (TERMIN TERMIN TO PLATE MUST E DENTATIO BUT ME FOR TH	CONFORM ALS, ALS IN) ED TERMI EXIST ON N MARK IUST BE IS FEATU	MAXIMU TO ASM DIRECT NAL AND THE TO OR INK, LOCATED	IM (.01 IE Y14.: ION & IS ME P SURF 'LASER WITHIN	5M. – 1 Ne IS TI ASURED ACE OF MARKED I ZONE I	S MAXII 994. HE NUM BETWEI THE
	10. MEETS JEDEC MO220 EXCEPT DIMENSION "b" MINIMUM. TITLE PACKAGE OUTLINE,	NOTI 1. 2. 3. \$\hat{\delta}\$	S: DIE THI DIMENSI N IS THE PIP PACKAG DENTIFI EXACT	IONING & THE NUM THE NUM ION & AI ION &	ALLOW/ TOLER BER OF PLIES INTIFIER SING INI PTIONAL ND SIZ	BLE IS ANCES (TERMIN TERMIN TO PLATI MUST E DENTATIO BUT M OF TH	CONFORM ALS. ALS IN) ED TERMI EXIST ON N MARK IUST BE IS FEATU	MAXIMU TO ASM DIRECT NAL AND THE TO OR INK, LOCATED	IM (.01 IE Y14.: ION & IS ME P SURF 'LASER WITHIN	5M. – 1 Ne IS TI ASURED ACE OF MARKED I ZONE I	S MAXII 994. HE NUM BETWEI THE
	11 APPLY ONLY FOR TERMINAL. 32,44,48L QFN, 7x7x0.90 MM	NOTI 1. 2. 3. \$\hat{\delta}\$	S: DIE THI DIMENSI N IS 1 DIMENSI THE PIN PACKAG DENTIFI EXACT ALL DIM PACKAG APPLIED EXCLUD	IONING 8 THE NUM THE NUM ION & AI ION & AI ION & AI ION & AI ION ION ION ION ION ION ION ION ION IO	ALLOWA TOLER BER OF PLIES INTIFIER ING INI PTIONAL ND SIZ ARE I AGE MA (POSED DED PA	BLE IS ANCES (TERMIN TERMIN TO PLATI BUT IS BUT IS E OF TH N MILLIM C 0.08m PAD AN RT OF E	CONFORM ALS. ALS IN) ED TERMI EXIST ON N MARK IUST BE IS FEATU IETERS. TO. D TERMII EXPOSED	MAXIMI TO ASM -DIRECT NAL AND THE TO OR INK, LOCATED RE IS O	JM (.01 JE Y14.3 JON & J IS ME P SURF LASER WITHIN PTIONAL	5M. — 1 Ne IS TI ASURED ACE OF MARKED. I ZONE I	S MAXII 994. HE NUM BETWEI THE

MAX5883 Package Code: G4877-1

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

6 ______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2003 Maxim Integrated Products

Printed USA

is a registered trademark of Maxim Integrated Products.