TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74HCT4053AF,TC74HCT4053AFN,TC74HCT4053AFT

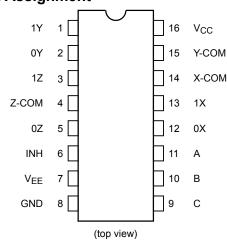
Triple 2-Channel Analog Multiplexer/Demultiplexer

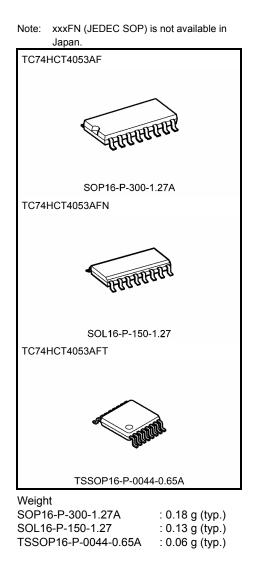
The TC74HCT4053A are high speed CMOS ANALOG MULTIPLEXER/DEMULTIPLEXER fabricated with silicon gate C²MOS technology. They achieve the high speed operation similar to equivalent LSTTL while maintaining the CMOS low power dissipation.

This device may be used as a level converter for interfacing TTL or NMOS to High Speed CMOS. This inputs are compatible with TTL, NMOS and CMOS output voltage levels.

The TC74HCT4053A has a 2 channel \times 3 configuration.

The digital signal to the control terminal turns "ON" the corresponding switch of each channel a large amplitude signal (VCC – VEE) can then be switched by the small logical amplitude (VCC – GND) control signal.


For example, in the case of $V_{CC} = 5 V$, GND = 0 V, $V_{EE} = -5 V$, signals between -5 V and +5 V can be switched from the logical circuit with a single power supply of 5 V. As the ON-resistance of each switch is low, they can be connected to circuits with low input impedance.


All inputs are equipped with protection circuits against static discharge or transient excess voltage.

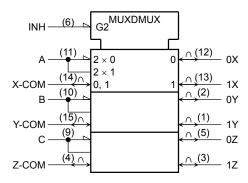
Features

- High speed: tpd = 30 ns (typ.) at $V_{CC} = 5 V$ $V_{EE} = 0 V$
- Low power dissipation: $I_{CC} = 4 \mu A (max)$ at $Ta = 25^{\circ}C$
- Compatible with TTL output: $V_{IH} = 2.0 V (min)$ $V_{IL} = 0.8 V (max)$
- Wide interfacing ability: LSTTL, NMOS, CMOS
- Low ON resistance: $R_{ON} = 50 \Omega$ (typ.) at $V_{CC} V_{EE} = 9 V$
- High noise immunity: THD = 0.02% (typ.) at V_{CC} V_{EE} = 9 V
- Pin and function compatible with 4053B

Pin Assignment

TOSHIBA

Truth Table


	Contro	"ON" Channel		
Inhibit	С	В	А	HCT4053A
L	L	L	L	0X, 0Y, 0Z
L	L	L	Н	1X, 0Y, 0Z
L	L	Н	L	0X, 1Y, 0Z
L	L	Н	Н	1X, 1Y, 0Z
L	Н	L	L	0X, 0Y, 1Z
L	Н	L	Н	1X, 0Y, 1Z
L	Н	Н	L	0X, 1Y, 1Z
L	Н	Н	Н	1X, 1Y, 1Z
Н	х	х	х	NONE

X: Don't care

System Diagram

IEC Logic Symbol

Downloaded from Elcodis.com electronic components distributor

Absolute Maximum Ratings (Note)

Characteristics	Symbol	Rating	Unit
Supply voltage range	V _{CC}	–0.5 to 13	V
Supply voltage range	$V_{CC} - V_{EE}$	–0.5 to 13	V
Control input voltage	V _{IN}	-0.5 to V_{CC} + 0.5	V
Switch I/O voltage	V _{I/O}	$V_{\mbox{\scriptsize EE}} - 0.5$ to $V_{\mbox{\scriptsize CC}} + 0.5$	V
Control input diode current	IICK	±20	mA
I/O diode current	I _{IOK}	±20	mA
Switch through current	Ι _Τ	±25	mA
DC V_{CC} or ground current	ICC	±50	mA
Power dissipation	PD	180	mW
Storage temperature	T _{stg}	–65 to 150	°C

Note: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Operating Ranges (Note)

Characteristics	Symbol	Rating	Unit
Supply voltage range	V _{CC}	4.5 to 12	V
Supply voltage range	V _{EE}	-7.5 to 0	V
Supply voltage range	$V_{CC} - V_{EE}$	4.5 to 12	V
Control input voltage	V _{IN}	0 to V _{CC}	V
Switch I/O voltage	V _{I/O}	V_{EE} to V_{CC}	V
Operating temperature	T _{opr}	-40 to 85	°C
Control input rise and fall time	t _r , t _f	0 to 500	ns

Note: The operating ranges must be maintained to ensure the normal operation of the device. Unused control inputs must be tied to either VCC or GND.

Electrical Characteristics

DC Characteristics

Characteristics	racteristics Symbol		ondition		Ta = 25°C			Ta = -40 to 85°C		Unit
	- ,		$V_{EE}(V)$	V _{CC} (V)	Min	Тур.	Max	Min	Max	
High-level control input voltage	VIHC			4.5 to 5.5 9.0	2.0 2.5			2.0 2.5		V
Low-level control input voltage	VILC			4.5 to 5.5 9.0			0.8 0.8		0.8 0.8	V
ON resistance F	Ron	$\label{eq:VIN} \begin{split} V_{IN} &= V_{ILC} \text{ or } V_{IHC} \\ V_{I/O} &= V_{CC} \text{ to } V_{EE} \\ I_{I/O} &\leq 2 \text{ mA} \end{split}$	GND -4.5 -5.5 GND	4.5 4.5 5.5 9.0		85 55 50 55	180 120 110 120		225 150 140 150	Ω
	N	$\label{eq:VIN} \begin{split} V_{IN} &= V_{ILC} \text{ or } V_{IHC} \\ V_{I/O} &= V_{CC} \text{ or } V_{EE} \\ I_{I/O} &\leq 2 \text{ mA} \end{split}$	GND -4.5 -5.5 GND	4.5 4.5 5.5 9.0		70 50 45 50	150 100 90 100		190 125 115 125	
Difference of ON resistance between switches	∆R _{ON}	$\label{eq:VIN} \begin{split} V_{IN} &= V_{ILC} \text{ or } V_{IHC} \\ V_{I/O} &= V_{CC} \text{ to } V_{EE} \\ I_{I/O} &\leq 2 \text{ mA} \end{split}$	GND -4.5 -5.5	4.5 4.5 5.5		10 5 5	30 12 11		35 15 14	Ω
Input/output leakage current (switch OFF)	IOFF	$\label{eq:VOS} \begin{split} & V_{OS} = V_{CC} \text{ or } GND \\ & V_{IS} = GND \text{ or } V_{CC} \\ & V_{IN} = V_{ILC} \text{ or } V_{IHC} \end{split}$	GND -5.5	5.5 5.5			±60 ±100		±600 ±1000	nA
Switch input leakage current (switch ON)	Ι _{ΙΖ}	$\label{eq:VOS} \begin{split} V_{OS} &= V_{CC} \text{ or } \text{GND} \\ V_{IN} &= V_{ILC} \text{ or } V_{IHC} \end{split}$	GND -5.5	5.5 5.5			±60 ±100		±600 ±1000	nA
Control input current	I _{IN}	$V_{IN} = V_{CC} \text{ or } GND$	GND	5.5	_	_	±0.1		±1.0	μA
Quiescent supply current	ICC	$V_{IN} = V_{CC}$ or GND	GND -5.5	5.5 5.5			4.0 8.0		40.0 80.0	μΑ
	IC	Per input: $V_{IN} = 0.5 V \text{ or } 2.4 V$ Other input: V_{CC} or GND	GND	5.5	_	_	2.0	_	2.9	mA

Characteristics	Symbol	Test Cond	Test Condition		Ta = 25°C			Ta = -40 to 85°C		Unit
	,		$V_{EE}(V)$	$V_{CC}(V)$	Min	Тур.	Max	Min	Max	
Phase difference between input and output	φI/O		GND GND GND	4.5 5.5 9.0		6 5 4	12 11		15 14	ns
Output enable time	^t pZL ^t pZH	(Note 1)	GND GND GND	4.5 5.5 9.0		33 26 17	50 45 —		63 57 —	ns
Output disable time	^t pLZ t _{pHZ}	(Note 1)	GND GND GND	4.5 5.5 9.0		45 37 26	65 59		81 73	ns
Control input capacitance	C _{in}		_	_		5	10	_	10	pF
COMMON terminal capacitance	CIS		-5.0	5.0		11	20	_	20	pF
SWITCH terminal capacitance	C _{OS}		-5.0	5.0		7	15	_	15	pF
Feedthrough capacitance	C _{IOS}		-5.0	5.0		0.75	2	_	2	pF
Power dissipation capacitance	C _{PD}	(Note 2)	GND	5.0		67				pF

AC Characteristics (C_L = 50 pF, Input $t_r = t_f = 6 \text{ ns}$, GND = 0 V)

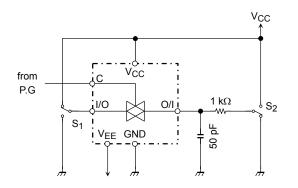
Note 1 $R_L = 1 \ k\Omega$

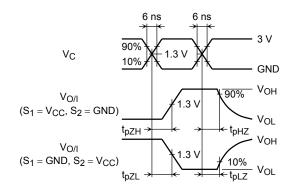
Note 2: C_{PD} is defined as the value of the internal equivalent capacitance of IC which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation: $I_{CC} \; (opr) = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$

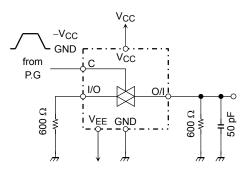
Characteristics Symbol Test Condition			Test Condition			Тур.	Unit
Characteristics			$V_{\text{EE}}(V)$	$V_{CC}(V)$	тур.	Unit	
Sine wave distortion (T.H.D)		$1 C_{1} = 50 \text{ pc}$	$\label{eq:VIN} \begin{split} V_{IN} &= 8.0 \ V_{p\text{-}p} \\ V_{IN} &= 11.0 \ V_{p\text{-}p} \end{split}$	-4.5 -5.5	4.5 5.5	0.020 0.019	%
		Adjust f_{IN} voltage to obtain 0dBm at V_{OS}	(Note 2)	-4.5	4.5	190	MHz
Frequency response	fmax	Increase f _{IN} frequency until dB meter reads –3dB	(Note 3)	-4.5		150	
(switch ON)	IWAX	$R_L = 50 \Omega$, $C_L = 10 pF$	(Note 2)	-5.5	5.5	200	
	f	$f_{IN} = 1 \text{ MHz}$, Sine wave	(Note 3)	-5.5		180	
Feed through attenuation (switch OFF)		Vin is centered at $(V_{CC} - V_{EE})/2$ Adjust input for 0dBm $R_L = 600 \ \Omega$, $C_L = 50 \ pF$ $f_{IN} = 1 \ MHz$, Sine wave		-4.5 -5.5	4.5 5.5	-50 -50	dB
Crosstalk (control input to signal output)		$\label{eq:RL} \begin{split} R_L &= 600 \ \Omega, \ C_L = 50 \ \text{pF} \\ f_{IN} &= 1 \ \text{MHz}, \ \text{Square wave} \ (t_r = t_f = 6 \ \text{ns}) \end{split}$		-4.5 -5.5	4.5 5.5	140 180	mV
Crosstalk (between any switches)		Adjust V _{IN} to obtain 0dBm at input $R_L = 600 \ \Omega$, $C_L = 50 \ pF$ $f_{IN} = 1 \ MHz$, Sine wave		-4.5 -5.5	4.5 5.5	-50 -50	dB
ary switches)		R_L = 50 Ω, C_L = 15 pF f _{IN} = 100 kHz, V _{SWITCH} = 1 V _{RMS}		-4.5	4.5	-90	dB

Analog Switch Characteristics (GND = 0 V, Ta = 25°C) (Note 1)

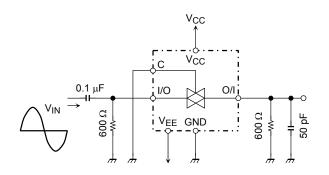

Note 1: These characteristics are determined by design of devices.

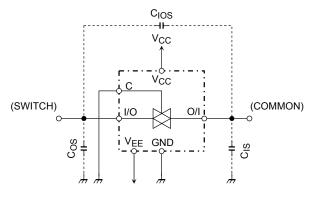

Note 2: Input COMMON terminal, and measured at SWITCH terminal.

Note 3: Input SWITCH terminal, and measured at COMMON terminal.

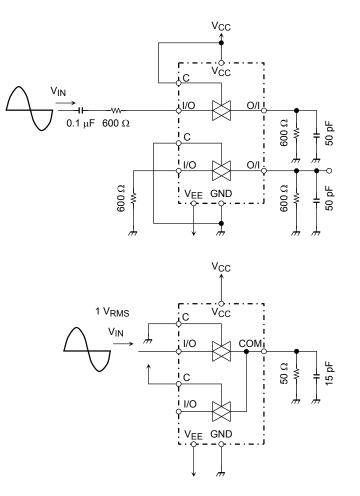

Switching Characteristics Test Circuits

1. t_{pLZ} , t_{pHZ} , t_{pZL} , t_{pZH}

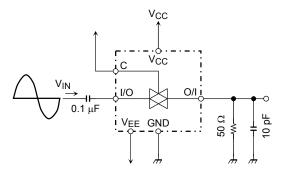



2. Cross Talk (control input – switch output) $f_{IN} = 1$ MHz duty = 50% $t_r = t_f = 6$ ns

3. Feedthrough Attenuation



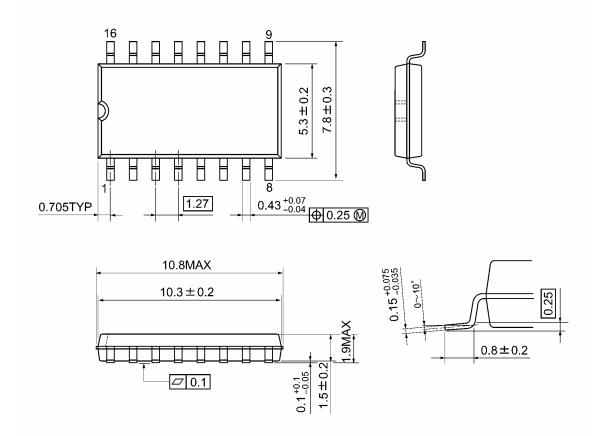
4. C_{IOS}, C_{IS}, C_{OS}



TOSHIBA

5. Cross Talk (between any two switches)

6. Frequency Response (switch ON)



TOSHIBA

Package Dimensions

SOP16-P-300-1.27A

Unit: mm


Weight: 0.18 g (typ.)

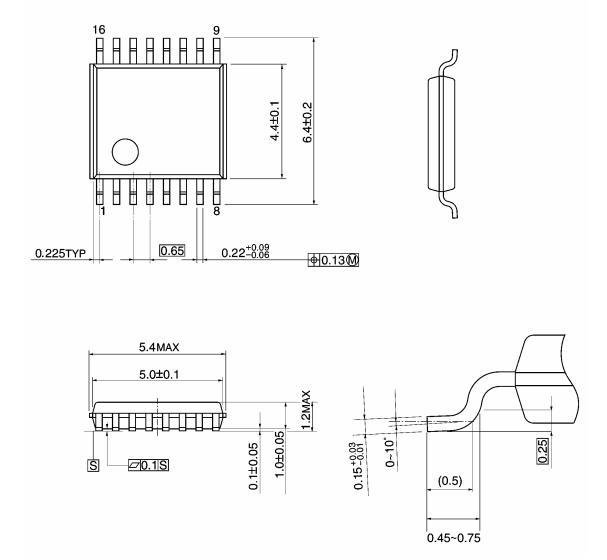
9

Package Dimensions (Note)

SOL16-P-150-1.27

Unit : mm

Note: This package is not available in Japan.


Weight: 0.13 g (typ.)

Package Dimensions

TSSOP16-P-0044-0.65A

Unit: mm

Weight: 0.06 g (typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
 devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
 stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety
 in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such
 TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.

- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.).These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.