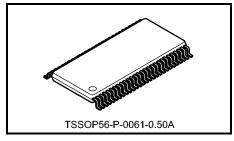
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic


TC74VCX16841FT

Low-Voltage 20-Bit D-Type Latch with 3.6-V Tolerant Inputs and Outputs

The TC74VCX16841FT is a high-performance CMOS 20-bit D-type latch. Designed for use in 1.8-V, 2.5-V or 3.3-V systems, it achieves high-speed operation while maintaining the CMOS low power dissipation.

It is also designed with overvoltage tolerant inputs and outputs up to $3.6\ V.$

The TC74VCX16841FT can be used as two 10-bit latches or one 20-bit latch. The 20 latches are transparent D-type latches. The device has noninverting data (D) inputs and provides true data at its outputs. While the latch-enable (1LE or 2LE) input is high, the Q outputs of the corresponding 10-bit latch follow the D inputs. When LE is taken low, the Q outputs are latched at the

Weight: 0.25 g (typ.)

levels set up at the D inputs. When the OE input is high, the outputs are in a high-impedance state. This device is designed to be used with 3-state memory address drivers, etc.

All inputs are equipped with protection circuits against static discharge.

Features

- Low-voltage operation: VCC = 1.8 to 3.6 V
- High-speed operation: $t_{pd} = 3.0 \text{ ns (max) (VCC} = 3.0 \text{ to } 3.6 \text{ V)}$

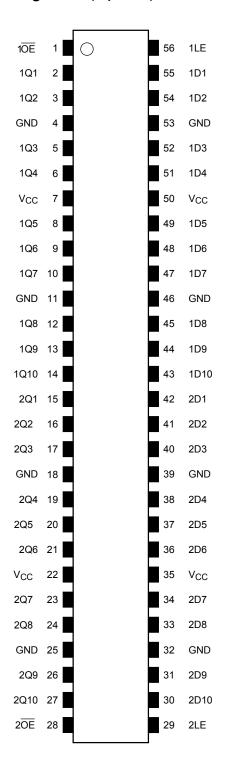
 $t_{pd} = 3.4 \text{ ns (max) (VCC} = 2.3 \text{ to } 2.7 \text{ V)}$

 $: t_{pd} = 6.8 \text{ ns (max) (VCC} = 1.8 \text{ V)}$

• Output current: $I_{OH}/I_{OL} = \pm 24 \text{ mA (min) (V}_{CC} = 3.0 \text{ V)}$

 $: I_{OH}/I_{OL} = \pm 18 \text{ mA (min) (V}_{CC} = 2.3 \text{ V)}$

 $: I_{OH}/I_{OL} = \pm 6 \text{ mA (min) (V}_{CC} = 1.8 \text{ V)}$


- Latch-up performance: -300 mA
- ESD performance: Machine model $\geq \pm 200 \text{ V}$

Human body model $\geq \pm 2000 \text{ V}$

- Package: TSSOP
- 3.6-V tolerant function and power-down protection provided on all inputs and outputs

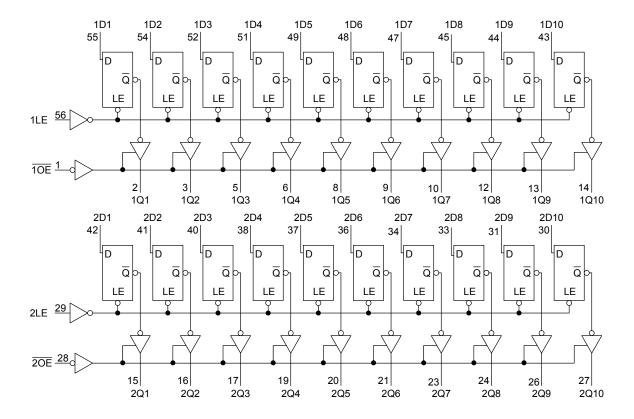
2007-10-19

Pin Assignment (top view)

IEC Logic Symbol

2 2007-10-19

Truth Table (each 10-bit latch)


	Output		
ŌĒ	LE	D	Q
L	Н	Н	Н
L	Н	L	L
L	L	Х	Qn
Н	Х	Х	Z

X: Don't care

Z: High impedance

Qn: Q outputs are latched at the time when the LE input is taken to a low logic level.

System Diagram

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Power supply voltage	Vcc	−0.5 to 4.6	V
DC input voltage	V _{IN}	−0.5 to 4.6	V
		-0.5 to 4.6 (Note 2)	
DC output voltage	V_{OUT}	-0.5 to V_{CC} + 0.5	V
		(Note 3)	
Input diode current	I _{IK}	-50	mA
Output diode current	lok	±50 (Note 4)	mA
DC output current	lout	±50	mA
Power dissipation	PD	400	mW
DC V _{CC} /ground current per supply pin	I _{CC} /I _{GND}	±100	mA
Storage temperature	T _{stg}	−65 to 150	°C

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 2: OFF state

Note 3: High or low state. I_{OUT} absolute maximum rating must be observed.

Note 4: $V_{OUT} < GND, V_{OUT} > V_{CC}$

Operating Ranges (Note 1)

Characteristics	Symbol	Rating	Unit
Power supply voltage	Voc	1.8 to 3.6	V
Fower supply voltage	V _{CC}	1.2 to 3.6 (Note 2)	V
Input voltage	V _{IN}	−0.3 to 3.6	V
Output voltage	Vout	0 to 3.6 (Note 3)	V
Output voltage	VOU1	0 to V _{CC} (Note 4)	V
		±24 (Note 5)	
Output current	I _{OH} /I _{OL}	±18 (Note 6)	mA
		±6 (Note 7)	
Operating temperature	T _{opr}	-40 to 85	°C
Input rise and fall time	dt/dv	0 to 10 (Note 8)	ns/V

Note 1: The operating ranges must be maintained to ensure the normal operation of the device.

Unused inputs must be tied to either VCC or GND.

4

Note 2: Data retention only

Note 3: OFF state

Note 4: High or low state

Note 5: $V_{CC} = 3.0 \text{ to } 3.6 \text{ V}$

Note 6: $V_{CC} = 2.3 \text{ to } 2.7 \text{ V}$

Note 7: $V_{CC} = 1.8 \text{ V}$

Note 8: $V_{IN} = 0.8$ to 2.0 V, $V_{CC} = 3.0$ V

Electrical Characteristics

DC Characteristics (Ta = -40 to 85°C, 2.7 V < $V_{CC} \le 3.6$ V)

Characteri	stics	Symbol	Test Condition		V _{CC} (V)	Min	Max	Unit
lanut valtaga	H-level	V _{IH}		_	2.7 to 3.6	2.0	_	V
Input voltage	L-level	V _{IL}		_	2.7 to 3.6	_	0.8	V
				I _{OH} = -100 μA	2.7 to 3.6	V _{CC} - 0.2	_	
	H-level	V _{OH}	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OH} = -12 \text{ mA}$	2.7	2.2	_	
				$I_{OH} = -18 \text{ mA}$	3.0	2.4	_	
Output voltage				$I_{OH} = -24 \text{ mA}$	3.0	2.2	_	V
		V _{OL}	V _{IN} = V _{IH} or V _{IL}	$I_{OL} = 100 \ \mu A$	2.7 to 3.6	_	0.2	
	L-level			$I_{OL} = 12 \text{ mA}$	2.7	_	0.4	
	L-level			$I_{OL} = 18 \text{ mA}$	3.0	_	0.4	
				$I_{OL} = 24 \text{ mA}$	3.0	_	0.55	
Input leakage curre	nt	I _{IN}	$V_{IN} = 0$ to 3.6 V		2.7 to 3.6	1	±5.0	μΑ
3 state output OEE	etate current	la-	$V_{IN} = V_{IH}$ or V_{IL}		0.71.00	_	±10.0	^
3-state output OFF state current		loz	V _{OUT} = 0 to 3.6 V		2.7 to 3.6		±10.0	μА
Power-off leakage	current	I _{OFF}	V_{IN} , $V_{OUT} = 0$ to 3.6 V		0	_	10.0	μΑ
Quiescent supply current		loo	V _{IN} = V _{CC} or GND		2.7 to 3.6		20.0	
Quidacent aupply C	unciit	Icc	$V_{CC} \le (V_{IN}, V_{OUT}) \le 3$.6 V	2.7 to 3.6		±20.0	μΑ
Increase in I _{CC} per	input	Δlcc	V _{IH} = V _{CC} - 0.6 V		2.7 to 3.6		750	

DC Characteristics (Ta = -40 to 85°C, 2.3 V \leq V_{CC} \leq 2.7 V)

Characteris	stics	Symbol	Test Condition		V _{CC} (V)	Min	Max	Unit	
Input voltage	H-level	V _{IH}	_	_	2.3 to 2.7	1.6	_	V	
Input voltage	L-level	V _{IL}	_	_	2.3 to 2.7	_	0.7	V	
				$I_{OH} = -100 \mu A$	2.3 to 2.7	V _{CC} - 0.2			
	H-level	Voh	VIN = VIH or VIL	$I_{OH} = -6 \text{ mA}$	2.3	2.0	_		
				$I_{OH} = -12 \text{ mA}$	2.3	1.8	_	٧	
Output voltage				$I_{OH} = -18 \text{ mA}$	2.3	1.7	_		
			$V_{IN} = V_{IH}$ or V_{IL}	$I_{OL} = 100 \mu A$	2.3 to 2.7	-	0.2		
	L-level	V _{OL}		$V_{IN} = V_{IH}$ or V_{IL}	$I_{OL} = 12 \text{ mA}$	2.3	_	0.4	
				I _{OL} = 18 mA	2.3	-	0.6		
Input leakage currer	nt	I _{IN}	$V_{IN} = 0$ to 3.6 V		2.3 to 2.7		±5.0	μΑ	
2 state output OFF	0 1 1 1 0 5 5 1 1		VIN = VIH or VIL		2.3 to 2.7		±10.0	μА	
3-state output OFF state current		loz	V _{OUT} = 0 to 3.6 V		2.3 10 2.7		±10.0	μΑ	
Power-off leakage of	current	I _{OFF}	V_{IN} , $V_{OUT} = 0$ to 3.6 V		0	_	10.0	μΑ	
Quiescent supply current		Icc	$V_{IN} = V_{CC}$ or GND		2.3 to 2.7	_	20.0	μА	
Quiescent supply of		100	$V_{CC} \le (V_{IN}, V_{OUT}) \le 3.6 \text{ V}$		2.3 to 2.7		±20.0	μΑ	

DC Characteristics (Ta = -40 to 85°C, 1.8 V \leq V $_{CC}$ < 2.3 V)

Characteris	stics	Symbol	Test Co	ondition	V _{CC} (V)	Min	Max	Unit
Input voltage	H-level	V _{IH}	_	_	1.8 to 2.3	0.7 × V _{CC}	_	V
Input voltage	L-level	V _{IL}	_	_	1.8 to 2.3	_	0.2 × V _{CC}	V
	H-level	V _{OH}	V _{IN} = V _{IH} or V _{IL}	I _{OH} = -100 μA	1.8	V _{CC} - 0.2	_	
Output voltage		0		$I_{OH} = -6 \text{ mA}$	1.8	1.4	_	V
	L-level	V _{OL}	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OL} = 100 \ \mu A$	1.8	_	0.2	
	L-level	VOL		$I_{OL} = 6 \text{ mA}$	1.8	_	0.3	
Input leakage curre	nt	I _{IN}	$V_{IN} = 0$ to 3.6 V		1.8	_	±5.0	μΑ
3-state output OFF	state current	loz	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 \text{ V}$		1.8	_	±10.0	μА
Power-off leakage of	urrent	l _{OFF}	V _{IN} , V _{OUT} = 0 to 3.6 V		0	_	10.0	μΑ
Ouise sent supply surrent		Icc	V _{IN} = V _{CC} or GND		1.8	_	20.0	μА
Quicaccin supply of	Quiescent supply current		$V_{CC} \le (V_{IN}, V_{OUT}) \le 3.6 \text{ V}$		1.8		±20.0	μΛ

6 2007-10-19

AC Characteristics (Ta = –40 to 85°C, input: t_{r} = t_{f} = 2.0 ns, C_{L} = 30 pF, R_{L} = 500 Ω) (Note 1)

Characteristics	Symbol	Test Condition		Min	Max	Unit
			V _{CC} (V)			
Propagation delay time	t _{pLH}		1.8	1.5	6.8	
(D-Q)	t _{pHL}	Figure 1, Figure 2	2.5 ± 0.2	1.0	3.4	ns
. ,	p		3.3 ± 0.3	8.0	3.0	
Propagation delay time	t _{pLH}		1.8	1.5	8.8	
(LE-Q)		Figure 1, Figure 2	2.5 ± 0.2	1.0	4.4	ns
(LL-Q)	t _{pHL}		3.3 ± 0.3	8.0	3.5	
	t		1.8	1.5	9.8	
3-state output enable time	t _{pZL}	Figure 1, Figure 3	2.5 ± 0.2	1.0	4.9	ns
	t _{pZH}		3.3 ± 0.3	0.8	3.8	
		Figure 1, Figure 3	1.8	1.5	7.6	ns
3-state output disable time	t _{pLZ}		2.5 ± 0.2	1.0	4.2	
	t _{pHZ}		3.3 ± 0.3	0.8	3.7	
NA!		Figure 1, Figure 2	1.8	4.0	_	
Minimum pulse width	t _{W (H)}		2.5 ± 0.2	1.5		ns
(LE)			3.3 ± 0.3	1.5	_	
			1.8	2.5		
Minimum setup time	ts	Figure 1, Figure 2	2.5 ± 0.2	1.5	_	ns
			3.3 ± 0.3	1.5		
			1.8	1.0	_	
Minimum hold time	t _h	Figure 1, Figure 2	2.5 ± 0.2	1.0	_	ns
			3.3 ± 0.3	1.0	_	
			1.8	_	0.5	
Output to output skew	t _{osLH}	(Note 2)	2.5 ± 0.2	_	0.5	ns
	tosHL		3.3 ± 0.3	_	0.5	

Note 1: For $C_L = 50$ pF, add approximately 300 ps to the AC maximum specification.

Note 2: Parameter guaranteed by design. $(t_{OSLH} = |t_{pLHm} - t_{pLHn}|, t_{OSHL} = |t_{pHLm} - t_{pHLn}|)$

Dynamic Switching Characteristics

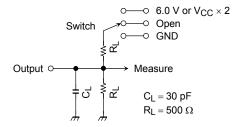
(Ta = 25°C, input: $t_r = t_f = 2.0$ ns, $C_L = 30$ pF, $R_L = 500$ Ω)

Characteristics	Symbol	Test Condition			Тур.	Unit
Characteristics	Cymbol	rest condition	VC	c (V)	τyp.	O I II
		$V_{IH} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$ (No.	te) 1	.8	0.25	
Quiet output maximum dynamic V _{OL}	V _{OLP}	$V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$ (No.	te) 2	2.5	0.6	V
,		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ (No.	te) 3	3.3	0.8	
	V _{OLV}	$V_{IH} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$ (No.	te) 1	.8	-0.25	V
Quiet output minimum dynamic V _{OI}		$V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$ (No.	te) 2	2.5	-0.6	
, 01		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ (No.	te) 3	3.3	-0.8	
		$V_{IH} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$ (No.	te) 1	.8	1.5	
Quiet output minimum dynamic V _{OH}		$V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$ (No.	te) 2	2.5	1.9	V
		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ (No.	te) 3	3.3	2.2	

Note: Parameter guaranteed by design.

Capacitive Characteristics (Ta = 25°C)

Characteristics	Cumbal	Symbol Test Condition		Tun	Unit
Characteristics	Symbol	rest Condition	V _{CC} (V)	Тур.	Unit
Input capacitance	C _{IN}	_	1.8, 2.5, 3.3	6	pF
Output capacitance	Cout	_	1.8, 2.5, 3.3	7	pF
Power dissipation capacitance	C _{PD}	f _{IN} = 10 MHz (Not	1.8, 2.5, 3.3	20	pF


Note: CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

 $I_{CC \text{ (opr)}} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/20 \text{ (per bit)}$

AC Test Circuit

Parameter	Switch		
t _{pLH} , t _{pHL}	Open		
t _{pLZ} , t _{pZL}	6.0 V V _{CC} × 2	$@V_{CC} = 3.3 \pm 0.3 \text{ V} \\ @V_{CC} = 2.5 \pm 0.2 \text{ V} \\ @V_{CC} = 1.8 \text{ V}$	
t _{pHZ} , t _{pZH}		GND	

Figure 1

AC Waveform

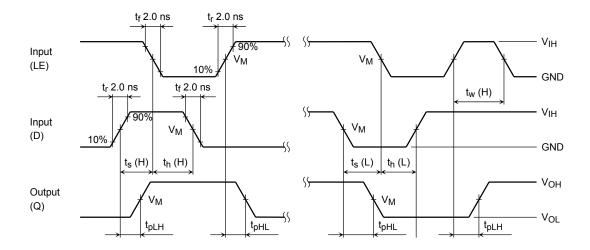


Figure 2 $t_{pLH}, t_{pHL}, t_w, t_s, t_h$

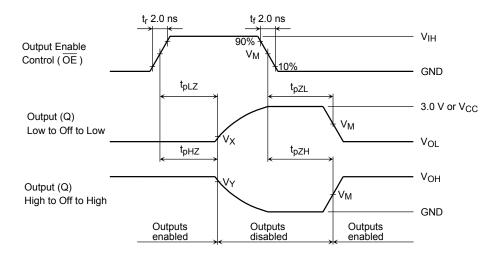


Figure 3 $t_{pLZ}, t_{pHZ}, t_{pZL}, t_{pZH}$

Symbol	V _{CC}						
Symbol	$3.3\pm0.3~\textrm{V}$	$2.5\pm0.2~\textrm{V}$	1.8 V				
VIH	2.7 V	V _{CC}	Vcc				
V _M	1.5 V	V _{CC} /2	V _{CC} /2				
VX	V _{OL} + 0.3 V	V _{OL} + 0.15 V	V _{OL} + 0.15 V				
VY	V _{OH} – 0.3 V	V _{OH} – 0.15 V	V _{OH} – 0.15 V				

Package Dimensions

TSSOP56-P-0061-0.50A Unit: mm 6.1 ± 0.1 $0.2^{\,+0.07}_{\,-0.06}$ 0.5 0.25TYP **⊕**0.1**M** 14.3MAX (0.5)14.0±0.1 0.45~0.75 1.0±0.05 0.1 ± 0.05

Weight: 0.25 g (typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which
 manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patents or other rights of
 TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.