TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74VCX162373FT

Low-Voltage 16-Bit D-Type Latch with 3.6-V Tolerant Inputs and Outputs

The TC74VCX162373FT is a high-performance CMOS 16-bit D-type latch. Designed for use in 1.8-V, 2.5-V or 3.3-V systems, it achieves high-speed operation while maintaining the CMOS low power dissipation.

It is also designed with overvoltage tolerant inputs and outputs up to 3.6 V.

This 16-bit D-type latch is controlled by a latch enable input (LE) and an output enable input (\overline{OE}) which are common to each byte. It can be used as two 8-bit latches or one 16-bit latch. When the \overline{OE} input is high, the outputs are in a high-impedance state.

The 26- Ω series resistor helps reducing output overshoot and undershoot without external resistor.

All inputs are equipped with protection circuits against static discharge.

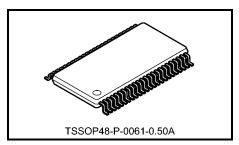
Features

- 26-Ω series resistors on outputs
- Low-voltage operation: V_{CC} = 1.8 to 3.6 V
- High-speed operation: $t_{pd} = 3.3 \text{ ns} (max) (V_{CC} = 3.0 \text{ to } 3.6 \text{ V})$

$$t_{pd} = 4.5 \text{ ns} (\text{max}) (\text{V}_{CC} = 2.3 \text{ to } 2.7 \text{ V})$$

$$t_{pd} = 5.8 \text{ ns} (max) (V_{CC} = 1.8 \text{ V})$$

• Output current: $IOH/IOL = \pm 12 \text{ mA} \text{ (min)} (VCC = 3.0 \text{ V})$


$$I_{OH}/I_{OL} = \pm 8 \text{ mA} \text{ (min)} (V_{CC} = 2.3 \text{ V})$$

:
$$I_{OH}/I_{OL} = \pm 4 \text{ mA} \text{ (min)} (V_{CC} = 1.8 \text{ V})$$

- Latch-up performance: -300 mA
- ESD performance: Machine model $\geq \pm 200 \text{ V}$

Human body model $\geq \pm 2000 \; V$

- Package: TSSOP
- 3.6-V tolerant function and power-down protection provided on all inputs and outputs

Weight: 0.25 g (typ.)

Pin Assignment (top view)

	1		I	
10E	1	0	48	1LE
1Q1	2		47	1D1
1Q2	3		46	1D2
GND	4		45	GND
1Q3	5		44	1D3
1Q4	6		43	1D4
Vcc	7		42	Vcc
1Q5	8		41	1D5
1Q6	9		40	1D6
GND	10		39	GND
1Q7	11		38	1D7
1Q8	12		37	1D8
2Q1	13		36	2D1
2Q2	14		35	2D2
GND	15		34	GND
2Q3	16		33	2D3
2Q4	17		32	2D4
V_{CC}	18		31	V _{CC}
2Q5	19		30	2D5
2Q6	20		29	2D6
GND	21		28	GND
2Q7	22		27	2D7
2Q8	23		26	2D8
20E	24		25	2LE

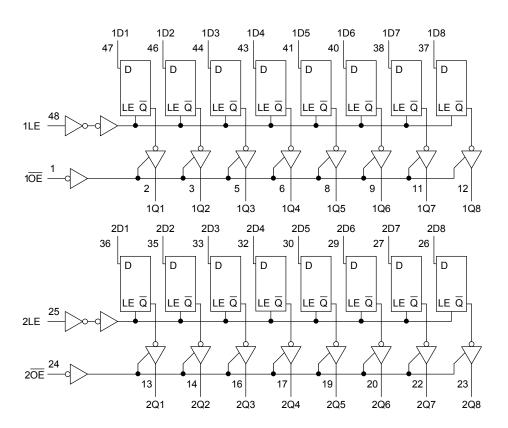
IEC Logic Symbol

$10E - 1 \\ 1LE - 48 \\ 20E - 24 \\ 2LE - 25 \\ 1D1 - 47 \\ 1D2 - 46 \\ 1D2 - 46 \\ 10E - 10E \\ $	1EN C3 2EN C4 3D 1 ▽	2	· 1Q1
102		5	· 1Q2
1D3 <u>44</u> 1D4 <u>43</u>		6	- 1Q3 - 1Q4
1D4 1D5 <u>41</u>		8	- 1Q5
1D6 <u>40</u>		9	- 1Q6
1D7 <u>38</u>		11	· 1Q7
1D8 <u>37</u>		12	· 1Q8
2D1 <u>36</u>	4D 2 🗸	13	· 2Q1
2D2 <u>35</u>		14	2Q2
2D3 <u>33</u>		16	2Q3
2D4 - 32		17	- 2Q4
2D5 <u>30</u>		19	- 2Q5
2D6 <u>29</u>		20	- 2Q6
2D0 <u>27</u>		22	- 2Q7
2D8 <u>26</u>		23	- 2Q8

<u>TOSHIBA</u>

Truth Table

	Outputs		
10E	1LE	1D1-1D8	1Q1-1Q8
Н	Х	Х	Z
L	L	Х	Qn
L	Н	L	L
L	Н	Н	Н


	Inputs				
20E	2LE	2D1-2D8	2Q1-2Q8		
Н	Х	Х	Z		
L	L	Х	Qn		
L	Н	L	L		
L	Н	Н	Н		

X: Don't care

Z: High impedance

Qn: Q outputs are latched at the time when the LE input is taken to a low logic level.

System Diagram

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Power supply voltage	V _{CC}	-0.5 to 4.6	V
DC input voltage	V _{IN}	-0.5 to 4.6	V
		-0.5 to 4.6 (Note 2)	
DC output voltage	V _{OUT}	-0.5 to $V_{CC} \pm 0.5$	V
		(Note 3)	
Input diode current	I _{IK}	-50	mA
Output diode current	IOK	±50 (Note 4)	mA
DC output current	IOUT	±50	mA
Power dissipation	PD	400	mW
DC V_{CC} /ground current per supply pin	I _{CC} /I _{GND}	±100	mA
Storage temperature	T _{stg}	-65 to 150	°C

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

- Note 2: OFF state
- Note 3: High or low state. IOUT absolute maximum rating must be observed.
- Note 4: $V_{OUT} < GND, V_{OUT} > V_{CC}$

Operating Ranges (Note 1)

Characteristics	Symbol Rating		Unit	
Power supply voltage	V _{CC}	1.8 to 3.6	V	
Fower suppry voltage	VCC	1.2 to 3.6 (Note 2)	v	
Input voltage	VIN	-0.3 to 3.6	V	
Output voltage	Vaur	0 to 3.6 (Note 3)	V	
Output voltage	Vout	0 to V _{CC} (Note 4)	v	
		±12 (Note 5)		
Output current	I _{OH} /I _{OL}	±8 (Note 6)	mA	
		±4 (Note 7)		
Operating temperature	T _{opr}	-40 to 85	°C	
Input rise and fall time	dt/dv	0 to 10 (Note 8)	ns/V	

Note 1: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs must be tied to either VCC or GND.

Note 3: OFF state

Note 4: High or low state

Note 5: $V_{CC} = 3.0$ to 3.6 V

- Note 6: $V_{CC} = 2.3$ to 2.7 V
- Note 7: $V_{CC} = 1.8 V$
- Note 8: $V_{IN} = 0.8$ to 2.0 V, $V_{CC} = 3.0$ V

Note 2: Data retention only

Electrical Characteristics

DC Characteristics (Ta = -40 to 85°C, 2.7 V < V_{CC} \leq 3.6 V)

Characteristics		Symbol	Test	Condition		Min	Max	Unit	
	1				V _{CC} (V)				
Input voltage	H-level	VIH		_	2.7 to 3.6	2.0	—	v	
input voltage	L-level	VIL		—	2.7 to 3.6	—	0.8	v	
			$I_{OH} = -100 \ \mu A$	2.7 to 3.6	V _{CC} - 0.2	_			
	H-level	VOH	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -6 \text{ mA}$	2.7	2.2	_		
				$I_{OH} = -8 \text{ mA}$	3.0	2.4	_		
Output voltage				$I_{OH} = -12 \text{ mA}$	3.0	2.2		v	
			$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OL} = 100 \ \mu A$	2.7 to 3.6		0.2	·	
	1.11			$I_{OL} = 6 \text{ mA}$	2.7		0.4		
	L-level	vel V _{OL}		$I_{OL} = 8 \text{ mA}$	3.0		0.55		
				$I_{OL} = 12 \text{ mA}$	3.0		0.8		
Input leakage curre	ent	l _{IN}	$V_{IN} = 0$ to 3.6 V		2.7 to 3.6		±5.0	μA	
			$V_{IN} = V_{IH}$ or V_{IL}						
3-state output OFF	- state current	I _{OZ}	V _{OUT} = 0 to 3.6 V		2.7 to 3.6		±10.0	μA	
Power-off leakage	current	IOFF	V_{IN} , $V_{OUT} = 0$ to 3.6	V _{IN} , V _{OUT} = 0 to 3.6 V			10.0	μA	
Quiesent auratur			$V_{IN} = V_{CC} \text{ or } GND$	$V_{IN} = V_{CC}$ or GND		_	20.0		
Quiescent supply of	current	ICC	$V_{CC} \leq (V_{IN}, V_{OUT}) \leq 3.6 V$		2.7 to 3.6		±20.0	μA	
Increase in I _{CC} pe	r input	∆lcc	$V_{IH} = V_{CC} - 0.6 V$		2.7 to 3.6	_	750		

DC Characteristics (Ta = -40 to 85°C, 2.3 V \leq V_{CC} \leq 2.7 V)

Characteristics Symbol Test Condition			Min	Max	Unit			
	1				V _{CC} (V)			
Input voltage	H-level V _{IH}			_	2.3 to 2.7	1.6		v
input voltage	L-level	VIL		—	2.3 to 2.7		0.7	v
				I _{OH} = -100 μA	2.3 to 2.7	V _{CC} - 0.2	_	
	H-level	Vон	VIN = VIH or VIL	$I_{OH} = -4 \text{ mA}$	2.3	2.0	_	
				I _{OH} = -6 mA	2.3	1.8	_	
Output voltage				$I_{OH} = -8 \text{ mA}$	2.3	1.7	_	V
			$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OL} = 100 \ \mu A$	2.3 to 2.7	_	0.2	
	L-level	V _{OL}		$_{N} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 6 \text{ mA}$ 2.5			0.4	
				$I_{OL} = 8 \text{ mA}$	2.3	_	0.6	
Input leakage curre	nt	I _{IN}	$V_{IN} = 0$ to 3.6 V		2.3 to 2.7	_	±5.0	μA
	-1-1		$V_{IN} = V_{IH} \text{ or } V_{IL}$		2.3 to 2.7		140.0	
3-state output OFF	state current	I _{OZ}	$V_{OUT} = 0$ to 3.6 V	V _{OUT} = 0 to 3.6 V		_	±10.0	μA
Power-off leakage of	current	IOFF	V_{IN} , $V_{OUT} = 0$ to 3.6 V		0	_	10.0	μA
Quiescent supply of	irrent	laa	$V_{IN} = V_{CC}$ or GND	$V_{IN} = V_{CC} \text{ or } GND$			20.0	
Quiescent supply c		$V_{CC} \le (V_{IN}, V_{OUT}) \le 3.6 \text{ V}$.6 V	2.3 to 2.7		±20.0	μA

DC Characteristics (Ta = –40 to 85°C, 1.8 V \leq V_{CC} < 2.3 V)

Characteristics		Symbol	Test Condition		V _{CC} (V)	Min	Max	Unit
	•							
Input voltage	H-level	VIH	-	—		$0.7 \times V_{CC}$	—	V
input voltage	L-level	VIL	-	_	1.8 to 2.3	_	$0.2 \times V_{CC}$	v
	H-level	Vон	V _{IN} = V _{IH} or V _{IL}	I _{OH} = -100 μA	1.8	V _{CC} - 0.2	_	
Output voltage		0.1		$I_{OH} = -4 \text{ mA}$	1.8	1.4	_	V
	L-level	Vei	VIN = VIH or VIL	I _{OL} = 100 μA	1.8		0.2	
	L-IEVEI	V _{OL}	VIN = VIH OL VIL	$I_{OL} = 4 \text{ mA}$	1.8		0.3	
Input leakage curre	nt	I _{IN}	$V_{IN} = 0$ to 3.6 V		1.8	_	±5.0	μA
3-state output OFF state current		I _{OZ}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 \text{ V}$		1.8	_	±10.0	μA
Power-off leakage of	current	I _{OFF}	V _{IN} , V _{OUT} = 0 to 3.6 V		0	_	10.0	μA
Quiescent supply cu	irrent	Icc	$V_{IN} = V_{CC} \text{ or } GND$		1.8		20.0	μA
Quescent supply of		icc	$V_{CC} \leqq (V_{IN}, V_{OUT}) \leqq 3.$	6 V	1.8	_	±20.0	μΛ

AC Characteristics (Ta = -40 to 85°C, input: $t_r = t_f = 2.0 \text{ ns}$, $C_L = 30 \text{ pF}$, $R_L = 500 \Omega$) (Note 1)

Characteristics	Symbol	Test Condition		Min	Max	Unit
Characteristics	Symbol	Symbol Test Condition		WIIII	Wax	Onit
Propagation delay time	tau		1.8	1.5	5.8	
(D-Q)	t _{pLH}	Figure 1, Figure 2	2.5 ± 0.2	1.0	4.5	ns
	^t pHL		$\textbf{3.3}\pm\textbf{0.3}$	0.8	3.3	
Dropagation dalay time	+		1.8	1.5	6.2	
Propagation delay time (LE-Q)	t _{pLH}	Figure 1, Figure 2	2.5 ± 0.2	1.0	4.9	ns
(LE-Q)	tpHL		$\textbf{3.3}\pm\textbf{0.3}$	0.8	3.6	
	+		1.8	1.5	7.6	
3-state output enable time	t _{pZL}	Figure 1, Figure 3	2.5 ± 0.2	1.0	5.4	ns
	t _{pZH}		$\textbf{3.3}\pm\textbf{0.3}$	0.8	3.9	
		Figure 1, Figure 3	1.8	1.5	5.3	
3-state output disable time	t _{pLZ}		2.5 ± 0.2	1.0	4.4	ns
	^t pHZ		$\textbf{3.3}\pm\textbf{0.3}$	0.8	4.0	
		Figure 1, Figure 2	1.8	3.0	—	
Minimum pulse width (LE)	t _{w (H)}		2.5 ± 0.2	1.5		ns
			$\textbf{3.3}\pm\textbf{0.3}$	1.5		
			1.8	2.5	_	
Minimum setup time	ts	Figure 1, Figure 2	2.5 ± 0.2	1.5		ns
			$\textbf{3.3}\pm\textbf{0.3}$	1.5		
			1.8	1.0	_	
Minimum hold time	t _h	Figure 1, Figure 2	2.5 ± 0.2	1.0	_	ns
			3.3 ± 0.3	1.0	_	
			1.8	_	0.5	
Output to output skew	t _{osLH}	(Note 2)	2.5 ± 0.2	_	0.5	ns
	t _{osHL}		3.3 ± 0.3	_	0.5	

Note 1: For $C_L = 50$ pF, add approximately 300 ps to the AC maximum specification.

Note 2: Parameter guaranteed by design. $(t_{osLH} = |t_{pLHm} - t_{pLHn}|, \ t_{osHL} = |t_{pHLm} - t_{pHLn}|)$

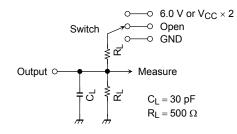
Dynamic Switching Characteristics (Ta = 25°C, input: $t_r = t_f = 2.0 \text{ ns}$, $C_L = 30 \text{ pF}$)

Characteristics	Symbol	Test Condition			Тур.	Unit
				$V_{CC}(V)$		
		$V_{IH}=1.8~V,~V_{IL}=0~V$	(Note)	1.8	0.15	
Quiet output maximum dynamic V _{OL}	V _{OLP}	$V_{IH} = 2.5 V, V_{IL} = 0 V$	(Note)	2.5	0.25	V
		$V_{IH} = 3.3 V, V_{IL} = 0 V$	(Note)	3.3	0.35	
		$V_{IH} = 1.8 V, V_{IL} = 0 V$	(Note)	1.8	-0.15	
Quiet output minimum dynamic V _{OI}	VOLV	$V_{IH} = 2.5 V, V_{IL} = 0 V$	(Note)	2.5	-0.25	V
,		$V_{IH} = 3.3 V, V_{IL} = 0 V$	(Note)	3.3	-0.35	
		$V_{IH} = 1.8 V, V_{IL} = 0 V$	(Note)	1.8	1.55	
Quiet output minimum dynamic V _{OH}	V _{OHV}	$V_{IH} = 2.5 V, V_{IL} = 0 V$	(Note)	2.5	2.05	V
		$V_{IH} = 3.3 V, V_{IL} = 0 V$	(Note)	3.3	2.65	

Note: Parameter guaranteed by design.

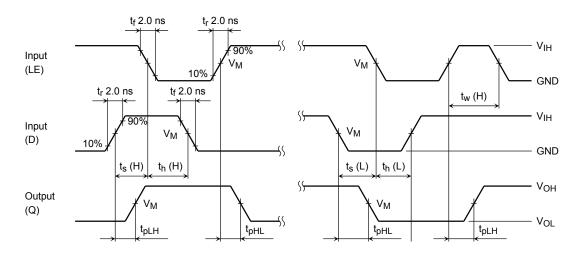
Capacitive Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition			Typ.	Unit
Characteristics	Symbol			V _{CC} (V)	тур.	Unit
Input capacitance	C _{IN}	—		1.8, 2.5, 3.3	6	pF
Output capacitance	CO			1.8, 2.5, 3.3	7	pF
Power dissipation capacitance	C _{PD}	$f_{IN} = 10 \text{ MHz}$	(Note)	1.8, 2.5, 3.3	20	pF

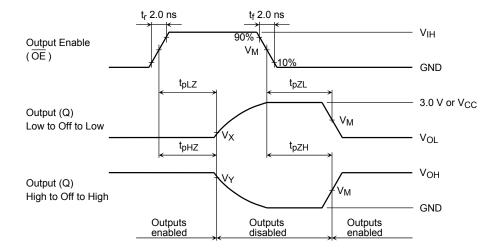

Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/16$ (per bit)


AC Test Circuit

AC Waveform



Parameter	Switch	
t _{pLH} , t _{pHL}	Open	
t _{pLZ} , t _{pZL}		
t _{pHZ} , t _{pZH}	GND	

 $\label{eq:Figure 2} \quad t_{pLH},\,t_{pHL},\,t_w,\,t_s,\,t_h$

Symbol	V _{CC}		
	$3.3\pm0.3~V$	$2.5\pm0.2\;V$	1.8 V
VIH	2.7 V	V _{CC}	V _{CC}
VM	1.5 V	V _{CC} /2	V _{CC} /2
Vx	V_{OL} + 0.3 V	V _{OL} + 0.15 V	V _{OL} + 0.15 V
VY	V _{OH} – 0.3 V	V _{OH} – 0.15 V	V _{OH} – 0.15 V

Figure 3 t_{pLZ}, t_{pHZ}, t_{pZL}, t_{pZH}

Package Dimensions

TSSOP48-P-0061-0.50A

Unit: mm

Weight: 0.25 g (typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.