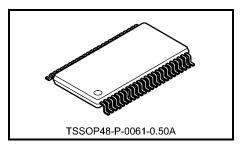
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74VCX162244FT

Low-Voltage 16-Bit Bus Buffer with 3.6-V Tolerant Inputs and Outputs

The TC74VCX162244FT is a high-performance CMOS 16-bit bus buffer. Designed for use in 1.8-V, 2.5-V or 3.3-V systems, it achieves high-speed operation while maintaining the CMOS low power dissipation.

It is also designed with overvoltage tolerant inputs and outputs up to 3.6 V.


This device is non-inverting 3-state buffer having four active-low output enables. It can be used as four 4-bit buffers two 8-bit buffers or one 16-bit buffer. When the \overrightarrow{OE} input is high, the outputs are in a high-impedance state. This device is designed to be used with 3-state memory address drivers, etc.

The 26- Ω series resistor helps reducing output overshoot and undershoot without external resistor.

All inputs are equipped with protection circuits against static discharge.

Features

- 26-Ω series resistors on outputs.
- Low-voltage operation: V_{CC} = 1.8 to 3.6 V
- High-speed operation $: t_{pd} = 3.3 \text{ ns} (max) (V_{CC} = 3.0 \text{ to } 3.6 \text{ V})$
 - $t_{pd} = 3.8 \text{ ns} (\text{max}) (\text{V}_{CC} = 2.3 \text{ to } 2.7 \text{ V})$
 - $: t_{pd} = 5.7 \text{ ns} (max) (V_{CC} = 1.8 \text{ V})$
- Output current: $IOH/IOL = \pm 12 \text{ mA} (min) (VCC = 3.0 \text{ V})$
 - $: I_{OH}/I_{OL} = \pm 8 \text{ mA} (\text{min}) (V_{CC} = 2.3 \text{ V})$
 - $: I_{OH}/I_{OL} = \pm 4 \text{ mA} (min) (V_{CC} = 1.8 \text{ V})$
- Latch-up performance: -300 mA
- ESD performance: Machine model $\geq \pm 200$ V
 - Human body model $\geq \pm 2000 \text{ V}$
- Package: TSSOP
- 3.6-V tolerant function and power-down protection provided on all inputs and outputs

Weight: 0.25 g (typ.)

TOSHIBA

Pin Assignment (top view)

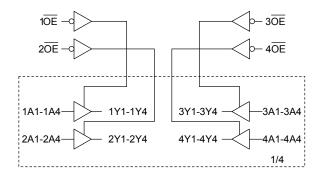
10E 1 0 48 20E 1Y1 2 47 1A1 1Y2 3 46 1A2 GND 4 45 GND 1Y3 5 44 1A3 1Y4 6 43 1A4 VCC 7 44 43 2Y2 9 40 2A2 GND 10 40 2A2 GND 10 43 2A1 2Y3 11 40 2A2 GND 10 338 2A3 2Y4 12 336 3A1 3Y1 13 36 3A1 3Y2 14 336 3A3 3Y3 16 33 3A3 3Y4 17 33 3A3 3Y4 17 33 3A3 4Y1 19 30 4A1 4Y2 20 20 23 4A2 GND 21 24 24 24 4Y4 <					
1Y2 3 GND 4 1Y3 5 1Y4 6 VCC 7 2Y1 8 2Y2 9 GND 10 2Y3 11 2Y4 12 3Y1 13 3Y2 14 GND 15 3Y3 16 3Y4 17 4Y2 20 GND 21 4Y2 20 GND 21 4Y3 22 4Y4 23	10E	1	0	48	20E
GND 4 1Y3 5 1Y4 6 VCC 7 2Y1 8 2Y2 9 GND 10 2Y3 11 2Y4 12 3Y1 13 3Y2 14 3Y1 13 3Y2 14 GND 15 3Y3 16 3Y4 17 4Y2 20 GND 21 4Y2 20 GND 21 4Y3 22 4Y4 23	1Y1	2		47	1A1
1Y3 5 1Y4 6 VCC 7 2Y1 8 2Y2 9 GND 10 2Y3 11 2Y4 12 3Y1 13 3Y2 14 3Y1 13 3Y2 14 3Y3 16 3Y4 17 VCC 18 4Y1 19 4Y2 20 GND 21 4Y3 22 4Y4 23	1Y2	3		46	1A2
1Y4 6 VCC 7 2Y1 8 2Y2 9 GND 10 2Y3 11 2Y4 12 3Y1 13 3Y2 14 GND 15 3Y3 16 3Y4 17 VCC 18 4Y1 19 4Y2 20 GND 21 4Y3 22 GND 21 4Y3 22 GND 21 4Y3 22 4Y4 23	GND	4		45	GND
VCC 7 2Y1 8 2Y2 9 GND 10 2Y3 11 2Y4 12 3Y1 13 3Y1 13 3Y2 14 GND 15 3Y3 16 3Y4 17 VCC 18 4Y1 19 4Y2 20 GND 21 4Y3 22 4Y4 23	1Y3	5		44	1A3
2Y1 8 2Y2 9 GND 10 2Y3 11 2Y4 12 3Y1 13 3Y1 13 3Y2 14 GND 15 3Y3 16 3Y4 17 VCC 18 4Y1 19 4Y2 20 GND 21 4Y3 22 4Y4 23	1Y4	6		43	1A4
2Y2 9 GND 10 2Y3 11 2Y4 12 3Y1 13 3Y1 13 3Y2 14 GND 15 GND 16 3Y4 17 VCC 18 4Y1 19 4Y2 20 GND 21 4Y3 22 4Y4 23	Vcc	7		42	V _{CC}
GND 10 2Y3 11 3Y4 12 3Y1 13 3Y2 14 3Y3 16 3Y4 17 VCC 18 4Y1 19 4Y2 20 GND 21 4Y3 22 4Y4 23	2Y1	8		41	2A1
2Y3 11 2Y4 12 3Y1 13 3Y1 13 3Y2 14 3Y3 16 3Y4 17 VCC 18 4Y1 19 4Y2 20 GND 21 4Y3 22 4Y4 23	2Y2	9		40	2A2
2Y4 12 3Y1 13 3Y2 14 3Y2 14 3Y2 14 3Y3 16 3Y4 17 VCC 18 4Y1 19 4Y2 20 GND 21 4Y3 22 4Y4 23	GND	10		39	GND
3Y1 13 3Y2 14 3Y2 14 GND 15 3Y3 16 3Y4 17 VCC 18 4Y1 19 GND 21 4Y3 22 4Y4 23	2Y3	11		38	2A3
3Y2 14 GND 15 3Y3 16 3Y4 17 XCC 18 4Y1 19 4Y2 20 GND 21 4Y3 22 4Y4 23	2Y4	12		37	2A4
GND 15 3Y3 16 3Y4 17 3Y4 17 17 132 3Y4 17 18 31 19 30 4Y1 19 4Y2 20 GND 21 4Y3 22 4Y4 23	3Y1	13		36	3A1
3Y3 16 3Y4 17 VCC 18 4Y1 19 4Y2 20 GND 21 4Y3 22 4Y4 23	3Y2	14		35	3A2
3Y4 17 VCC 18 4Y1 19 4Y2 20 GND 21 4Y3 22 4Y4 23	GND	15		34	GND
VCC 18 4Y1 19 4Y2 20 GND 21 4Y3 22 4Y4 23	3Y3	16		33	3A3
4Y1 19 4Y2 20 GND 21 4Y3 22 4Y4 23	3Y4	17		32	3A4
4Y2 20 29 4A2 GND 21 28 GND 4Y3 22 27 4A3 4Y4 23 26 4A4	V _{CC}	18		31	Vcc
GND 21 4Y3 22 4Y4 23	4Y1	19		30	4A1
4Y3 22 4Y4 23	4Y2	20		29	4A2
4Y4 23	GND	21		28	GND
	4Y3	22		27	4A3
4 0E 24 ■ 25 30E	4Y4	23		26	4A4
	40E	24		25	30E

IEC Logic Symbol

$10E 1 \\ 20E 48 \\ 30E 25 \\ 40E 24 \\ $	EN1 EN2 EN3 EN4				
1A1 47	1	1	1▽	2	- 1Y1
1A2 <u>46</u>				3	- 1Y2
1A3 <u>44</u>				5	- 1Y3
1A4 <u>43</u>				6	- 1Y4
2A1 <u>41</u>	-	1	2▽	8	- 2Y1
2A2 40		-	- •	9	- 2Y2
2A3 <u>38</u>				11	- 2Y3
2A4 <u>37</u>				12	- 2Y4
3A1 <u>36</u>		1	3▽	13	- 3Y1
3A2 35			0 0	14	- 3Y2
3A3 <u>33</u>				16	- 3Y3
3A3 <u>32</u>				17	- 3Y4
4A1 <u>30</u>		1	4▽	19	- 4Y1
4A1 4A229			• /	20	- 411 - 4Y2
4A2 4A3				22	
4A3 <u>26</u>				23	- 4Y3 - 4Y4
4/\4					414

<u>TOSHIBA</u>

Truth Table


Inp	Outputs	
10E 1A1-1A4		1Y1-1Y4
L	L	L
L	Н	н
Н	Х	Z

Inp	Outputs			
20E	2A1-2A4	2Y1-2Y4		
L	L	L		
L	Н	Н		
Н	Х	Z		

Inp	Outputs	
30E 3A1-3A4		3Y1-3Y4
L	L	L
L	Н	н
Н	Х	Z

Inp	Outputs	
40E 4A1-4A4		4Y1-4Y4
L	L	L
L	Н	Н
Н	Х	Z

System Diagram

X: Don't care

Z: High impedance

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Power supply voltage	V _{CC}	-0.5 to 4.6	V
DC input voltage	V _{IN}	-0.5 to 4.6	V
		-0.5 to 4.6 (Note 2)	
DC output voltage	V _{OUT}	-0.5 to $V_{CC} \pm 0.5$	V
		(Note 3)	
Input diode current	I _{IK}	-50	mA
Output diode current	I _{OK}	±50 (Note 4)	mA
DC output current	IOUT	±50	mA
Power dissipation	PD	400	mW
DC V_{CC} /ground current per supply pin	I _{CC} /I _{GND}	±100	mA
Storage temperature	T _{stg}	–65 to 150	°C

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

- Note 2: OFF state
- Note 3: High or low state. IOUT absolute maximum rating must be observed.
- Note 4: $V_{OUT} < GND, V_{OUT} > V_{CC}$

Operating Ranges (Note 1)

Characteristics	Symbol	Rating	Unit	
Power supply voltage	V _{CC}	1.8 to 3.6	V	
Fower suppry voltage	VCC	1.2 to 3.6 (Note 2)	v	
Input voltage	VIN	-0.3 to 3.6	V	
Output voltage	Veur	0 to 3.6 (Note 3)	V	
Output voltage	Vout	0 to V _{CC} (Note 4)	v	
		±12 (Note 5)		
Output current	I _{OH} /I _{OL}	±8 (Note 6)	mA	
		±4 (Note 7)		
Operating temperature	T _{opr}	-40 to 85	°C	
Input rise and fall time	dt/dv	0 to 10 (Note 8)	ns/V	

Note 1: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs must be tied to either VCC or GND.

Note 3: OFF state

Note 4: High or low state

Note 5: $V_{CC} = 3.0$ to 3.6 V

- Note 6: $V_{CC} = 2.3$ to 2.7 V
- Note 7: $V_{CC} = 1.8 V$
- Note 8: $V_{IN} = 0.8$ to 2.0 V, $V_{CC} = 3.0$ V

Note 2: Data retention only

Electrical Characteristics

DC Characteristics (Ta = -40 to 85°C, 2.7 V < V_{CC} \leq 3.6 V)

Characteristics		Symbol	Test Condition			Min	Max	Unit
		Symbol Test Condition		V _{CC} (V)	IVIIII	Wax	Unit	
Input voltage	H-level	VIH		_	2.7 to 3.6	2.0	_	V
input voltage	L-level	V _{IL}		_	2.7 to 3.6		0.8	v
				$I_{OH} = -100 \ \mu A$	2.7 to 3.6	V _{CC} - 0.2		
	H-level	V _{OH}	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -6 \text{ mA}$	2.7	2.2	_	
				$I_{OH} = -8 \text{ mA}$	3.0	2.4	_	
Output voltage				$I_{OH} = -12 \text{ mA}$	3.0	2.2	_	V
			$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OL} = 100 \ \mu A$	2.7 to 3.6	_	0.2	
	L-level	V _{OL}		$I_{OL} = 6 \text{ mA}$	2.7	_	0.4	
	L-level			$I_{OL} = 8 \text{ mA}$	3.0	_	0.55	
				$I_{OL} = 12 \text{ mA}$	3.0	_	0.8	
Input leakage curre	ent	lın	V _{IN} = 0 to 3.6 V		2.7 to 3.6	_	±5.0	μA
3-state output OFF state current		I _{OZ}	$V_{IN} = V_{IH} \text{ or } V_{IL}$		2.7 to 3.6	_	±10.0	μA
Power-off leakage current		I _{OFF}	V _{OUT} = 0 to 3.6 V V _{IN} , V _{OUT} = 0 to 3.6 V		0		10.0	μA
Outra and any l			$V_{IN} = V_{CC}$ or GND		2.7 to 3.6	_	20.0	
Quiescent supply of	current	ICC	$V_{CC} \leqq (V_{IN}, V_{OUT}) \leqq$	$V_{CC} \leq (V_{IN}, V_{OUT}) \leq 3.6 V$		_	±20.0	μA
Increase in I _{CC} per	r input	∆lcc	$V_{IH} = V_{CC} - 0.6 V$		2.7 to 3.6	_	750	

DC Characteristics (Ta = -40 to 85°C, 2.3 V \leq V_{CC} \leq 2.7 V)

Characteristics		Symbol	Test Condition			Min	Max	Unit
					V _{CC} (V)			
Input voltage	H-level	VIH		_	2.3 to 2.7	1.6	—	v
input voltage	L-level	VIL		_	2.3 to 2.7	_	0.7	v
				I _{OH} = -100 μA	2.3 to 2.7	V _{CC} - 0.2	_	
	H-level	Vон	VIN = VIH or VIL	$I_{OH} = -4 \text{ mA}$	2.3	2.0	_	
				$I_{OH} = -6 \text{ mA}$	2.3	1.8	_	V
Output voltage				$I_{OH} = -8 \text{ mA}$	2.3	1.7	_	
		L-level V _{OL}	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OL} = 100 \ \mu A$	2.3 to 2.7	_	0.2	
	L-level			$I_{OL} = 6 \text{ mA}$	2.3		0.4	
				$I_{OL} = 8 \text{ mA}$	2.3	_	0.6	
Input leakage curre	nt	I _{IN}	V _{IN} = 0 to 3.6 V		2.3 to 2.7	_	±5.0	μA
	atata aumont	1	$V_{IN} = V_{IH} \text{ or } V_{IL}$		2.2 42.2 7		10.0	
3-state output OFF state current		I _{OZ}	$V_{OUT} = 0$ to 3.6 V		2.3 to 2.7	_	±10.0	μA
Power-off leakage current		I _{OFF}	V _{IN} , V _{OUT} = 0 to 3.6 V		0	_	10.0	μA
Quiescent supply c	urrent		$V_{IN} = V_{CC}$ or GND	V _{IN} = V _{CC} or GND			20.0	μA
Quiescent supply c		Icc	$V_{CC} \leq (V_{IN}, V_{OUT}) \leq 3$	3.6 V	2.3 to 2.7		±20.0	μA

DC Characteristics (Ta = -40 to 85°C, 1.8 V \leq V_{CC} < 2.3 V)

Characteristics		Symbol	Test Condition			Min	Max	Unit
		Cymbol	10010			IVIIII	IVIAX	Offic
Input voltage	H-level	VIH		_	1.8 to 2.3	$0.7 \times V_{CC}$	_	V
input voitage	L-level	V _{IL}	_		1.8 to 2.3		$0.2 \times V_{CC}$	v
н	H-level	H-level V _{OH}	$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OH} = -100 μA	1.8	V _{CC} - 0.2	_	
Output voltage				$I_{OH} = -4 \text{ mA}$	1.8	1.4	_	V
	L-level	Vol	VIN = VIH or VIL	I _{OL} = 100 μA	1.8	_	0.2	
		VOL	VIN - VIH OL VIL	$I_{OL} = 4 \text{ mA}$	1.8	_	0.3	
Input leakage curre	nt	I _{IN}	V _{IN} = 0 to 3.6 V		1.8		±5.0	μA
3-state output OFF state current		I _{OZ}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 \text{ V}$		1.8	_	±10.0	μΑ
Power-off leakage current		I _{OFF}	V _{IN} , V _{OUT} = 0 to 3.6 V		0	_	10.0	μA
		laa	V _{IN} = V _{CC} or GND		1.8	_	20.0	
Quiescent supply c		Icc	$V_{CC} \leqq (V_{IN}, V_{OUT}) \leqq 3$.6 V	1.8		±20.0	μA

AC Characteristics (Ta = -40 to 85°C, input: $t_r = t_f = 2.0 \text{ ns}$, $C_L = 30 \text{ pF}$, $R_L = 500 \Omega$) (Note 1)

Characteristics	Symbol	Symbol Test Condition		Min	Max	Unit
Characteristics	Gymbol		V _{CC} (V)	WIIII	IVIAX	Unit
	+		1.8	1.5	5.7	
Propagation delay time	t _{pLH}	Figure 1, Figure 2	2.5 ± 0.2	1.0	3.8	ns
	^t pHL		$\textbf{3.3}\pm\textbf{0.3}$	0.8	3.3	
	t		1.8	1.5	6.7	
3-state output enable time	t _{pZL} t _{pZH}	Figure 1, Figure 3	2.5 ± 0.2	1.0	5.1	ns
			$\textbf{3.3}\pm\textbf{0.3}$	0.8	3.8	
	• . –		1.8	1.5	5.0	
3-state output disable time	t _{pLZ} t _{pHZ}	Figure 1, Figure 3	2.5 ± 0.2	1.0	4.0	ns
			$\textbf{3.3}\pm\textbf{0.3}$	0.8	3.6	
			1.8	_	0.5	
Output to output skew	t _{osLH}	(Note 2)	2.5 ± 0.2	_	0.5	ns
	t _{osHL}		$\textbf{3.3}\pm\textbf{0.3}$		0.5	

Note 1: For $C_L = 50$ pF, add approximately 300 ps to the AC maximum specification.

Note 2: Parameter guaranteed by design. $(t_{osLH} = |t_{pLHm} - t_{pLHn}|, t_{sHL} = |t_{pHLm} - t_{pHLn}|)$

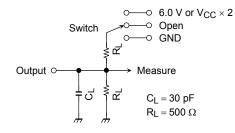
Dynamic Switching Characteristics (Ta = 25°C, input: $t_r = t_f = 2.0$ ns, $C_L = 30$ pF)

Characteristics	Symbol	Test Condition		Тур.	Unit	
						$V_{CC}\left(V\right)$
Quiet output maximum dynamic V _{OL}	V _{OLP}	$V_{IH} = 1.8 V, V_{IL} = 0 V$	(Note)	1.8	0.15	
		$V_{IH} = 2.5 V, V_{IL} = 0 V$	(Note)	2.5	0.25	V
		$V_{IH} = 3.3 V, V_{IL} = 0 V$	(Note)	3.3	0.35	
Quiet output minimum dynamic V _{OL}	V _{OLV}	$V_{IH} = 1.8 V, V_{IL} = 0 V$	(Note)	1.8	-0.15	V
		$V_{IH} = 2.5 V, V_{IL} = 0 V$	(Note)	2.5	-0.25	
		$V_{IH} = 3.3 V, V_{IL} = 0 V$	(Note)	3.3	-0.35	
Quiet output minimum dynamic V _{OH}	V _{OHV}	$V_{IH} = 1.8 V, V_{IL} = 0 V$	(Note)	1.8	1.55	
		$V_{IH} = 2.5 V, V_{IL} = 0 V$	(Note)	2.5	2.05	V
		$V_{IH} = 3.3 V, V_{IL} = 0 V$	(Note)	3.3	2.65	

Note: Parameter guaranteed by design.

Capacitive Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition			Тур.	Unit
Characteristics				V _{CC} (V)		
Input capacitance	C _{IN}	_		1.8, 2.5, 3.3	6	pF
Output capacitance	CO			1.8, 2.5, 3.3	7	pF
Power dissipation capacitance	C _{PD}	$f_{IN} = 10 \text{ MHz}$ (I	Note)	1.8, 2.5, 3.3	20	pF


Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/16$ (per bit)

TOSHIBA

AC Test Circuit

Parameter	Switch		
t _{pLH} , t _{pHL}	Open		
t _{pLZ} , t _{pZL}			
t _{pHZ} , t _{pZH}	GND		

AC Waveform

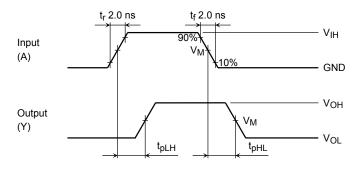
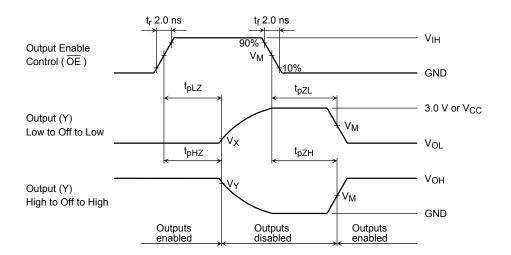
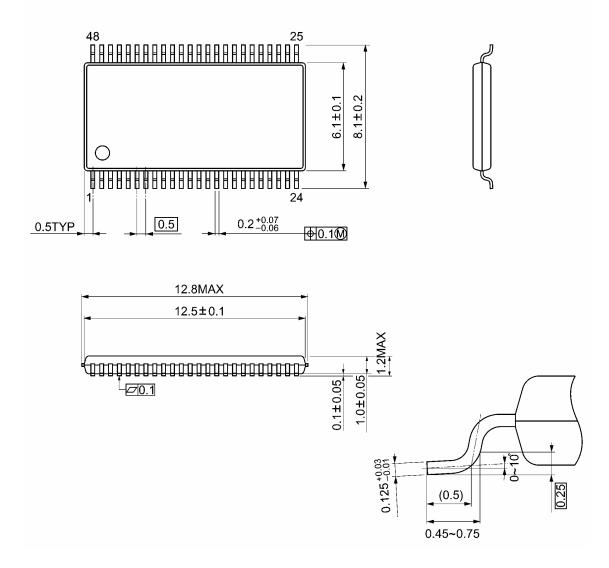



Figure 2 t_{pLH}, t_{pHL}

Figure 3 $t_{pLZ}, t_{pHZ}, t_{pZL}, t_{pZH}$


Symbol	V _{CC}					
Symbol	$3.3\pm0.3~V$	$2.5\pm0.2\;V$	1.8 V			
VIH	2.7 V	V _{CC}	V _{CC}			
VM	1.5 V	V _{CC} /2	V _{CC} /2			
VX	V_{OL} + 0.3 V	V _{OL} + 0.15 V	V_{OL} + 0.15 V			
VY	V _{OH} – 0.3 V	V _{OH} – 0.15 V	V _{OH} – 0.15 V			

TOSHIBA

Package Dimensions

TSSOP48-P-0061-0.50A

Unit: mm

Weight: 0.25 g (typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.