High-Speed USB2.0 1:2 Multiplexer/ DeMultiplexer Switch with Signal Enable

Description

The PI3USB221 is a high-bandwidth switch specially designed for the switching of high-speed USB 2.0 signals in handset and consumer applications, such as cell phones, digital cameras, and notebooks with hubs or controllers with limited USB I/Os. The wide bandwidth (1.1 GHz) of this switch allows signals to pass with minimum edge and phase distortion. The device to pass with minimum edge and phase distortion. The device
multiplexes differential outputs from a USB host device to one of two corresponding outputs. The switch is bidirectional and offers little or no attenuation of the high-speed signals at the outputs. It is designed for low bit-to-bit skew and high channel-to-channel noise isolation, and is compatible with various standards, such as high-speed USB $2.0(480 \mathrm{Mbps})$.

Pin Configuration

Features

- V_{DD} Operation at 2.5 V and 3.3 V
- $\mathrm{V}_{\mathrm{I} / \mathrm{O}}$ Accepts Signals up to 5.5 V
- 1.8-V Compatible Control-Pin Inputs
- Low-Power Mode When $\overline{\text { OE }}$ Is Disabled ($2 \mu \mathrm{~A}$)
- $r_{O N}=6 \Omega$ Maximum
- $\Delta \mathrm{r}_{\mathrm{ON}}=0.2 \Omega$ Typical
- $\mathrm{Cio}(\mathrm{on})=6 \mathrm{pF}$ Maximum
- Low Power Consumption ($50 \mu \mathrm{~A}$ Maximum)
- $\mathrm{ESD}>8 \mathrm{kV}$ contact on USB signal path per IEC61000-4-2)
- High Bandwidth (1.1 GHz Typical)
- Packaging (Pb-free \& Green):
- 10-contact, TDFN (ZE10)
- 10-contact, TLLGA (XA10)

Applications

- Routes Signals for USB 1.0, 1.1, and 2.0
- Mobile Industry Processor Interface (MIPI) Signal Routing

Pin Description

NAME	DESCRIPTION
$\overline{\mathrm{OE}}$	Active LOW, Output enable
S	Select input
D	COM port
nD	I/O for USB data path (port 1 and port 2)

Truth Table

S	OE	FUNCTION
X	H	Disconnect
L	L	D $=1 \mathrm{D}$
H	L	D $=2 \mathrm{D}$

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

Over operating free-air temperature range (unless otherwise noted)

V ${ }_{\text {DD }}$ Supply Voltage Range ... -0.5 V to 4.6 V	
$\mathrm{V}_{\text {IN }}$ Control Input Voltage Range ${ }^{2,3}$	-0.5V to 7 V
VI/O Switch I/O Voltage Range ${ }^{2}$	-0.5V to 7V
$\mathrm{I}_{\text {IK }}$ Control Input Clamp Current ($\mathrm{V}_{\text {IN }}<0$	$-50 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{I} / \mathrm{OK}} \mathrm{I} / \mathrm{O}$ Port Clamp Current ($\mathrm{V}_{\mathrm{I} / \mathrm{O}}<0$)	$-50 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{I} / \mathrm{O}}$ ON-state Switch Current ${ }^{5}$.	$\pm 120 \mathrm{~mA}$
Continuous current through $V_{D D}$ or G	$\pm 100 \mathrm{~mA}$
θ_{JA} Package Thermal Impedance	
TLLGA Package	. $48.7^{\circ} \mathrm{C} / \mathrm{W}$
TDFN Package	$243{ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {stg }}$ Storage temperature range	65 to $150^{\circ} \mathrm{C}$

Notes:

1. Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. All voltages are with respect to ground, unless otherwise specified.
3. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
4. VI and VO are used to denote specific conditions for VI/O.
5. II and IO are used to denote specific conditions for II/O.
6. The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions ${ }^{1}$

Symbol	Description	Parameter	Min	Max	Unit
V_{DD}	Supply voltage		2.3	3.6	
	High-level control input voltage	$\mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V	1.4	-	
		$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 3.6 V	1.3	-	
V_{IL}	Low-level control input voltage	$\mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V		0.6	
		$\mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 3.6 V		0.6	
$\mathrm{~V}_{\mathrm{I} / \mathrm{O}}$	Data input/output voltage		0	5.5	
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature		-40	85	${ }^{\circ} \mathrm{C}$

Note:

1. All unused control inputs of the device must be held at V_{DD} or GND to ensure proper device operation.

ELECTRICAL CHARACTERISTICS

Over operating free-air temperature range (unless otherwise noted)

Parameter		Testing Conditions		Min	Typ	Max	Unit	
$\mathrm{V}_{\text {IK }}$		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, 2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.8	V	
$\mathrm{I}_{\text {IN }}$	Control Inputs	$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, 2.7 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to 3.6 V				± 1	$\mu \mathrm{A}$	
IOZ^{3}		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, 2.7 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$ or GND , $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$, Switch OFF				± 1		
$\mathrm{I}_{\text {(OFF) }}$		$\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{~V}$ to 3.6 V			± 2		
		$\mathrm{V}_{\mathrm{I} / \mathrm{O}}=0$ to 2.7 V			± 1			
I_{CC}			$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, 2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{GND}, \\ & \mathrm{I}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{~V} \text {, Switch ON or OFF } \end{aligned}$					50
I_{CC} (low power mode)		$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, 2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$ or GND , Switch disabled, ($\overline{\mathrm{OE}}$ in high state)				2		
$\mathrm{DI}_{\mathrm{CC}}{ }^{4}$	Control Inputs		$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~S}$ sweeps from 1.4 V to $3.3 \mathrm{~V}, \mathrm{OE} /=0 \mathrm{~V}$			15		
			$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{OE} /$ sweeps from 1.4 V to $3.3 \mathrm{~V}, \mathrm{~S}=0 \mathrm{~V}$			0.75		
$\mathrm{C}_{\text {IN }}$	Control Inputs	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, 2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=3.3 \mathrm{~V}$ or 0 V			1	2		
$\mathrm{C}_{\text {io(OFF) }}$		$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, 2.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=3.3 \mathrm{~V}$ or 0 V , Switch OFF			2	4	pF	
$\mathrm{C}_{\mathrm{io}(\mathrm{ON})}$		$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, 2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=3.3 \mathrm{~V}$ or 0V, Switch ON			5	6		
ron ${ }^{5}$		$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, 2.3 \mathrm{~V}$	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=30 \mathrm{~mA}$			6	Ω	
			$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-15 \mathrm{~mA}$			6		
Dron		$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, 2.3 \mathrm{~V}$	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=30 \mathrm{~mA}$		0.2			
			$\mathrm{V}_{\mathrm{I}}=1.7 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-15 \mathrm{~mA}$		0.2			
$\mathrm{r}_{\mathrm{ON}(\mathrm{flat})}$		$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, 2.3 \mathrm{~V}$	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=30 \mathrm{~mA}$		1			
		$\mathrm{V}_{\mathrm{I}}=1.7 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-15 \mathrm{~mA}$		1				

Notes:

1. $\mathrm{V}_{\text {IN }}$ and $\mathrm{I}_{\text {IN }}$ refer to control inputs. VI, VO, II, and IO refer to data pins.
2. All typical values are at $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ (unless otherwise noted), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. For I/O ports, the parameter IOZ includes the input leakage current.
4. This is the increase in supply current for each input that is at the specified TTL voltage level, rather than VDD or GND.
5. Measured by the voltage drop between the input and output terminals at the indicated current through the switch. ON-state resistance is determined by the lower of the voltages of the two terminals.

DYNAMIC ELECTRICAL CHARACTERISTICS over operating range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%$, GND = 0V

Symbol	Parameter	Test Conditions	Typ $^{\mathbf{1}}$	Unit
$\mathrm{X}_{\text {TALK }}$	Crosstalk	$\mathrm{R}_{\mathrm{L}}=50 \Omega, f=250 \mathrm{MHz}$	-40	dB
$\mathrm{O}_{\text {IRR }}$	OFF isolation	$\mathrm{R}_{\mathrm{L}}=50 \Omega, f=250 \mathrm{MHz}$	-41	
BW	Bandwidth $(-3 \mathrm{~dB})$	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	1.1	GHz

Note:

1. For Max or Min conditions, use the appropriate value specified under Electrical Characteristics for the applicable device type.

SWITCHING CHARACTERISTICS over operating range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$

Symbol	Parameter		Min	Typ ${ }^{1}$	Max	Unit
t_{pd}	Propagation Delay ${ }^{2,3}$			0.25		ns
$\mathrm{t}_{\text {ON }}$	Line enable time	S to D, nD			125	
		$\overline{\mathrm{OE}}$ to D, nD			100	
toff	Line disable time	S to D, nD			12	
		$\overline{\mathrm{OE}}$ to D, nD			12	
$\mathrm{t}_{\mathrm{SK}(\mathrm{O})}$	Output skew between center port to any other port ${ }^{2}$			0.1	0.2	
$\mathrm{t}_{\text {SK }}(\mathrm{P})$	Skew between opposite transitions of the same output $(\mathrm{tPHL}-\mathrm{tPLH})^{2}$			0.1	0.2	

Notes:

1. For Max or Min conditions, use the appropriate value specified under Electrical Characteristics for the applicable device type.
2. Specified by design
3. The switch contributes no propagational delay other than the RC delay of the on resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns for $10-\mathrm{pF}$ load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interactions with the load on the driven side.

Application Information

Figure 5: HS Eye Test Setup

Test Result

Test Result 1: High-speed, Up-stream, Near-end Eye of PI3USB221

PARAMETER MEASUREMENT INFORMATION

(1) All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50-\mathrm{Ohm}, \mathrm{t}_{\mathrm{r}}<5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<5 \mathrm{~ns}$.
(2) C_{L} includes probe and jig capacitance.

Turn-On (t_{ON}) and Turn-Off Time ($\mathrm{t}_{\mathrm{OFF}}$)

OFF Isolation ($\mathrm{O}_{\text {ISo }}$)

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 11. Crosstalk ($\mathrm{X}_{\text {taLk }}$)

Figure 12. Bandwidth (BW)

Figure 13. Propagation Delay

PARAMETER MEASUREMENT INFORMATION (continued)

$t_{\text {SK(0) }}=\left|t_{\text {PLH1 }}-t_{\text {LH2 } 2}\right|$ or $\left|t_{\text {PHL1 }}-t_{\text {PHL2 }}\right|$
OUTPUT SKEW $\mathbf{t}_{\text {SK(P) }}$
Figure 14. Skew Test

Channel ON
$r_{\text {on }}=\frac{\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT2 }} \text { or } \mathrm{V}_{\text {OUT1 }}}{\mathrm{I}_{\mathrm{IN}}} \Omega$
$\mathrm{V}_{\mathrm{CTRL}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}

Figure 15. ON-State Resistance (r_{on})

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 16. OFF-State Leakage Current

Figure 17. Capacitance

NOTE

1. ALL DIMENSIONS ARE IN mm . ANGLES IN DEGREES.

PERICOM
Enabling Serial Connectivity
2. COPLANARITY APPLIES tO the exposed pad as well as the terminals

DESCRIPTION: 10-Lead, Thin Leadframe Land Grid Array (TLLGA)
3. REFER JEDEC MO-288
4. RECOMMENDED LAND PATTERN IS FOR REFERENCE ONLY.

09-0064
Note:

- For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Note:

- For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information ${ }^{(1-3)}$

Ordering Code	Package Code	Package Description
PI3USB221XAE	XA	10-Contact, Pb-free and Green (TLLGA)
PI3USB221ZEE	ZE	10-Contact, Pb-free and Green (TDFN)

Notes:

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
2. $\mathrm{E}=\mathrm{Pb}$-free and Green
3. Adding an X suffix $=$ Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com

