

3.0V, SOTiny™ 0.4Ω SPDT Analog Switch

Features

• CMOS Technology for Bus and Analog Applications

• Low ON-Resistance: 0.4Ω (+2.7V Supply)

Wide V_{CC} Range: +1.5V to +3.6V
 Low Power Consumption: 5μW

• Rail-to-Rail switching throughout Signal Range

• Fast Switching Speed: 20ns max. at 3.3V

• High Off Isolation: -27dB at 100 KHz

 –41dB (100KHz) Crosstalk Rejection Reduces Signal Distortion

• Extended Industrial Temperature Range: -40°C to 85°C

• Packaging (Pb-free & Green available):

- 6-pin Small Compact SOT-23 (T)

- 6-pin Ultra Compact (ZC)

Applications

· Cell Phones

PDAs

· Portable Instrumentation

· Battery Powered Communications

Computer Peripherals

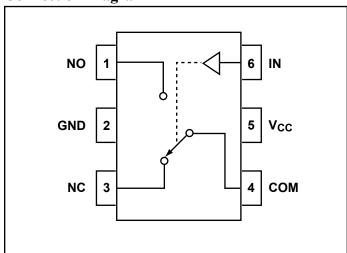
Pin Description

Pin Number	Name	Description
1	NO	Data Port (Normally Open)
2	GND	Ground
3	NC	Data Port (Normally Closed)
4	COM	Common Output/Data Port
5	V _{CC}	Positive Power Supply
6	IN	Logic Control

Logic Function Table

Logic Input	Function
0	NC Connected to COM
1	NO Connected to COM

Description


The PI3A3159 is a, fast single-pole double-throw (SPDT) CMOS switch. It can be used as an analog switch or as a low-delay bus switch. Specified over a wide operating power supply voltage range, +1.5V to +3.6V, the PI3A3159 has an On-Resistance of 0.4Ω at 3.0V.

Control input, IN, tolerates input drive signals up to 3.3V, independent of supply voltage.

PI3A3159 is a lower voltage and On-Resistance replacement for the PI5A3159.

Connection Diagram

1

Absolute Maximum Ratings

Voltages Referenced to GND	
V _{CC} 0.5V to +3.6V	V
$V_{IN}, V_{COM}, V_{NC}, V_{NO}$ (Note 1)0.5V to V_{CC} +0.3V or 30mA, whichever occurs first	7
Current (any terminal)±200m/	A
Peak Current, COM, NO, NC (Pulsed at 1ms, 10% duty cycle)±400m/	A

Thermal Information

Continuous Power Dissipation
SOT23-6 (derate 7.1mW/°C above +70°C)
Storage Temperature65°C to +150°C
Lead Temperature (soldering, 10s)+300°C
Note:

1. Signals on NC, NO, COM, or IN exceeding V_{CC} or GND are clamped by internal diodes. Limit forward diode current to 30mA.

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications - Single +3.3V Supply

 $(V_{CC} = +3.3V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Parameter	Symbol	Conditions	Package	Temp. (°C)	Min.(1)	Typ. (2)	Max. (1)	Units
Analog Switch			-	-	-			
Analog Signal Range	V _{ANALOG}			Full	0		V_{CC}	V
				25			0.4	
On Resistance	R _{ON}	$V_{CC} = 2.7V$,	SOT-23	Full			0.5	
		$I_{COM} = 100 \text{mA},$	TDFN	ruii			0.6	
On-Resistance Match	$\Delta R_{ m ON}$	V_{NO} or $V_{NC} = +1.5V$		25			0.08	Ω
Between Channels ⁽⁴⁾	ΔΚΟΝ			Full			0.09	
On-Resistance Flat-		$V_{CC} = 2.7V$,		25			0.1	
ness ⁽⁵⁾	R _{FLAT(ON)}	$I_{COM} = 100 \text{mA},$ $V_{NO} \text{ or } V_{NC} = 0.8 \text{V}, 2.0 \text{V}$		Full			0.1	
NO or NC Off Leak-	I _{NO(OFF)} or	$V_{CC} = 3.3V, V_{COM} = 0V$		25	-1		1	
age Current ⁽⁶⁾	I _{NC(OFF)}	V_{NO} or $V_{NC} = +2.0V$		Full	-10		10	
COM On Leakage	Lagren	$V_{CC} = 3.3V, V_{COM} = +2.0V$		25	-2		2	nA
Current ⁽⁶⁾	I _{COM(ON)}	V_{NO} or $V_{NC} = +2.0V$		Full	-20		20	

Electrical Specifications - Single +3.3V Supply (continued)

 $(V_{CC} = +3.3V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Parameter	Symbol	Conditions	Temp. (°C)	Min.(1)	Typ. (2)	Max. (1)	Units
Logic Input		-			-	-	
Input High Voltage	V _{IH}	Guaranteed Logic High Level	Full	1.4			V
Input Low Voltage	$V_{ m IL}$	Guaranteed Logic LowLevel				0.5	\ \ \
Input Current with Voltage High	I _{INH}	$V_{IN} = 1.4V$, all others = $0.5V$		-1		1	4
Input Current with Voltage Low	I _{INL}	$V_{IN} = 0.5V$, all others = 1.4V		-1		1	μΑ
Dynamic							
т о т	,		25			20	ns
Turn-On-Time	t_{ON}	$V_{CC} = 3.3 \text{ V}, V_{NO} \text{ or } V_{NC} = 2.0 \text{ V},$	Full			20	
E 0.00 E'	,	Figure 1	25			10	
Turn-Off-Time	t _{OFF}		Full			15	
Charge Injection ⁽³⁾	Q	$C_L = 1 \text{nF}, V_{GEN} = 0 \text{V},$ $R_{GEN} = 0 \Omega$, Figure 2	25		40		pC
Off Isolation ⁽⁷⁾	O _{IRR}	$R_L = 50\Omega$, $f = 100$ KHz, Figure 3			-27		.tn
CrossTalk ⁽⁸⁾	X _{TALK}	$R_L = 50\Omega \text{ f} = 100 \text{ KHz}$, Figure 4			-41		dB
NC or NO Capacitance	C _{NC/NO} (OFF)	f = 1MHz, Figure 5			90		
COM Off Capacitance	C _{COM(OFF)}	1 – IMHZ, Figure 3			90		pF
COM On Capacitance	C _{COM(ON)}	f = 1MHz, Figure 6			240		
Supply							
Power-Supply Range	V _{CC}		E11	1.5		3.6	V
Positive Supply Current	I _{CC}	$V_{CC} = 3.6V$, $V_{IN} = 0V$ or V_{CC}	Full			100	nA

Notes:

- 1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.
- 4. $DR_{ON} = R_{ON} \max R_{ON} \min$.
- 5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.
- 6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.
- 7. Off Isolation = $20\log_{10} [V_{COM} / (V_{NO} \text{ or } V_{NC})]$. See Figure 4.
- 8. Between any two switches. See Figure 5.

Electrical Specifications - Single +2.5V Supply $(V_{CC} = +2.5V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Parameter	Symbol	Conditions	Temp. (°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units
Analog Switch							
Analog Signal Range ⁽³⁾	V _{ANALOG}			0		V _{CC}	V
On-Resistance	R _{ON}	$V_{CC} = 2.5 \text{V}, I_{COM} = -8 \text{mA},$	25			0.5	
OII-RESISTANCE	KON	V_{NO} or $V_{NC} = 1.8V$	Full			0.55	
On-Resistance Match Be-	$\Delta R_{ m ON}$		25			0.09	Ω
tween Channels ⁽⁴⁾	AKON	$V_{CC} = 2.5V, I_{COM} = -8mA,$	Full			0.09	22
On-Resistance Flatness ⁽⁵⁾	RELATIONS	V_{NO} or $V_{NC} = 0.8V$, 1.8V	25			0.02	
On-Resistance Flatness	R _{FLAT(ON)}		Full			0.02	
Dynamic							
Turn-On-Time	4		25			30	
Turn-On-Time	t _{ON}	$V_{CC} = 2.5V$, V_{NO} or $V_{NC} = 1.8V$,	Full			30	***
Turn-Off-Time	4	Figure 1	25			15	ns
Turn-On-Time	$t_{ m OFF}$		Full			15	
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0\Omega$, Figure 2	25		40		pC
Logic Input							
Input High Voltage	V _{IH}	Guaranteed Logic High Level	Full	1.4			V
Input Low Voltage	V_{IL}	Guaranteed Logic LowLevel	Full			0.5	V
Input High Current	I _{INH}	$V_{IN} = 1.4V$, all others = 0.5V	Full	-1		1	4
Input Low Current	I _{INL}	$V_{IN} = 0.5V$, all others = 1.4V	Full	-1		1	μA

Notes:

- 1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.

Electrical Specifications - Single +1.8V Supply

 $(V_{CC} = +1.8V \pm 10\%, GND = 0V, V_{IH} = 1.4V, V_{IL} = 0.5V)$

Parameter	Symbol	Conditions	Temp. (°C)	Min. ⁽¹⁾	Typ. (2)	Max. (1)	Units
Analog Switch							
Analog Signal Range ⁽³⁾	V _{ANALOG}			0		V _{CC}	V
On-Resistance	R _{ON}	$V_{CC} = 1.8V, I_{COM} = -4mA,$ $V_{NO} \text{ or } V_{NC} = 1.5V$	25 E11			0.6	
		V NO 01 V NC - 1.3 V	Full			0.6	
On-Resistance Match Between Channels ⁽⁴⁾	$\Delta R_{ m ON}$		25			0.07	Ω
Between Channels		$V_{CC} = 1.8V, I_{COM} = -4mA,$	Full			0.09	
On-Resistance	Pri ATKOND	V_{NO} or $V_{NC} = 0.8V$, 1.5V	25			0.8	
Flatness ⁽⁵⁾	R _{FLAT(ON)}		Full			0.8	
Dynamic					•		
Turn-On-Time			25			50	
Turn-On-Time	t _{ON}	$V_{CC} = 1.8V$, V_{NO} or $V_{NC} = 1.5V$,	Full			50	
Turn-Off-Time	town	Figure 1	25			25	ns
Turn-On-Time	t _{OFF}		Full			25	
Charge Injection ⁽³⁾	Q	$C_L = 1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ Ω, Figure 2	25		36		pC
Logic Input							
Input High Voltage	V _{IH}	Guaranteed Logic High Level	Full	1.4			V
Input Low Voltage	V _{IL}	Guaranteed Logic LowLevel	Full			0.5	V
Input High Current	I _{INH}	$V_{IN} = 1.4V$, all others = $0.5V$	Full	-1		1	4
Input Low Current	I _{INL}	$V_{IN} = 0.5V$, all others = 1.4V	Full	-1		1	μΑ

Notes:

- 1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.
- 4. $\Delta R_{ON} = R_{ON} \text{ max.} R_{ON} \text{ min.}$
- 5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.

Test Circuits/Timing Diagrams

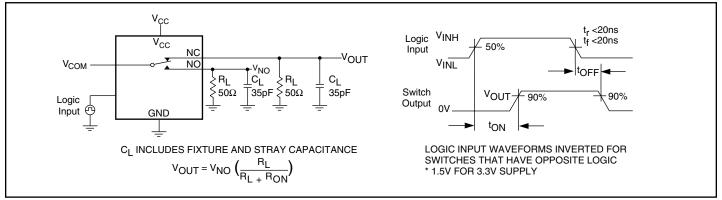


Figure 1. Switching Time

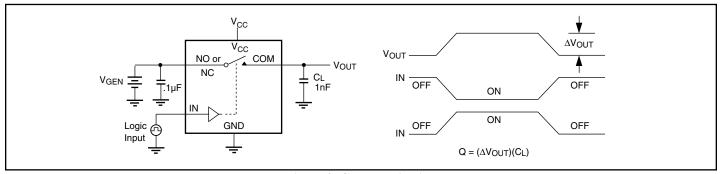


Figure 2. Charge Injection

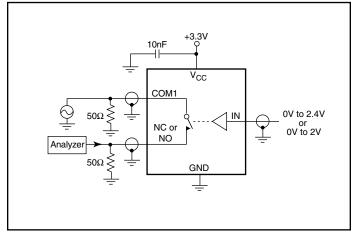


Figure 3. Off Isolation

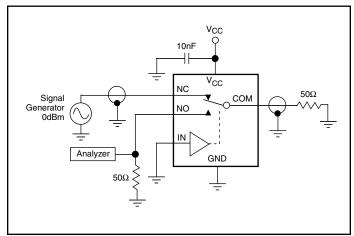
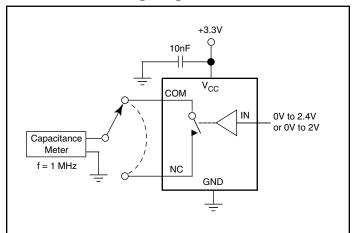



Figure 4. Crosstalk

Test Circuits/Timing Diagrams (continued)

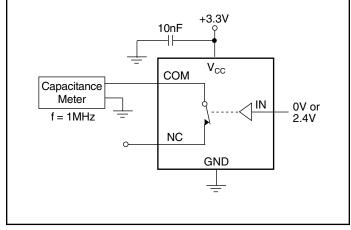
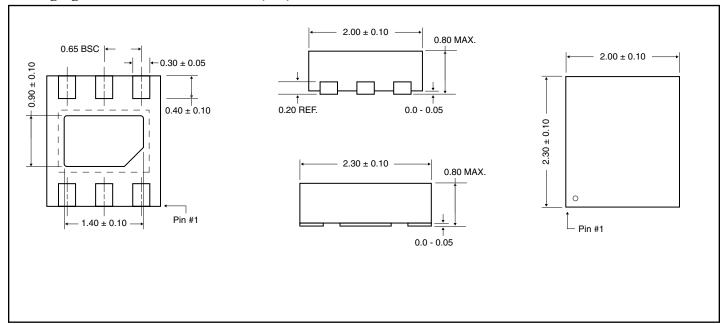
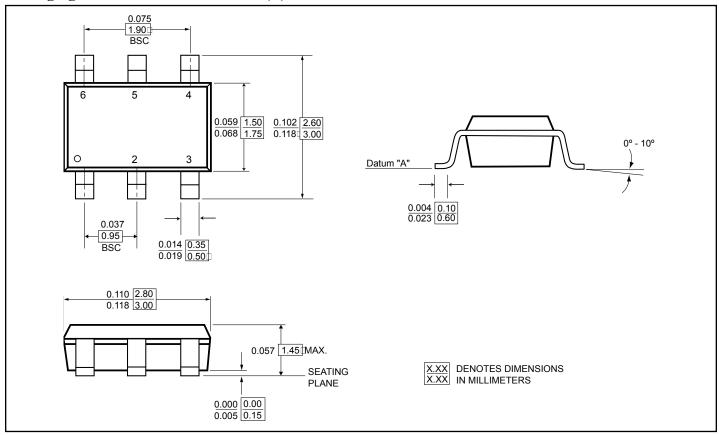



Figure 5. Channel-Off Capacitance

Figure 6. Channel-On Capacitance


Packaging Mechanical: 6-Pin TDFN (ZC)

06/27/04

Packaging Mechanical: 6-Pin SOT-23 (T)

Ordering Information

Ordering Code	Package Code	Package Description	Top Mark
PI3A3159TX	T	6-pin, SOT-23	ZG
PI3A3159TEX	T	Pb-free & Green, 6-pin, SOT-23	ZG
PI3A3159ZCEX	ZC	Pb-free & Green, 6-contact, TDFN	ZG

Notes:

- 1. Thermal characteristics can be found on the company web site at http://www.pericom.com/packaging/
- 2. X = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com