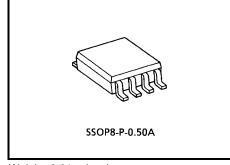
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC7WBL125FK


Dual Low-Voltage Bus Switch

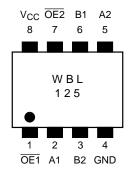
The TC7WBL125FK is a low on-resistance, high-speed CMOS 2-bit bus switch with low voltage operation. This bus switch allows the connections or disconnections to be made with minimal propagation delay while maintaining Low power dissipation which is the feature of CMOS.

When output enable (\overline{OE}) is at low level, the switch is on; when at high level, the switch is off.

P-MOS and N-MOS channel block also allows that the device is suitable for analog signal transmission.

All inputs are equipped with protection circuits to protect the device from static discharge.

Weight: 0.01 g (typ.)

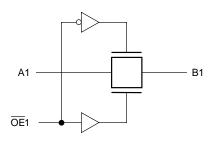

Features

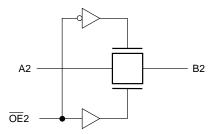
- Operating voltage: $V_{CC} = 2 \sim 3.6 \text{ V}$
- High speed operation: $t_{pd} = 0.25 \text{ ns (max)} @3 \text{ V}$
- Ultra-low on resistance: $RON = 5 \Omega$ (typ.) @3 V
- Electro-static discharge (ESD) performance: ±200 V or more (JEITA)

±2000 V or more (MIL)

- High noise immunity: VNIH = VNIL = 28% VCC (min)
- Power-down protection for inputs and I/O terminal.
- Package: US8

Pin Assignment (top view)





Truth Table

Inputs	Function		
ŌĒ	runction		
L	A port = B port		
Н	Disconnect		

System Diagram

Maximum Ratings

Characteristics	Symbol	Rating	Unit
Power supply voltage	Vcc	-0.5~7.0	V
Control pin input voltage	V_{IN}	-0.5~7.0	V
Switch terminal I/O voltage	Vs	-0.5~7.0	V
Clump diode current	I _{IK}	-50	mA
Switch I/O current	IS	128	mA
Power dissipation	P_{D}	200	mW
DC V _{CC} /GND current	I _{CC} /I _{GND}	±100	mA
Storage temperature	T _{stg}	-65~150	°C

Recommended Operating Conditions

Characteristics	Symbol	Rating	Unit
Power supply voltage	V _{CC}	2.0~3.6	V
Control pin input voltage	V _{IN}	0~5.5	V
Switch I/O voltage	Vs	0~5.5	V
Operating temperature	T _{opr}	-40~85	°C
Control pin input rise/fall time	dt/dv	0~10	ns/V

Electrical Characteristics

DC Characteristics ($Ta = -40 \sim 85$ °C)

Character	ristics	Symbol	Test Condition		V _{CC} (V)	Min	Тур.	Max	Unit
Control pin input	"H" level	V _{IH}	_		2.0~3.6	0.7 × V _{CC}	_	_	V
voltage	"L" level	VIL	_		2.0~3.6	_	_	0.3 × V _{CC}	V
Input leakage cur	rent	I _{IN}	V _{IN} = 0~5.5 V		2.0~3.6	_	_	±1.0	μΑ
Power off leakage	current	I _{OFF}	A, B, $\overline{OE} = 0 \sim 5.5 \text{ V}$		0	_	_	±1.0	μΑ
Off-state leakage (switch off)	current	I _{SZ}	A, B = $0\sim5.5$ V, \overline{OE} = V_{CC}		2.0~3.6	_	_	±1.0	μА
			$V_{IS} = 0 \text{ V}, I_{IS} = 30 \text{ mA}$	(Note 1)	3.0	_	2	7	
			$V_{IS} = 3.0 \text{ V}, I_{IS} = 30 \text{ mA}$	(Note 1)	3.0	_	3	7	
ON resistance		Ron	$V_{IS} = 2.4 \text{ V}, I_{IS} = 15 \text{ mA}$	(Note 1)	3.0	_	5	15	Ω
	(Note 3)	KON	V _{IS} = 0 V, I _{IS} = 24 mA	(Note 2)	2.3	_	3	10	22
			$V_{IS} = 2.3 \text{ V}, I_{IS} = 24 \text{ mA}$	(Note 2)	2.3	_	4	15	
			V _{IS} = 1.7 V, I _{IS} = 15 mA	(Note 2)	2.3	_	9	25	
Quiescent supply	current	Icc	$V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0$		3.6	_	_	10	μΑ

Note 1: The typical values are at $V_{CC} = 3.3 \text{ V}$, $Ta = 25^{\circ}C$.

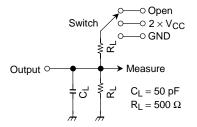
Note 2: The typical values are at $V_{CC} = 2.5 \text{ V}$, $Ta = 25^{\circ}\text{C}$.

Note 3: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on two (A or B) pins.

AC Characteristics ($Ta = -40 \sim 85$ °C)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Min	Max	Unit
Propagation delay time (bus to bus)	t _{pLH}	Figure 1, Figure 2 (Note 4)	3.0	_	0.25	ns
Output enable time	t_{pZL}	Figure 1, Figure 3	3.0		TBD	ns
Output enable time	t _{pZH}	Figure 1, Figure 3	2.3	_	TBD	115
Output disable time	t _{pLZ}	Figure 1, Figure 3	3.0	_	TBD	ns
Output disable time	t _{pHZ}	Figure 1, Figure 3	2.3		TBD	115

Note 4: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical on resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage the source (zero output impedance).


Capacitive Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Unit
Control pin input capacitance	C _{IN}	(Note 5)	3.0	3	pF
Switch terminal capacitance	C _{I/O}	$\overline{OE} = V_{CC}$ (Note 5)	3.0	10	pF

Note 5: This item is guaranteed by design.

AC Test Circuit

Parameter	Switch		
t _{pLH} , t _{pHL}	Open		
t_{pLZ}, t_{pZL}	$2 \times V_{CC}$		
t _{pHZ} , t _{pZH}	GND		

Figure 1

AC Waveform

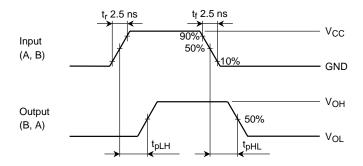
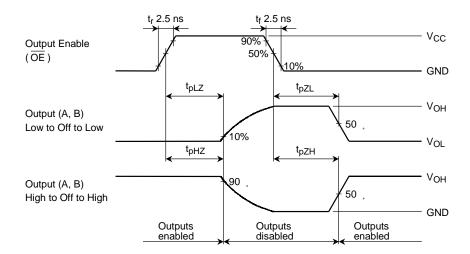
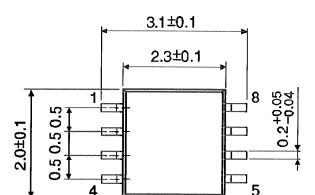
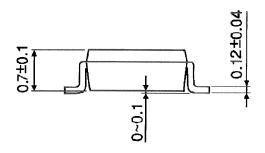


Figure 2 t_{pLH} , t_{pHL}


Figure 3 t_{pLZ} , t_{pHZ} , t_{pZL} , t_{pZH}

Package Dimensions

SSOP8-P-0.50A

Unit: mm

Weight: 0.01 g (typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
 rights of the third parties which may result from its use. No license is granted by implication or otherwise under
 any intellectual property or other rights of TOSHIBA CORPORATION or others.
- · The information contained herein is subject to change without notice.

6 2001-10-16