

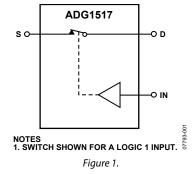
FEATURES

1.6 Ω on resistance 0.4 Ω on resistance flatness Up to 250 mA continuous current Fully specified at 15 V No V_L supply required 3 V logic-compatible inputs Rail-to-rail operation 8-lead 3 mm × 2 mm LFCSP package

APPLICATIONS

Audio signal routing Video signal routing Battery-powered systems Communication systems Data acquisition systems Relay replacement

GENERAL DESCRIPTION


The ADG1517 is a single-pole/single-throw (SPST) switch. Figure 1 shows that with a logic input of 1, the switch of the ADG1517 is closed. The switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked.

The *i*CMOS[™] (industrial CMOS) modular manufacturing process combines high voltage CMOS (complementary metal-oxide semiconductor) and bipolar technologies. It enables the development of a wide range of high performance analog ICs in a footprint that no other generation of high voltage parts has been able to achieve. Unlike analog ICs using conventional CMOS processes, *i*CMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size.

1.6 Ω On Resistance, 15 V *i*CMOS SPST Switch

ADG1517

FUNCTIONAL BLOCK DIAGRAM

The on resistance profile is very flat over the full analog input range, ensuring excellent linearity and low distortion when switching audio signals. *i*CMOS construction ensures ultralow power dissipation, making the part ideally suited for portable and battery-powered instruments.

PRODUCT HIGHLIGHTS

- 1. 1.85Ω maximum on resistance at 25°C.
- 2. Minimum distortion.
- 3. 3 V logic-compatible digital inputs: $V_{IH} = 2.0$ V, $V_{IL} = 0.8$ V.
- 4. No V_L logic power supply required.

Rev. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

 One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

 Tel: 781.329.4700
 www.analog.com

 Fax: 781.461.3113
 ©2008 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS

Features	1
Applications	1
Functional Block Diagram	1
General Description	1
Product Highlights	1
Revision History	2
Specifications	3
Single Supply	3
Continuous Current, S or D	

Absolute Maximum Ratings	4
Thermal Resistance	4
ESD Caution	4
Pin Configuration and Function Descriptions	5
Typical Performance Characteristics	6
Test Circuits	8
Terminology	10
Outline Dimensions	
Ordering Guide	11

REVISION HISTORY

10/08—Revision 0: Initial Version

SPECIFICATIONS

SINGLE SUPPLY

 V_{DD} = 15 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	V	
On Resistance (R _{ON})	1.6			Ωtyp	$V_s = 0 V$ to 10 V, $I_s = -10 \text{ mA}$; see Figure 13
	1.85	2.4	2.75	Ωmax	$V_{DD} = 13.5 \text{ V}$
On Resistance Flatness (R _{FLAT(ON)})	0.4			Ωtyp	$V_s = 0 V$ to 10 V, $I_s = -10 mA$
	0.5	0.6	0.7	Ωmax	
LEAKAGE CURRENTS					$V_{DD} = 16.5 V$
Source Off Leakage, I_s (Off)	±10			nA typ	$V_{s} = 1 V, V_{D} = 10 V$; or $V_{s} = 10 V$, $V_{D} = 1 V$; see Figure 14
Drain Off Leakage, I _D (Off)	±10			nA typ	$V_{s} = 1 V, V_{D} = 10 V$; or $V_{s} = 10 V$, $V_{D} = 1 V$; see Figure 14
Channel On Leakage, I _D , I _S (On)	±10			nA typ	$V_s = V_D = 1 V \text{ or } 10 V$, see Figure 15
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, VINL			0.8	V max	
Input Current, IINL or IINH	0.001			μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	4			pF typ	
DYNAMIC CHARACTERISTICS ¹					
ton	135			ns typ	$R_L = 300 \ \Omega, C_L = 35 \ pF$
	175	220	250	ns max	$V_s = 10 V$; see Figure 19
toff	115			ns typ	$R_L = 300 \ \Omega, \ C_L = 35 \ pF$
	155	190	220	ns max	V _s = 10 V; see Figure 19
Charge Injection	70			pC typ	$V_s = 8 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 20
Off Isolation	-60			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 16
Total Harmonic Distortion + Noise (THD + N)	0.04			% typ	R_{L} = 110 $\Omega,$ 7.5 V p-p, f = 20 Hz to 20 kHz; see Figure 18
–3 dB Bandwidth	65			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 17
Insertion Loss	-0.16			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 17
Cs (Off)	68			pF typ	$f = 1 MHz; V_s = 7.5 V$
C _D (Off)	68			pF typ	$f = 1 MHz; V_s = 7.5 V$
C _D , C _s (On)	185			pF typ	f = 1 MHz; Vs = 7.5 V
POWER REQUIREMENTS					$V_{DD} = 16.5 V$
I _{DD}	0.001			μA typ	Digital inputs = $0 V \text{ or } V_{DD}$
			1.0	μA max	
I _{DD}	75			μA typ	Digital inputs = 5 V
			145	µA max	
V _{DD}			5/16.5	V min/max	GND = 0 V

¹ Guaranteed by design, not subject to production test.

CONTINUOUS CURRENT, S OR D

Table 2.

Parameter	25°C	85°C	125°C	Unit	Test Conditions/Comments
CONTINUOUS CURRENT, S or D ^{1, 2}	250	150	100	mA max	$V_{DD} = 13.5 V, GND = 0 V$

¹ Guaranteed by design, not subject to production test.

 2 Data based on θ_{JA} data shown in Table 4.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 3.

Parameter	Rating
V _{DD} to GND	–0.3 V to +25 V
Analog Inputs ¹	GND – 0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first
Digital Inputs ¹	GND – 0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first
Peak Current, S or D	Data in Table 2 + 10% (pulsed at 1 ms, 10% duty cycle max)
Operating Temperature Range	
Industrial	-40°C to +125°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature	150°C
Reflow Soldering Peak Temperature, Pb Free	260°C

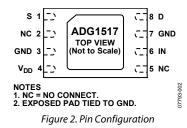
¹ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for a 4-layer board and with the exposed pad soldered to the board.

Table 4. Thermal Resistance


Package Type	θ」Α	Unit
8-Lead LFCSP (CP-8-4)	50.8	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	S	Source Terminal. Can be an input or output.
2	NC	No Connect.
3	GND	Ground (0 V) Reference. Both GND pins must be connected to GND potential.
4	V _{DD}	Most Positive Power Supply Potential.
5	NC	No Connect.
6	IN	Logic Control Input.
7	GND	Ground (0 V) Reference. Both GND pins must be connected to GND potential.
8	D	Drain Terminal. Can be an input or output.
9 (EPAD)	Exposed Paddle (EPAD)	The exposed paddle should be tied to GND.

Table 6. Truth Table

ADG1517 IN Pin	Switch Condition
1	On
0	Off

TYPICAL PERFORMANCE CHARACTERISTICS

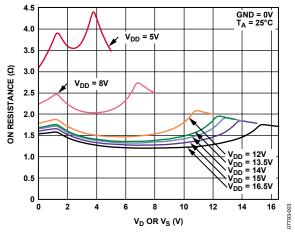


Figure 3. On Resistance as a Function of V_D or V_S for Single Supply

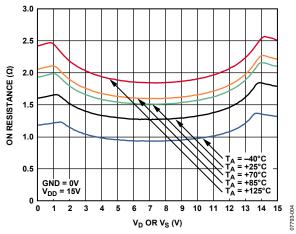


Figure 4. On Resistance as a Function of V_D or V_S for Different Temperatures, Single Supply

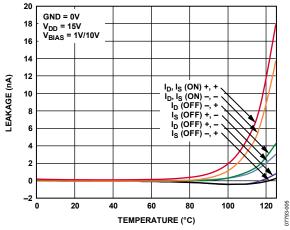
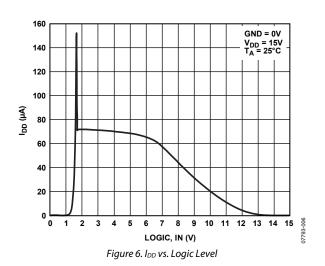
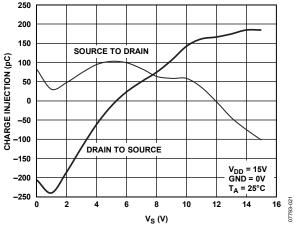
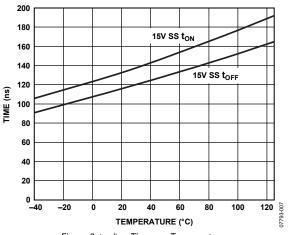
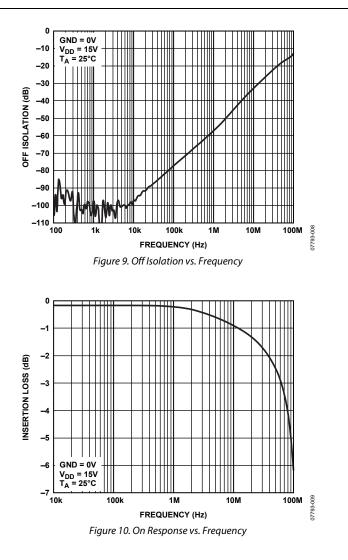
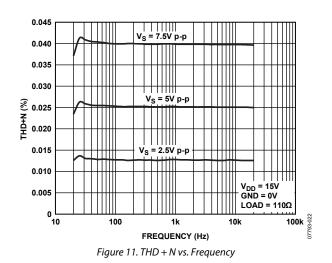
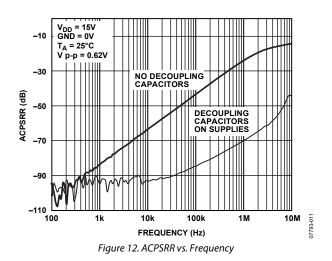
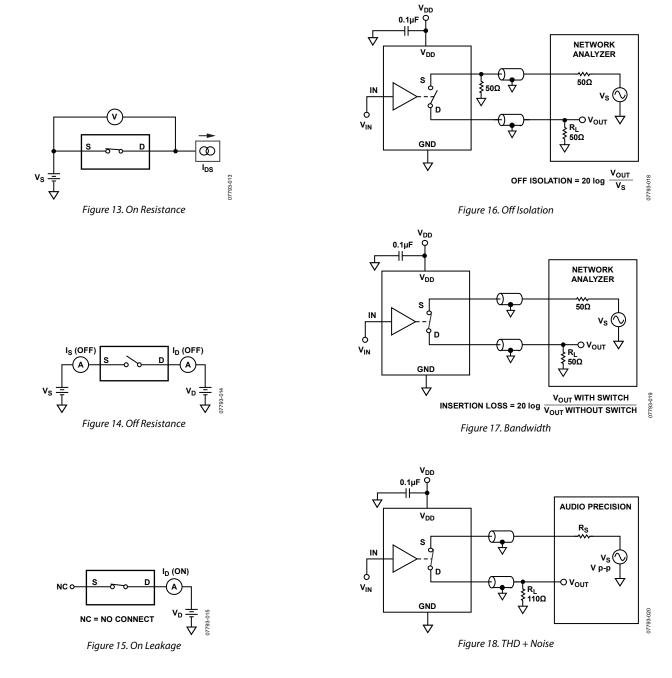





Figure 5. Leakage Currents as a Function of Temperature, Single Supply


Figure 8. t_{ON}/t_{OFF} Times vs. Temperature

TEST CIRCUITS

TERMINOLOGY

Idd

The positive supply current.

V_D (V_s) The analog voltage on Terminal D and Terminal S.

Ron

The ohmic resistance between D and S.

R_{FLAT(ON)}

Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.

Is (Off)

The source leakage current with the switch off.

 $I_{\rm D}$ (Off) The drain leakage current with the switch off.

 $I_{\rm D}, I_{\rm S}\left(On\right)$ The channel leakage current with the switch on.

V_{INL} The maximum input voltage for Logic 0.

 V_{INH} The minimum input voltage for Logic 1.

C_s (Off) The off switch source capacitance, measured with reference to ground.

C_D (Off)

The off switch drain capacitance, measured with reference to ground.

C_D, C_s (On)

The on switch capacitance, measured with reference to ground.

C_{IN} The digital input capacitance.

ton

Delay time between the 50% and 90% points of the digital input and switch on condition.

toff

Delay time between the 50% and 90% points of the digital input and switch off condition.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation A measure of unwanted signal coupling through an off switch.

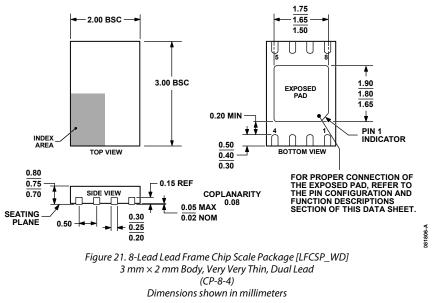
Bandwidth

The frequency at which the output is attenuated by 3 dB.

On Response The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.


THD + N

The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

ACPSRR (AC Power Supply Rejection Ratio)

Measures the ability of a part to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p. The ratio of the amplitude of signal on the output to the amplitude of the modulation is the ACPSRR.

OUTLINE DIMENSIONS

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding
ADG1517BCPZ-REEL71	-40°C to +125°C	8-Lead Lead Frame Chip Scale Package (LFCSP_WD)	CP-8-4	1E

 1 Z = RoHS Compliant Part.

NOTES

©2008 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D07793-0-10/08(0)

www.analog.com