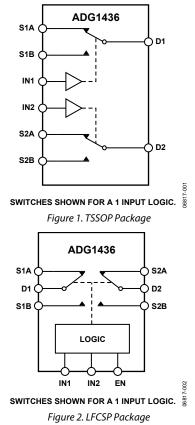
ANALOG 1.8 Ω Maximum On Resistance, **±**15 V/12 V/±5 V, *i*CMOS, Dual SPDT Switch

Preliminary Technical Data

FEATURES


1.8 Ω maximum on resistance at 25°C
0.37 Ω maximum on-resistance flatness
0.17 Ω maximum on-resistance match between channels
Continuous current per channel
LFCSP package: 300 mA
TSSOP package: 240 mA
Fully specified at +12 V, ±15 V, and ±5 V
No V_L supply required
3 V logic-compatible inputs
Rail-to-rail operation
16-lead TSSOP and 4 mm × 4 mm, 16-lead LFCSP packages

APPLICATIONS

Automatic test equipment Data acquisition systems Battery-powered systems Sample-and-hold systems Audio signal routing Communication systems Relay replacement

ADG1436

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The ADG1436 is a monolithic CMOS device containing two independently selectable SPDT switches. An EN input on the LFCSP package is used to enable or disable the device. When disabled, all channels are switched off. Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked. Both switches exhibit break-before-make switching action for use in multiplexer applications.

The ADG1436 is designed on an *i*CMOS process. *i*CMOS (industrial-CMOS) is a modular manufacturing process combining high voltage CMOS (complementary metal-oxide semiconductor) and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation

Rev. PrD

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. in a footprint that no previous generation of high voltage parts has been able to achieve. Unlike analog ICs using conventional CMOS processes, *i*CMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size.

The on-resistance profile is very flat over the full analog input range, ensuring excellent linearity and low distortion when switching audio signals. *i*CMOS construction ensures ultralow power dissipation, making the part ideally suited for portable and battery-powered instruments.

PRODUCT HIGHLIGHTS

- 1. 2.5Ω maximum on resistance over temperature.
- 2. Minimum distortion.
- 3. Ultralow power dissipation: $<0.03 \mu$ W.
- 4. 16-lead TSSOP and 16-lead 4 mm × 4 mm LFCSP packages.

 One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

 Tel: 781.329.4700
 www.analog.com

 Fax: 781.461.3113
 ©2007 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS

Features	. 1
Applications	. 1
Functional Block Diagram	. 1
General Description	. 1
Product Highlights	. 1
Revision History	. 2
Specifications	. 3
15 V Dual Supply	. 3
12 V Single Supply	.4
5 V Dual Supply	. 5

REVISION HISTORY

Absolute Maximum Ratings	6
ESD Caution	6
Pin Configurations and Function Descriptions	7
Truth Table For Switches	7
Terminology	8
Typical Performance Characteristics	9
Test Circuits	13
Outline Dimensions	16
Ordering Guide	16

SPECIFICATIONS

15 V DUAL SUPPLY

 V_{DD} = 15 V \pm 10%, V_{SS} = –15 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	25°C	–40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V _{DD} to V _{SS}	v	
On Resistance (R _{ON})	1.5			Ωtyp	$V_s = \pm 10 V$, $I_s = -10 mA$; see Figure 24
	1.8	2.2	2.5	Ωmax	$V_{DD} = +13.5 \text{ V}, \text{ V}_{SS} = -13.5 \text{ V}$
On-Resistance Match	0.1			Ωtyp	$V_{s} = \pm 10 V, I_{s} = -10 mA$
Between Channels (ΔR _{ON})					
	0.13	0.16	0.17	Ωmax	
On-Resistance Flatness (R _{FLAT(ON)})	0.28			Ωtyp	$V_{s} = \pm 10 V$, $I_{s} = -10 mA$
	0.31	0.35	0.37	Ωmax	
LEAKAGE CURRENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
Source Off Leakage, Is (Off)	±0.01			nA typ	$V_{s} = \pm 10 V$, $V_{s} = \pm 10 V$; see Figure 25
	±0.5	±10	±100	nA max	
Drain Off Leakage, I _D (Off)	±0.01			nA typ	$V_{s} = \pm 10 V$, $V_{s} = \pm 10 V$; see Figure 25
	±0.5	±10	±100	nA max	
Channel On Leakage, I _D , I _S (On)	±0.04			nA typ	$V_s = V_D = \pm 10 V$; see Figure 26
	±1	±10	±100	nA max	······································
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, VINL			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005		0.0	μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
	0.005		±0.1	µA max	
Digital Input Capacitance, C _{IN}	3.5		10.1	pF typ	
	5.5			prtyp	
Transition Time, t _{TRANSITION}	125			nc tun	$R_{L} = 300 \Omega, C_{L} = 35 pF$
Transition Time, CRANSITION	170	215	245	ns typ	$V_s = +10 V$; see Figure 31
+ (EN)	95	215	245	ns max	$R_{\rm L} = 300 \Omega, C_{\rm L} = 35 \mathrm{pF}$
t _{on} (EN)		140	155	ns typ	•
+ (ENI)	120 105	140	155	ns max	$V_{s} = 10 V$; see Figure 31 $R_{L} = 300 \Omega$, $C_{L} = 35 pF$
t _{off} (EN)		150	170	ns typ	
Dural Defeue Males Times Deleve t	130	150	170	ns max	$V_s = 10 V_i$; see Figure 31
Break-Before-Make Time Delay, t_{BBM}	20		10	ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	20		10	ns min	$V_{s1} = V_{s2} = +10$ V; see Figure 32
Charge Injection	-20			pC typ	$V_s = 0 V, R_s = 0 \Omega, C_L = 1 nF$; see Figure 34
Off Isolation	-80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 27
Channel-to-Channel Crosstalk	-80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 28
Total Harmonic Distortion + Noise	0.011			% typ	$R_L = 110~\Omega,15$ V p-p, $f = 20$ Hz to 20 kHz see Figure 30
–3 dB Bandwidth	110			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 29
Insertion Loss	-0.17			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 29
Cs (Off)	23			pF typ	$f = 1 MHz, V_S = 0 V$
C _D (Off)	50			pF typ	$f = 1 MHz, V_S = 0 V$
C _D , C _s (On)	120			pF typ	$f = 1 MHz, V_S = 0 V$
POWER REQUIREMENTS					$V_{DD} = +16.5 \text{ V}, \text{ V}_{SS} = -16.5 \text{ V}$
I _{DD}	0.001			μA typ	Digital Inputs = $0 V \text{ or } V_{DD}$
			1	μA max	
ldd	170			μA typ	Digital Input = 5 V
			230	μA max	
lss	0.001			μA typ	Digital Inputs = $0 V_{1} 5 V_{2}$, or V_{DD}
			1.0	μA max	
V _{DD} /V _{SS}			±4.5/±16.5	V min/max	GND = 0 V

¹ Guaranteed by design, not subject to production test.

12 V SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0 V$ to V_{DD}	V	
On Resistance (R _{ON})	3			Ωtyp	$V_{s} = 0 V$ to 10 V, $I_{s} = -10 mA$; see Figure 24
	3.5	4.3	4.7	Ωmax	$V_{DD} = +10.8 V, V_{SS} = 0 V$
On-Resistance Match	0.12			Ωtyp	$V_s = 0 V \text{ to } 10 V$, $I_s = -10 \text{ mA}$
Between Channels (ΔR _{on})					
	0.16	0.18	0.2	Ωmax	
On-Resistance Flatness (R _{FLAT(ON)})	0.85			Ωtyp	$V_s = 0 V$ to 10 V, $I_s = -10 mA$
	1	1.13	1.16	Ωmax	
LEAKAGE CURRENTS					$V_{DD} = 13.2 \text{ V}, \text{ V}_{SS} = 0 \text{ V}$
Source Off Leakage, Is (Off)	±0.01			nA typ	$V_s = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}; \text{ see Figure 25}$
5,7,8,7,7	±0.5	±10	±100	nA max	
Drain Off Leakage, I₀ (Off)	±0.01			nA typ	$V_{s} = 1 V/10 V$, $V_{D} = 10 V/1 V$; see Figure 25
	±0.5	±10	±100	nA max	13 1.0,10 1,10 10 1,1 1,500 1.gale _0
Channel On Leakage, I _D , Is (On)	±0.04			nA typ	$V_s = V_D = 1 V \text{ or } 10 V$; see Figure 26
	±0.01 ±1	±10	±100	nA max	v3 = vb = 1 v of 10 v, see figure 20
DIGITAL INPUTS	<u> </u>	10	100	ПА Шах	
Input High Voltage, VINH			2.0	V min	
Input Low Voltage, V _{INL}	0.001		0.8	V max	
Input Current, I _{INL} or I _{INH}	0.001			μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
			±0.1	µA max	
Digital Input Capacitance, CIN	3.5			pF typ	
DYNAMIC CHARACTERISTICS ¹					
Transition Time, transition	200			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	270	320	350	ns max	V _s = 8 V; see Figure 31
t _{on} (EN)	175			ns typ	$R_L = 300 \ \Omega$, $C_L = 35 \ pF$
	235	280	310	ns max	V _s = 8 V; see Figure 31
t _{off} (EN)	105			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	145	175	195	ns max	V _s = 8 V; see Figure 31
Break-Before-Make Time Delay, tBBM	70			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
			10	ns min	$V_{s1} = V_{s2} = 8 V$; see Figure 32
Charge Injection	30			pC typ	$V_s = 6 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 34
Off Isolation	-80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 27;
Channel-to-Channel Crosstalk	-80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see
					Figure 28
–3 dB Bandwidth	110			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 29
Insertion Loss	0.18			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 29
Cs (Off)	40			pF typ	$f = 1 MHz$, $V_s = 6 V$
C _D (Off)	80			pF typ	$f = 1 MHz$, $V_s = 6 V$
C _D , C _s (On)	140			pF typ	$f = 1 MHz$, $V_s = 6 V$
POWER REQUIREMENTS					$V_{DD} = 13.2 V$
IDD	0.001			μA typ	Digital inputs = $0 V \text{ or } V_{DD}$
			1.0	μA max	
I _{DD}	170			µA typ	Digital inputs = 5 V
			230	μA max	
V _{DD}			5/16.5	V min/max	$GND = 0 V, V_{ss} = 0 V$

¹ Guaranteed by design, not subject to production test.

5 V DUAL SUPPLY

 V_{DD} = 5 V \pm 10%, V_{SS} = –5 V \pm 10%, GND = 0 V, unless otherwise noted.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	v	
On Resistance (R_{ON})	3.5			Ωtyp	$V_{s} = \pm 4.5 V$, $I_{s} = -10 mA$; see Figure 24
	4	4.8	5.3	Ωmax	$V_{DD} = +4.5 \text{ V}, \text{ V}_{SS} = -4.5 \text{ V}$
On-Resistance Match	0.12		5.0	Ωtyp	$V_{\rm S} = \pm 4.5 \text{ V}, \text{ I}_{\rm S} = -10 \text{ mA}$
Between Channels (ΔR_{ON})	0.16	0.10	0.0	0	
	0.16	0.18	0.2	Ωmax	
On-Resistance Flatness (R _{FLAT(ON)})	0.88	1.2	1.3	Ω typ	$V_s = \pm 4.5 V, I_s = -10 mA$
LEAKAGE CUBRENTS	1.1	1.2	1.5	Ωmax	$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
Source Off Leakage, Is (Off)	10.01			n A turn	
Source OII Leakage, Is (OII)	±0.01			nA typ	$V_s = \pm 4.5 \text{ V}, V_D = \mp 4.5 \text{ V}; \text{ see Figure 25}$
	±0.5	±10	±100	nA max	
Drain Off Leakage, I _D (Off)	±0.01			nA typ	$V_s = \pm 4.5 \text{ V}, V_D = \mp 4.5 \text{ V}; \text{ see Figure 25}$
	±0.5	±10	±100	nA max	
Channel On Leakage, I _D , I _S (On)	±0.04			nA typ	$V_s = V_D = \pm 4.5V$; see Figure 26
	±1	±10	±100	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, VINL			0.8	V max	
Input Current, IINL or IINH	0.001			μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	3.5			pF typ	
DYNAMIC CHARACTERISTICS ¹					
Transition Time, transition	310			ns typ	$R_L = 300 \ \Omega, C_L = 35 \ pF$
	445	510	565	ns max	V _s = 3 V; see Figure 31
ton (EN)	255			ns typ	$R_L=300~\Omega,~C_L=35~pF$
	355	415	460	ns max	V _s = 3 V; see Figure 31
t _{off} (EN)	215			ns typ	$R_L=300~\Omega,~C_L=35~pF$
	305	355	400	ns max	V _s = 3 V; see Figure 31
Break-Before-Make Time Delay, t _{BBM}	80			ns typ	$R_L = 300 \ \Omega, C_L = 35 \ pF$
			10	ns min	$V_{s_1} = V_{s_2} = 3 V$; see Figure 32
Charge Injection	30			pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 34
Off Isolation	-80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 \text{ kHz}$; see Figure 27
Channel-to-Channel Crosstalk	-80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 28
Total Harmonic Distortion + Noise	0.03			% typ	$R_L = 110 \Omega$, 2.5 V pp, f = 20 Hz to 20 kHz see Figure 30
-3 dB Bandwidth	85			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 29
Insertion Loss	0.28			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 29
Cs (Off)	33			pF typ	$V_{s} = 0 V, f = 1 MHz$
C _D (Off)	65			pF typ	$V_{s} = 0 V, f = 1 MHz$
C _D , C _s (On)	145			pF typ	$V_{s} = 0 V, f = 1 MHz$
POWER REQUIREMENTS					$V_{DD} = +5.5 \text{ V}, \text{V}_{SS} = -5.5 \text{ V}$
I _{DD}	0.001			μA typ	Digital inputs = 0 V or V_{DD}
			1.0	µA max	
lss	0.001			μA typ	Digital inputs = $0 V$ or V_{DD}
			1.0	µA max	
V _{DD} /V _{ss}			±4.5/±16.5	V min/max	GND = 0 V

¹ Guaranteed by design, not subject to production test.

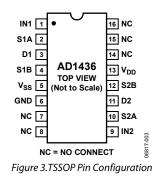
ABSOLUTE MAXIMUM RATINGS

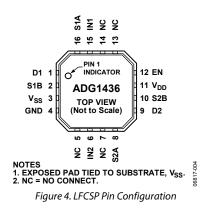
 $T_A = 25^{\circ}$ C, unless otherwise noted.

Table 4.

14010 11	
Parameter	Ratings
V _{DD} to V _{SS}	35 V
V _{DD} to GND	–0.3 V to +25 V
V _{ss} to GND	+0.3 V to -25 V
Analog Inputs ¹	$V_{\text{SS}} - 0.3$ V to $V_{\text{DD}} + 0.3$ V
Digital Inputs ¹	GND – 0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first
Peak Current, S or D	600 mA (pulsed at 1 ms, 10% duty cycle maximum)
Continuous Current per	
Channel, S or D	
16-Lead TSSOP	240 mA
16-Lead LFCSP	300 mA
Operating Temperature Range	
Automotive (Y Version)	–40°C to +125°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature	150°C
16-Lead TSSOP, θ _{JA} Thermal Impedance (4-layer board)	112°C/W
16-Lead LFCSP, θ _{JA} Thermal Impedance	30.4°C/W
Reflow Soldering Peak Temperature, Pb free	260(+0/-5)°C

¹ Over voltages at IN, S, and D are clamped by internal diodes. Current should be limited to the maximum ratings given.


Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Table 5. Pin Function Descriptions

Pin No.			
TSSOP	LFCSP	Mnemonic	Function
1	15	IN1	Logic Control Input.
2	16	S1A	Source Terminal. Can be an input or output.
3	1	D1	Drain Terminal. Can be an input or output.
4	2	S1B	Source Terminal. Can be an input or output.
5	3	V _{ss}	Most Negative Power Supply Potential.
6	4	GND	Ground (0 V) Reference.
7, 8, 14 to 16	5, 7, 13, 14	NC	No Connect.
9	6	IN2	Logic Control Input.
10	8	S2A	Source Terminal. Can be an input or output.
11	9	D2	Drain Terminal. Can be an input or output.
12	10	S2B	Source Terminal. Can be an input or output.
13	11	V _{DD}	Most Positive Power Supply Potential.
N/A	12	EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are off. When this pin is high, INx logic inputs determine the on switches.

TRUTH TABLE FOR SWITCHES

Table 6. ADG1436 TSSOP Truth Table

INx	SxA	SxB
0	Off	On
1	On	Off

Table 7. ADG1436 LFCSP Truth Table

EN	INx	SxA	SxB
0	Х	Off	Off
1	0	Off	On
1	1	On	Off

ADG1436

TERMINOLOGY

Idd

The positive supply current.

Iss

The negative supply current.

$V_D(V_s)$

The analog voltage on Terminal D and Terminal S.

Ron

The ohmic resistance between Terminal D and Terminal S.

R_{FLAT(ON)}

Flatness is defined as the difference between the maximum and minimum value of on resistance measured over the specified analog signal range.

Is (Off)

The source leakage current with the switch off.

 \mathbf{I}_{D} (Off) The drain leakage current with the switch off.

 $I_{\rm D}, I_{\rm S}\left(On\right)$ The channel leakage current with the switch on.

 $\mathbf{V}_{\mathrm{INL}}$

The maximum input voltage for Logic 0.

 $V_{\mbox{\scriptsize INH}}$ The minimum input voltage for Logic 1.

I_{INL} (I_{INH}) The input current of the digital input.

Cs (Off)

The off switch source capacitance, which is measured with reference to ground.

C_D (Off)

The off switch drain capacitance, which is measured with reference to ground.

C_D, C_s (On) The on switch capacitance, which is measured with reference to ground.

C_{IN} The digital input capacitance.

t_{TRANSITION}

The delay time between the 50% and 90% points of the digital input and switch on condition when switching from one address state to another.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

The frequency at which the output is attenuated by 3 dB.

On Response The frequency response of the on switch.

Insertion Loss The loss due to the on resistance of the switch.

THD + N

The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

TYPICAL PERFORMANCE CHARACTERISTICS

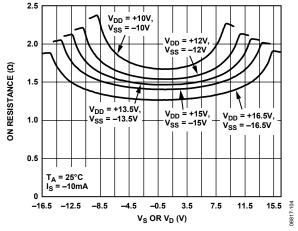


Figure 5. On Resistance as a Function of V_D (V_S), Dual Supply

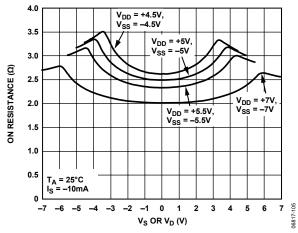


Figure 6. On Resistance as a Function of V_D (V_S), Dual Supply

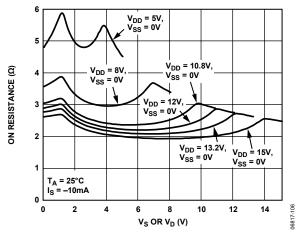


Figure 7. On Resistance as a Function of V_D (V_s), Single Supply

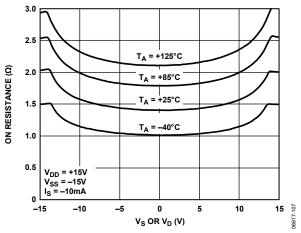


Figure 8. On Resistance as a Function of V_D (V_s) for Different Temperatures, 15 V Dual Supply

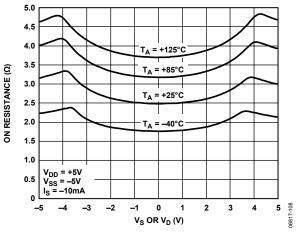


Figure 9. On Resistance as a Function of V_D (V_s) for Different Temperatures, 5 V Dual Supply

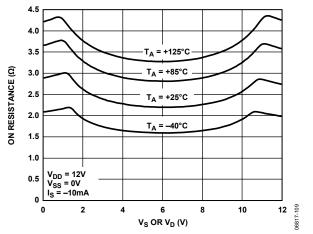


Figure 10. On Resistance as a Function of V_D (V_s) for Different Temperatures, Single Supply

ADG1436

Figure 11. Leakage Currents as a Function of Temperature, 15 V Dual Supply

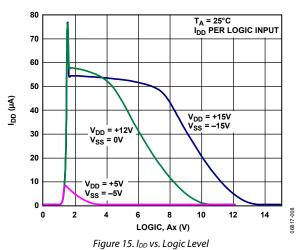

Figure 12. Leakage Currents as a Function of Temperature, 15 V Dual Supply

Figure 13. Leakage Currents as a Function of Temperature, 5 V Dual Supply

Figure 14. Leakage Currents as a Function of Temperature, 12 V Single Supply

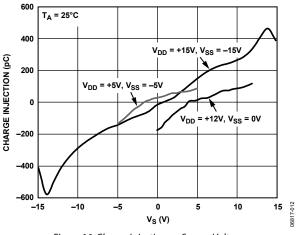
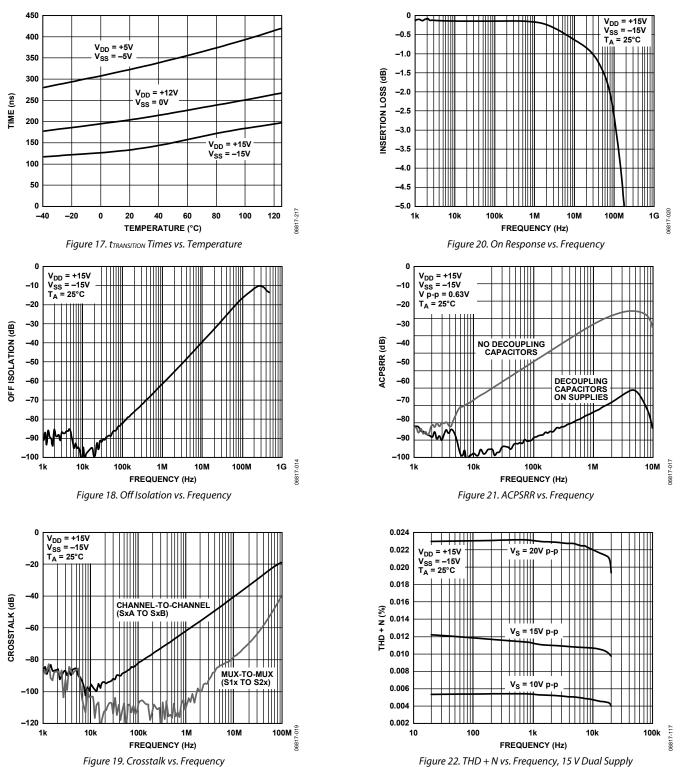
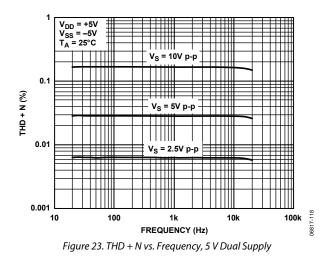
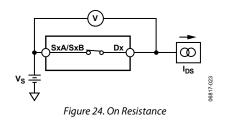
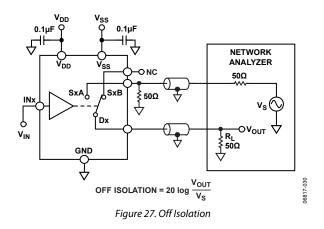
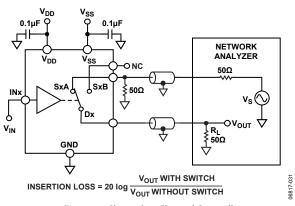
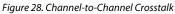


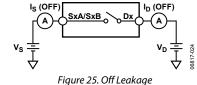
Figure 16. Charge Injection vs. Source Voltage

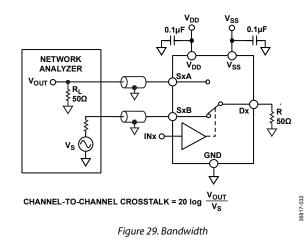
Preliminary Technical Data

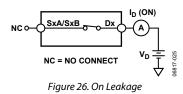





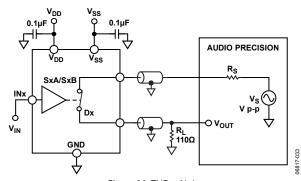

Figure 22. THD + N vs. Frequency, 15 V Dual Supply

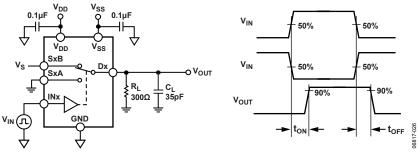


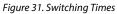

TEST CIRCUITS

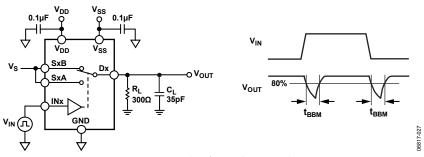


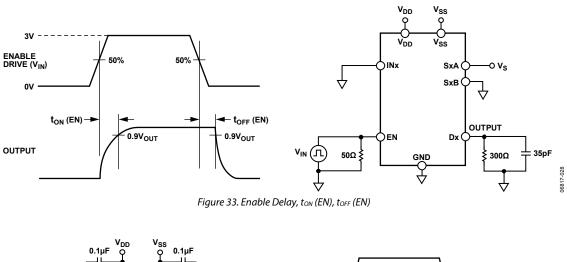












Rev. PrD | Page 14 of 17

Preliminary Technical Data

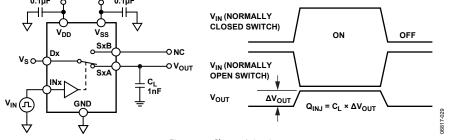
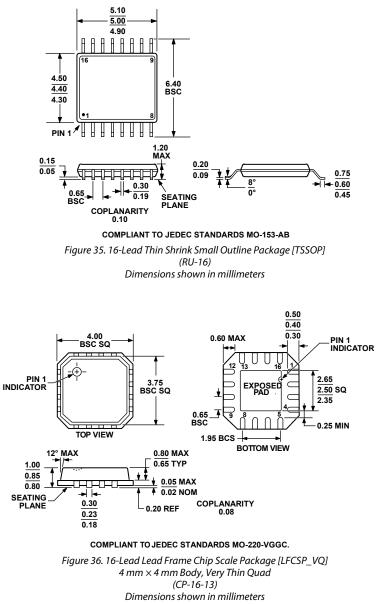



Figure 34. Charge Injection

ADG1436

031006-A

OUTLINE DIMENSIONS

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG1436YRUZ ¹	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1436YRUZ-REEL71	–40°C to +125°C	16-Lead Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG1436YCPZ-REEL ¹	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package (LFCSP_VQ)	CP-16-13
ADG1436YCPZ-REEL71	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package (LFCSP_VQ)	CP-16-13

 1 Z = RoHS Compliant Part.

NOTES

Rev. PrD | Page 17 of 17

www.analog.com