

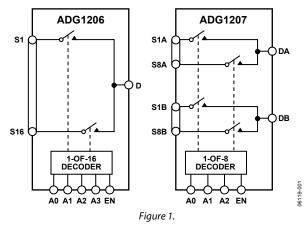
Low Capacitance, 16- and 8-Channel ±15 V/+12 V *i*CMOS[™] Multiplexers

ADG1206/ADG1207

FEATURES

<1 pC charge injection over full signal range 1.5 pF off capacitance 33 V supply range 120 Ω on resistance Fully specified at ±15 V/+12 V 3 V logic-compatible inputs Rail-to-rail operation Break-before-make switching action 28-lead TSSOP and 32-lead, 5 mm × 5 mm LFCSP_VQ

APPLICATIONS


Audio and video routing Automatic test equipment Data acquisition systems Battery-powered systems Sample-and-hold systems Communication systems

GENERAL DESCRIPTION

The ADG1206 and ADG1207 are monolithic *i*CMOS analog multiplexers comprising sixteen single channels and eight differential channels, respectively. The ADG1206 switches one of sixteen inputs to a common output, as determined by the 4-bit binary address lines A0, A1, A2, and A3. The ADG1207 switches one of eight differential inputs to a common differential output, as determined by the 3-bit binary address lines A0, A1, and A2. An EN input on both devices is used to enable or disable the device. When disabled, all channels are switched off. When on, each channel conducts equally well in both directions and has an input signal range that extends to the supplies.

The *i*CMOS (industrial CMOS) modular manufacturing process combines high voltage CMOS (complementary metaloxide semiconductor) and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no other generation of high voltage parts has been able to achieve. Unlike analog ICs using conventional CMOS processes, *i*CMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size.

FUNCTIONAL BLOCK DIAGRAMS

The ultralow capacitance and exceptionally low charge injection of these multiplexers make them ideal solutions for data acquisition and sample-and-hold applications, where low glitch and fast settling are required. Figure 2 shows that there is minimum charge injection over the entire signal range of the device. *i*CMOS construction also ensures ultralow power dissipation, making the parts ideally suited for portable and battery-powered instruments.

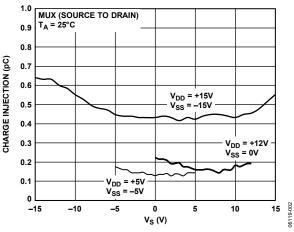


Figure 2. Source-to-Drain Charge Injection vs. Source Voltage

Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

 One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

 Tel: 781.329.4700
 www.analog.com

 Fax: 781.461.3113
 ©2006 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS

Features	. 1
Applications	. 1
Functional Block Diagrams	. 1
General Description	. 1
Revision History	. 2
Specifications	. 3
Dual Supply	. 3
Single Supply	. 5

Absolute Maximum Ratings	7
ESD Caution	7
Pin Configurations and Function Descriptions	8
Typical Performance Characteristics	12
Terminology	16
Test Circuits	17
Outline Dimensions	19
Ordering Guide	19

REVISION HISTORY

7/06—Revision 0: Initial Version

SPECIFICATIONS

DUAL SUPPLY

 V_{DD} = +15 V \pm 10%, V_{SS} = –15 V \pm 10%, GND = 0 V, unless otherwise noted. 1

Table 1.

Parameter	+25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V_{SS} to V_{DD}	V	
On Resistance, Ron	120			Ωtyp	$V_s = \pm 10 V$, $I_s = -1 mA$; see Figure 28
	200	240	270	Ωmax	$V_{DD} = +13.5 V, V_{SS} = -13.5 V$
On Resistance Match Between Channels, ΔR_{ON}	3.5			Ωtyp	$V_{s} = \pm 10 V$, $I_{s} = -1 mA$
	6	10	12	Ωmax	
On Resistance Flatness, R _{FLAT} (On)	20			Ωtyp	$V_s = -5 V, 0 V, +5 V; I_s = -1 mA$
	64	76	83	Ωmax	
LEAKAGE CURRENTS					
Source Off Leakage, Is (Off)	±0.03			nA typ	$V_D = \pm 10 \text{ V}, \text{ V}_S = \mp 10 \text{ V}; \text{ see Figure 29}$
y	±0.2	±0.6	±1	nA max	$v_0 = \pm 10$ $v_1 v_3 = + 10$ v_1 see Figure 25
Drain Off Leakage, I _D (Off)	±0.2 ±0.05	±0.0	<u></u> .	nA typ	$V_s = 1 V$, 10 V; $V_D = 10 V$, 1 V; see Figure 29
Drain on Leakage, 10 (On)	±0.05 ±0.2	±0.6	±2	nA max	$v_3 = v_1 v_1 v_1 v_2 = v_1 v_1 v_1 v_2 = v_1 v_2 = v_1 v_1 v_2 = v_1 v_$
Channel On Leakage, I _D , I _S (On)	±0.2 ±0.08	±0.0	<u> - </u>	nA typ	$V_s = V_D = \pm 10 V$; see Figure 30
Charmer On Leakage, ib, is (On)	±0.08 ±0.2	±0.6	±2	nA typ	$v_{\rm S} = v_{\rm D} = \pm 10$ v, see Figure 30
DIGITAL INPUTS	±0.2	±0.0	±Ζ	TIA IIIdx	
			2.0) (main	
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	±0.005			μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
			±0.1	µA max	
Digital Input Capacitance, C _{IN}	2			pF typ	
DYNAMIC CHARACTERISTICS ²					
Transition Time, t _{TRANSITION}	80			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	130	165	185	ns max	Vs = 10 V; see Figure 31
t _{on} (EN)	75			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	95	105	115	ns max	Vs = 10 V; see Figure 33
t _{OFF} (EN)	85			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	100	125	140	ns max	V _s = 10 V; see Figure 33
Break-Before-Make Time Delay, t _{BBM}	20			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
			10	ns min	$V_{S1} = V_{S2} = 10 V$; see Figure 32
Charge Injection	0.5			pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 34
Off Isolation	-85			dB typ	$R_{L} = 50 \Omega$, $C_{L} = 5 pF$, $f = 1 MHz$; see Figure 35
Channel-to-Channel Crosstalk	-85			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 37
Total Harmonic Distortion + Noise	0.15			% typ	$R_L = 10 \text{ k}\Omega$, 5 V rms, f = 20 Hz to 20 kHz; see Figure 38
-3 dB Bandwidth ADG1206	280			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 36
–3 dB Bandwidth ADG1207	490			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 36
C _s (Off)	1.5			pF typ	$f = 1 MHz, V_s = 0 V$
	2			pF max	$f = 1 \text{ MHz}, V_s = 0 \text{ V}$
C _D (Off) ADG1206	11			pF typ	$f = 1 \text{ MHz}, V_S = 0 \text{ V}$
	12			pF max	$f = 1 \text{ MHz}, V_S = 0 \text{ V}$
C _D (Off) ADG1207	7			pF max pF typ	$f = 1 \text{ MHz}, V_S = 0 \text{ V}$ $f = 1 \text{ MHz}, V_S = 0 \text{ V}$
	9			pF max	$f = 1 MHz$, $V_s = 0 V$

Parameter	-40° +25°C +85°		Unit	Test Conditions/Comments
C _D , C _s (On) ADG1206	13		pF typ	$f = 1 MHz, V_S = 0 V$
	15		pF max	$f = 1 MHz, V_S = 0 V$
C _D , C _s (On) ADG1207	8		pF typ	$f = 1 MHz$, $V_S = 0 V$
	10		pF max	$f = 1 MHz$, $V_S = 0 V$
POWER REQUIREMENTS				$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
IDD	0.002		μA typ	Digital inputs = $0 V \text{ or } V_{DD}$
		1.0	μA max	
l _{DD}	260		μA typ	Digital inputs = 5 V
		420	μA max	
lss	0.002		μA typ	Digital inputs = 0 V, 5 V, or V_{DD}
		1.0	μA max	
V _{DD} /V _{ss}		±5/±16.5	V min/max	GND = 0V

 1 Temperature range for Y version is –40°C to +125°C. 2 Guaranteed by design, not subject to production test.

SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted. 1

Table 2.

Parameter	+25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 to V_{DD}	V	
On Resistance, Ron	300			Ωtyp	$V_s = 0 V to 10 V$, $I_s = -1 mA$; see Figure 28
	475	567	625	Ωmax	$V_{DD} = 10.8 V, V_{SS} = 0 V$
On Resistance Match Between Channels, ΔR_{ON}	5			Ωtyp	$V_s = 0 V$ to $10 V$, $I_s = -1 mA$
	16	26	27	Ωmax	
On Resistance Flatness, R _{FLAT} (On)	60			Ωtyp	$V_s = 3 V, 6 V, 9 V; I_s = -1 mA$
LEAKAGE CURRENTS					$V_{DD} = 13.2 V$
Source Off Leakage, Is (Off)	±0.02			nA typ	$V_{s} = 1 \text{ V}/10 \text{ V}, V_{D} = 10 \text{ V}/1 \text{ V};$ see Figure 29
	±0.2	±0.6	±1	nA max	
Drain Off Leakage, I _D (Off)	±0.05			nA typ	$V_{s} = 1 \text{ V}/10 \text{ V}, V_{D} = 10 \text{ V}/1 \text{ V}; \text{ see Figure 29}$
	±0.2	±0.6	±2	nA max	
Channel On Leakage, I _D , I _S (On)	±0.08			nA typ	$V_s = V_D = 1 V$ or 10 V; see Figure 30
-	±0.2	±0.6	±2	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
	±0.001			μA typ	
			±0.1	µA max	V _{IN} = V _{INL} or V _{INH}
Digital Input Capacitance, C _{IN}	3			pF typ	
DYNAMIC CHARACTERISTICS ²				r yr	
	100			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	140	175	200	ns max	$V_s = 8 V$; see Figure 31
ton (EN)	80		200	ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	100	120	130	ns max	$V_s = 8 V$; see Figure 33
toff (EN)	90			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	110	130	155	ns max	$V_s = 8 V$; see Figure 33
Break-Before-Make Time Delay, tBBM	25			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
break before make mile beray, the	25		15	ns min	$V_{51} = V_{52} = 8 V$; see Figure 32
Charge Injection	0.2		15	pC typ	$V_s = 6 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 34
Off Isolation	-85			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 35
Channel-to-Channel Crosstalk	-85			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 37
-3 dB Bandwidth ADG1206	185			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 36
–3 dB Bandwidth ADG1207	300			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 36
Cs (Off)	1.5			pF typ	$f = 1 \text{ MHz}, V_s = 6 \text{ V}$
	2			pF max	$f = 1 \text{ MHz}, V_S = 6 \text{ V}$
C _D (Off) ADG1206	13			pF typ	$f = 1 \text{ MHz}, V_S = 6 \text{ V}$
	15			pF max	$f = 1 \text{ MHz}, V_S = 6 \text{ V}$
C _D (Off) ADG1207	9			pF fiax pF typ	$f = 1 \text{ MHz}, V_S = 6 \text{ V}$
	11			pF typ pF max	$f = 1 \text{ MHz}, V_S = 6 \text{ V}$
C _D , C _s (On) ADG1206	15			pF fiax pF typ	$f = 1 \text{ MHz}, V_S = 6 \text{ V}$ $f = 1 \text{ MHz}, V_S = 6 \text{ V}$
	15			pF typ pF max	$f = 1 \text{ MHz}, V_S = 6 \text{ V}$
C _D , C _s (On) ADG1207	17			pF max pF typ	$f = 1 \text{ MHz}, V_S = 6 \text{ V}$ $f = 1 \text{ MHz}, V_S = 6 \text{ V}$
					$f = 1 \text{ MHz}, V_S = 6 \text{ V}$ $f = 1 \text{ MHz}, V_S = 6 \text{ V}$
	12			pF max	ι – ι Ινιπ <i>Ζ</i> , νς – ο ν

Parameter	+25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
POWER REQUIREMENTS					$V_{DD} = 13.2 V$
IDD	0.002			μA typ	Digital inputs = $0 V$ or V_{DD}
			1.0	μA max	
lod	260			μA typ	Digital inputs = 5
			420	μA max	
V _{DD}			5/16.5	V min/max	$V_{SS} = 0 V, GND = 0 V$

 1 Temperature range for Y version is $-40^\circ C$ to $+125^\circ C.$ 2 Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

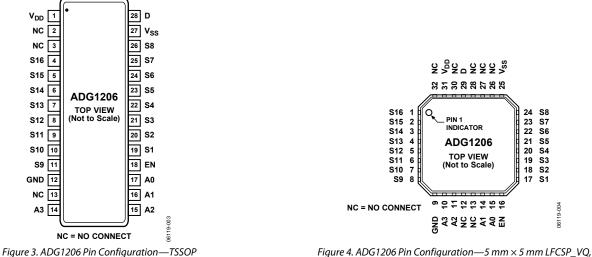
 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 3.

Parameter	Rating
V _{DD} to V _{SS}	35 V
V _{DD} to GND	–0.3 V to +25 V
Vss to GND	+0.3 V to -25 V
Analog, Digital Inputs ¹	V _{ss} – 0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first
Continuous Current, S or D	30 mA
Peak Current, S or D (Pulsed at 1 ms, 10% Duty Cycle Maximum)	100 mA
Operating Temperature Ranges	
Industrial (Y Version)	–40°C to +125°C
Storage	–65°C to +150°C
Junction Temperature	150°C
28-Lead TSSOP	
$ heta_{JA}$, Thermal Impedance	97.9°C/W
θ _{JC} , Thermal Impedance	14°C/W
32-Lead LFCSP_VQ	
θ _{JA} , Thermal Impedance	27.27°C/W
Reflow Soldering Peak Temperature (Pb-Free)	260(+0/-5)°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating may be applied at any one time.


¹ Overvoltages at A, EN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

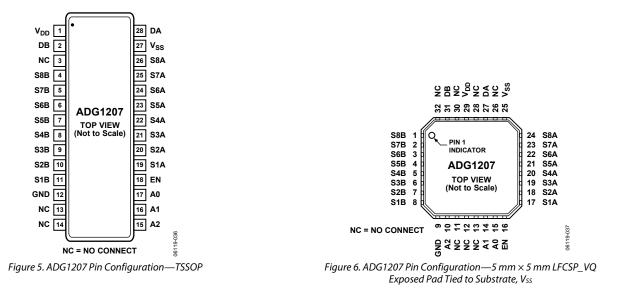
ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Exposed Pad Tied to Substrate, Vss

06119-004


Table 4. ADG1206 Pin Function Descriptions

Pin	Number		
TSSOP	LFCSP_VQ	Mnemonic	Description
1	31	V _{DD}	Most Positive Power Supply Potential.
2	12, 13	NC	No Connect.
3	26, 27, 28, 30, 32	NC	No Connect.
4	1	S16	Source Terminal 16. Can be an input or an output.
5	2	S15	Source Terminal 15. Can be an input or an output.
б	3	S14	Source Terminal 14. Can be an input or an output.
7	4	S13	Source Terminal 13. Can be an input or an output.
8	5	S12	Source Terminal 12. Can be an input or an output.
9	6	S11	Source Terminal 11. Can be an input or an output.
10	7	S10	Source Terminal 10. Can be an input or an output.
11	8	S9	Source Terminal 9. Can be an input or an output.
12	9	GND	Ground (0 V) Reference.
13	-	NC	No Connect.
14	10	A3	Logic Control Input.
15	11	A2	Logic Control Input.
16	14	A1	Logic Control Input.
17	15	A0	Logic Control Input.
18	16	EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are turned off. When this pin is high, the Ax logic inputs determine which switch is turned on.
19	17	S1	Source Terminal 1. Can be an input or an output.
20	18	S2	Source Terminal 2. Can be an input or an output.
21	19	S3	Source Terminal 3. Can be an input or an output.
22	20	S4	Source Terminal 4. Can be an input or an output.
23	21	S5	Source Terminal 5. Can be an input or an output.
24	22	S6	Source Terminal 6. Can be an input or an output.
25	23	S7	Source Terminal 7. Can be an input or an output.
26	24	S8	Source Terminal 8. Can be an input or an output.
27	25	V _{ss}	Most Negative Power Supply Potential. In single-supply applications, this pin can be connected to ground.
28	29	D	Drain Terminal. Can be an input or an output.

Rev. 0 | Page 8 of 20

Table 5. ADG1206 Truth Table

A3	A2	A1	A0	EN	On Switch	
Х	Х	Х	Х	0	None	
0	0	0	0	1	1	
0	0	0	1	1	2	
0	0	1	0	1	3	
0	0	1	1	1	4	
0	1	0	0	1	5	
0	1	0	1	1	6	
0	1	1	0	1	7	
0	1	1	1	1	8	
1	0	0	0	1	9	
1	0	0	1	1	10	
1	0	1	0	1	11	
1	0	1	1	1	12	
1	1	0	0	1	13	
1	1	0	1	1	14	
1	1	1	0	1	15	
1	1	1	1	1	16	

Pin Number					
TSSOP	TSSOP LFCSP_VQ Mnemonic		nic Description		
1	29	V _{DD}	Most Positive Power Supply Potential.		
2	31	DB	Drain Terminal B. Can be an input or an output.		
3	11, 12, 13	NC	No Connect.		
4	1	S8B	Source Terminal 8B. Can be an input or an output.		
5	2	S7B	Source Terminal 7B. Can be an input or an output.		
6	3	S6B	Source Terminal 6B. Can be an input or an output.		
7	4	S5B	Source Terminal 5B. Can be an input or an output.		
8	5	S4B	Source Terminal 4B. Can be an input or an output.		
9	6	S3B	Source Terminal 3B. Can be an input or an output.		
10	7	S2B	Source Terminal 2B. Can be an input or an output.		
11	8	S1B	Source Terminal 1B. Can be an input or an output.		
12	9	GND	Ground (0 V) Reference.		
13	26, 28, 30, 32	NC	No Connect.		
14	-	NC	No Connect.		
15	10	A2	Logic Control Input.		
16	14	A1	Logic Control Input.		
17	15	A0	Logic Control Input.		
18	16	EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are turned off. When this pin is high, the Ax logic inputs determine which switch is turned on.		
19	17	S1A	Source Terminal 1A. Can be an input or an output.		
20	18	S2A	Source Terminal 2A. Can be an input or an output.		
21	19	S3A	Source Terminal 3A. Can be an input or an output.		
22	20	S4A	Source Terminal 4A. Can be an input or an output.		
23	21	S5A	Source Terminal 5A. Can be an input or an output.		
24	22	S6A	Source Terminal 6A. Can be an input or an output.		
25	23	S7A	Source Terminal 7A. Can be an input or an output.		
26	24	S8A	Source Terminal 8A. Can be an input or an output.		
27	25	Vss	Most Negative Power Supply Potential. In single-supply applications, this pin can be connected to ground.		
28	27	DA	Drain Terminal A. Can be an input or an output.		

Table 6. ADG1207 Pin Function Descriptions

Rev. 0 | Page 10 of 20

Table 7. ADG1207 Truth Table

A2	A1	A0	EN	On Switch Pair	
Х	Х	Х	0	None	
0	0	0	1	1	
0	0	1	1	2	
0	1	0	1	3	
0	1	1	1	4	
1	0	0	1	5	
1	0	1	1	6	
1	1	0	1	7	
1	1	1	1	8	

TYPICAL PERFORMANCE CHARACTERISTICS

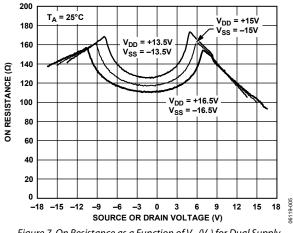
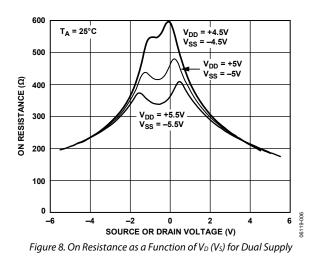



Figure 7. On Resistance as a Function of V_D (V_S) for Dual Supply

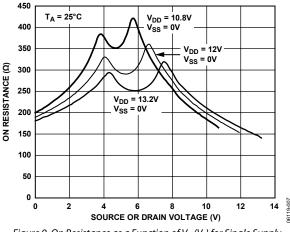


Figure 9. On Resistance as a Function of V_D (V_S) for Single Supply

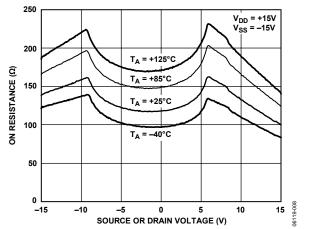


Figure 10. On Resistance as a Function of V_D (V_S) for Different Temperatures, Dual Supply

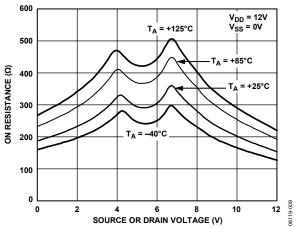


Figure 11. On Resistance as a Function of $V_D(V_S)$ for Different Temperatures, Single Supply

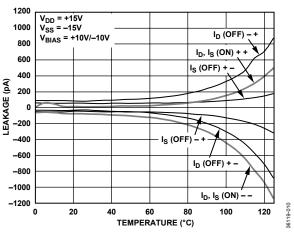
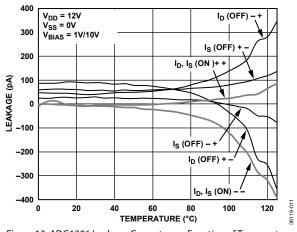
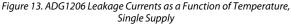
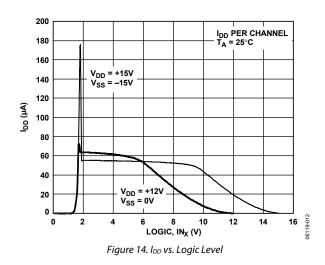
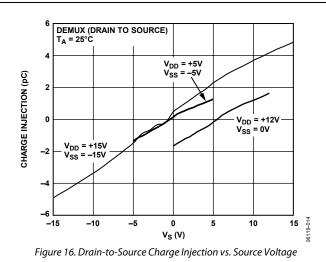
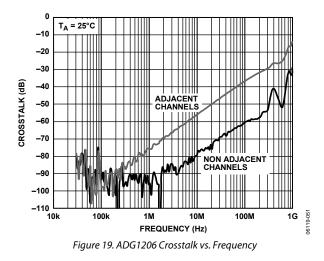
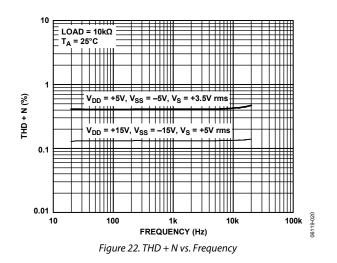
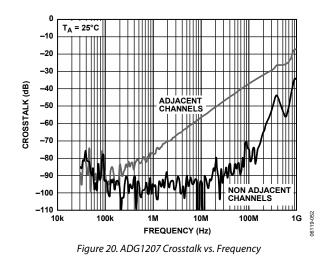






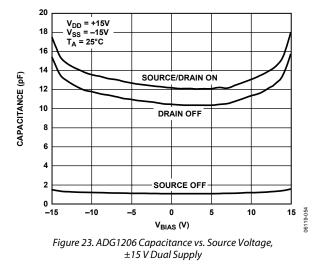
Figure 12. ADG1206 Leakage Currents as a Function of Temperature, Dual Supply

350 300 V_{DD} = +5V V_{SS} = -5V 250 200 TIME (ns) 150 $V_{DD} = +12V$ $V_{SS} = 0V$ 100 V_{DD} = +15V V_{SS} = -15V 50 0 9-050 -40 -20 0 20 40 60 80 100 120 **TEMPERATURE (°C)** 0611 Figure 17. Transition Time vs. Temperature




Figure 18. Off Isolation vs. Frequency


1.0 MUX (SOURCE TO DRAIN) T_A = 25°C 0.9 0.8 CHARGE INJECTION (pC) 0.7 0.6 V_{DD} = +15V V_{SS} = -15V 0.5 0.4 V_{DD} = +12V V_{SS} = 0V 0.3 0.2 V_{DD} = +5V V_{SS} = -5V 0.1 C -15 -10 -5 0 5 10 15 061 19-013 V_S (V)


Figure 15. Source-to-Drain Charge Injection vs. Source Voltage

Rev. 0 | Page 13 of 20

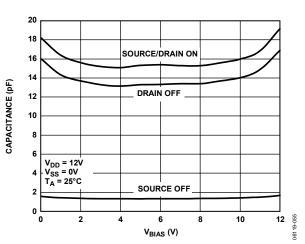
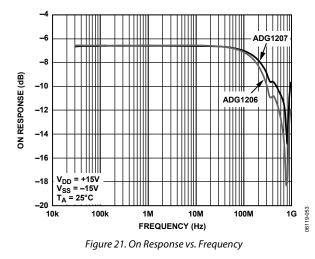



Figure 24. ADG1206 Capacitance vs. Source Voltage, 12 V Single Supply

Rev. 0 | Page 14 of 20

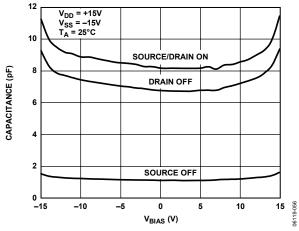
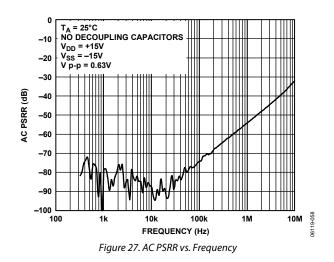



Figure 25. ADG1207 Capacitance vs. Source Voltage, ± 15 V Dual Supply

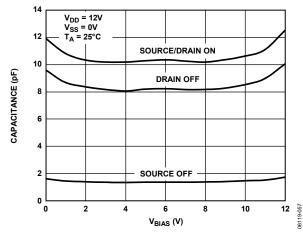


Figure 26. ADG1207 Capacitance vs. Source Voltage, 12 V Single Supply

TERMINOLOGY

R_{ON} Ohmic resistance between D and S.

 ΔR_{ON} Difference between the R_{ON} of any two channels.

 $\mathbf{R}_{\text{FLAT(ON)}}$ Flatness is defined as the difference between the maximum and minimum value of on resistance as measured.

Is (Off) Source leakage current when the switch is off.

I_D (Off) Drain leakage current when the switch is off.

 $I_{\rm D},\,I_{\rm S}\left(On\right)$ Channel leakage current when the switch is on.

 V_D (Vs) Analog voltage on Terminals D and S.

C_s (Off) Channel input capacitance for the off condition.

 $C_{D}\left(Off\right)$ Channel output capacitance for the off condition.

C_D, C_s (On) On switch capacitance.

C_{IN} Digital input capacitance.

ton (EN)

Delay time between the 50% and 90% points of the digital input and the switch on condition.

 $t_{\rm OFF}$ (EN)

Delay time between the 50% and 90% points of the digital input and the switch off condition.

tTRANSITION

Delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.

T_{BBM} Off time measured between the 80% points of the switches when switching from one address state to another.

 \mathbf{V}_{INL} Maximum input voltage for Logic 0.

 V_{INH} Minimum input voltage for Logic 1.

I_{INL} (I_{INH}) Input current of the digital input.

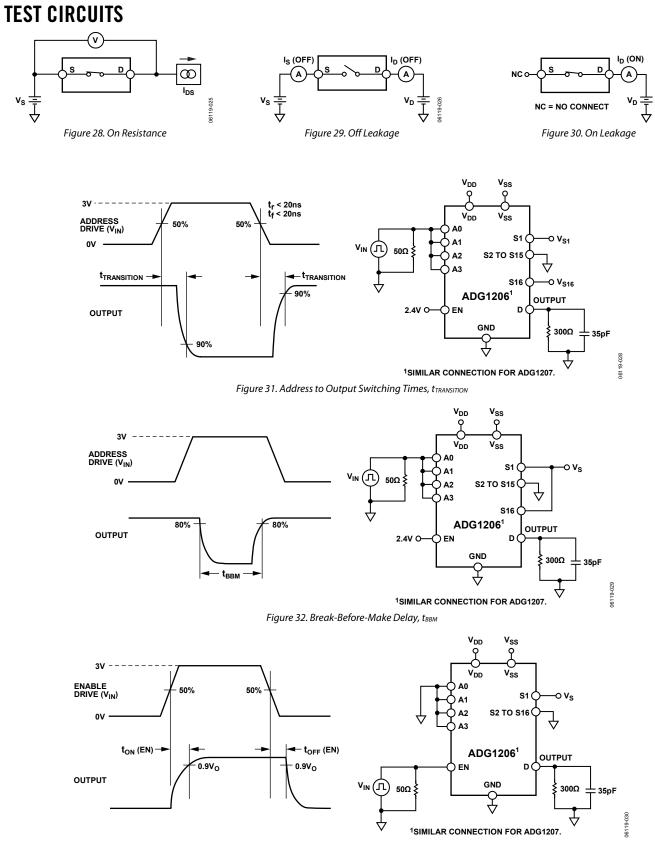
I_{DD} Positive supply current.

Iss Negative supply current.

Off Isolation A measure of unwanted signal coupling through an off channel.

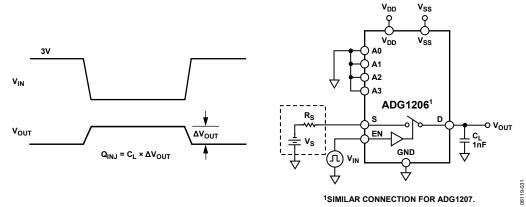
Charge Injection A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Bandwidth The frequency at which the output is attenuated by 3 dB.

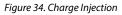

On Response The frequency response of the on switch.

THD + N The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

ACPSRR (AC Power Supply Rejection Ratio)


Measures the ability of a part to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p. The ratio of the amplitude of signal on the output to the amplitude of the modulation is the ACPSRR.

06119-027



Rev. 0 | Page 17 of 20

¹SIMILAR CONNECTION FOR ADG1207.

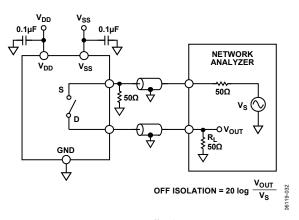


Figure 35. Off Isolation

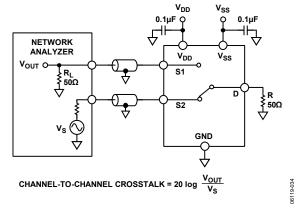
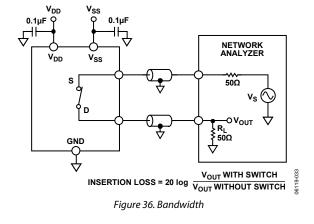
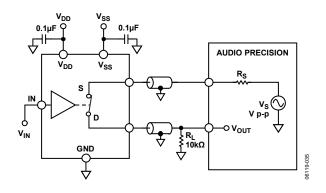




Figure 37. Channel-to-Channel Crosstalk

OUTLINE DIMENSIONS

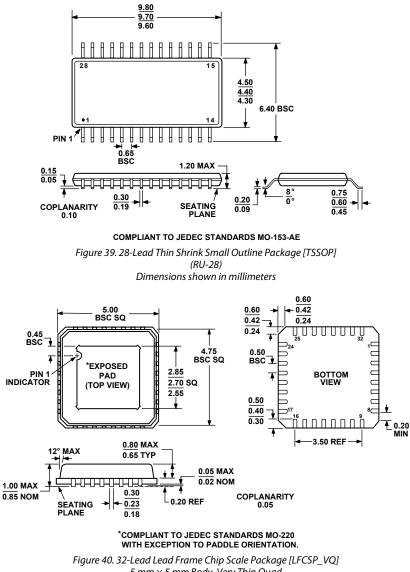


Figure 40. 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ] 5 mm × 5 mm Body, Very Thin Quad (CP-32-2) Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Description	Package Option
ADG1206YRUZ ¹	-40°C to +125°C	28-Lead Thin Shrink Small Outline Package [TSSOP]	RU-28
ADG1206YRUZ-REEL71	-40°C to +125°C	28-Lead Thin Shrink Small Outline Package [TSSOP]	RU-28
ADG1206YCPZ-REEL71	-40°C to +125°C	32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]	CP-32-2
ADG1207YRUZ ¹	-40°C to +125°C	28-Lead Thin Shrink Small Outline Package [TSSOP]	RU-28
ADG1207YRUZ-REEL71	-40°C to +125°C	28-Lead Thin Shrink Small Outline Package [TSSOP]	RU-28
ADG1207YCPZ-REEL71	-40°C to +125°C	32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]	CP-32-2

 1 Z = Pb-free part.

NOTES

©2006 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D06119-0-7/06(0)

www.analog.com

Downloaded from Elcodis.com electronic components distributor