

ANALOG CMUS 1.0 V to 0.0 V, 2.0 2.0 DEVICES SPDT Switch/2:1 Mux in Tiny SC70 Package

ADG779

FEATURES

1.8 V to 5.5 V single supply 2.5 Ω on resistance 0.75 Ω on-resistance flatness -3 dB bandwidth >200 MHz Rail-to-rail operation 6-lead SC70 package **Fast switching times** ton 20 ns

toff 6 ns

Typical power consumption (<0.01 μW) TTL/CMOS compatible

APPLICATIONS

Battery-powered systems Communication systems Sample hold systems **Audio signal routing** Video switching Mechanical reed relay replacements

GENERAL DESCRIPTION

The ADG779 is a monolithic CMOS SPDT (single-pole, double-throw) switch. This switch is designed on a submicron process that provides low power dissipation yet gives high switching speed, low on resistance, and low leakage currents.

The ADG779 operates from a single supply range of 1.8 V to 5.5 V, making it ideal for use in battery-powered instruments and with the new generation of DACs and ADCs from Analog Devices, Inc.

Each switch of the ADG779 conducts equally well in both directions when on. The ADG779 exhibits break-before-make switching action.

Because of the advanced submicron process, -3 dB bandwidth of greater than 200 MHz can be achieved.

The ADG779 is available in a 6-lead SC70 package.

FUNCTIONAL BLOCK DIAGRAM

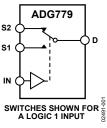


Figure 1.

PRODUCT HIGHLIGHTS

- Tiny 6-Lead SC70 Package.
- 1.8 V to 5.5 V Single-Supply Operation. The ADG779 offers high performance, including low on resistance and fast switching times, and is fully specified and guaranteed with 3 V and 5 V supply rails.
- Very Low R_{ON} (5 Ω max at 5 V, 10 Ω max at 3 V). At 1.8 V operation, R_{ON} is typically 40 Ω over the temperature range.
- On-Resistance Flatness ($R_{FLAT (ON)}$) (0.75 Ω typ).
- −3 dB Bandwidth > 200 MHz.
- Low Power Dissipation. CMOS construction ensures low power dissipation.
- 14 ns Switching Times.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

reatures	I
Applications	1
Functional Block Diagram	1
General Description	1
Product Highlights	1
Revision History	2
Specifications	3
Absolute Maximum Ratings	5
ESD Caution	5

Pin Configuration and Function Descriptions	6
Terminology	7
Typical Performance Characteristics	8
Test Circuits	. 10
Outline Dimensions	. 12
Ordering Guide	. 12

REVISION HISTORY

10/05—Rev. 0 to Rev. A

Updated Format	Universal
Changes to Table 1	3
Changes to Table 2	4
Changes to Table 3	
Changes to Terminology Section	
Changes to Ordering Guide	

7/01—Revision 0: Initial Version

SPECIFICATIONS

 V_{DD} = 5 V \pm 10%, GND = 0 V^{1}

Table 1.

	B Version			
		−40°C to		
Parameter	25°C	+85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		$0 V to V_{DD}$	V	
On Resistance (R _{ON})	2.5		Ω typ	$V_S = 0 \text{ V to } V_{DD}$, $I_S = -10 \text{ mA}$, see Figure 12
	5	6	Ω max	
On-Resistance Match Between Channels (ΔR_{ON})	0.1		Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$
		0.8	Ω max	
On-Resistance Flatness (R _{FLAT (ON)})	0.75		Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$
		1.2	Ω max	
LEAKAGE CURRENTS ²				$V_{DD} = 5.5 \text{ V}$
Source Off Leakage Is (Off)	±0.01	±0.05	nA typ	$V_S = 4.5 \text{ V/1 V}, V_D = 1 \text{ V/4.5 V}, \text{ see Figure 13}$
Channel On Leakage ID, IS (On)	±0.01	±0.05	nA typ	$V_S = V_D = 1 \text{ V, or } V_S = V_D = 4.5 \text{ V, see Figure 14}$
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current				
lint or linh	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
		±0.1	μA max	
DYNAMIC CHARACTERISTICS ²				
ton	14		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
		20	ns max	V _S = 3 V, see Figure 15
toff	3		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
		6	ns max	$V_S = 3 \text{ V, see Figure 15}$
Break-Before-Make Time Delay, t _D	8		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
		1	ns min	$V_{S1} = V_{S2} = 3 \text{ V, see Figure 16}$
Off Isolation	-67		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$
	-87		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 17
Channel-to-Channel Crosstalk	-62		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$
	-82		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 18
Bandwidth –3 dB	200		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 19
C _s (Off)	7		pF typ	f = 1 MHz
C_D , C_S (On)	27		pF typ	f = 1 MHz
POWER REQUIREMENTS				$V_{DD} = 5.5 \text{ V}$
				Digital Inputs = 0 V or 5 V
I _{DD}	0.001		μA typ	
		1.0	μA max	

 $^{^1}$ Temperature range is B Version, -40°C to $+85^\circ\text{C}.$ 2 Guaranteed by design, not subject to production test.

 $V_{DD} = 3 \text{ V} \pm 10\%$, $GND = 0 \text{ V}^{1}$

Table 2.

		B Version		
		-40°C to		
Parameter	25°C	+85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		$0V$ to V_{DD}	V	
On Resistance (Ron)	6	7	Ω typ	$V_S = 0 \text{ V to V}_{DD}$, $I_S = -10 \text{ mA}$, see Figure 12
		10	Ω max	
On-Resistance Match Between Channels (ΔR_{ON})	0.1		Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$
		0.8	Ω max	
On-Resistance Flatness (R _{FLAT (ON)})	2.5		Ωtyp	$V_S = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$
LEAKAGE CURRENTS ²				$V_{DD} = 3.3 \text{ V}$
Source Off Leakage Is (Off)	±0.01	±0.05	nA typ	$V_S = 3 \text{ V}/1 \text{ V}, V_D = 1 \text{ V}/3 \text{ V}, \text{ see Figure 13}$
Channel On Leakage ID, Is (On)	±0.01	±0.05	nA typ	$V_S = V_D = 1 \text{ V, or } V_S = V_D = 3 \text{ V, see Figure 14}$
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.0	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current				
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
		±0.1	μA max	
DYNAMIC CHARACTERISTICS ²				
ton	16		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
		24	ns max	$V_S = 2 V$, see Figure 15
toff	4		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
		7	ns max	$V_S = 2 V$, see Figure 15
Break-Before-Make Time Delay, t _D	8		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
		1	ns min	$V_{S1} = V_{S2} = 2 \text{ V, see Figure 16}$
Off Isolation	-67		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$
	-87		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 17
Channel-to-Channel Crosstalk	-62		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$
	-82		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 18
Bandwidth –3 dB	200		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 19
C _s (Off)	7		pF typ	f = 1 MHz
C_D , C_S (On)	27		pF typ	f = 1 MHz
POWER REQUIREMENTS				V _{DD} = 3.3 V
				Digital Inputs = 0 V or 3 V
I _{DD}	0.001		μA typ	
		1.0	μA max	

 $^{^1}$ Temperature range is B Version, -40°C to +85°C. 2 Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 3

ParameterRatingVDD to GND-0.3 V to +7 VAnalog, Digital Inputs¹-0.3 V to VDD + 0.3 V or 30 mA, whichever occurs firstPeak Current, S or D100 mA (pulsed at 1 ms, 10% duty cycle max)Continuous Current, S or D30 mAOperating Temperature Range-40°C to +85°CIndustrial (B Version)-40°C to +85°CStorage Temperature Range150°CJunction Temperature150°CSC70 Package, Power Dissipation315 mWθJA Thermal Impedance332°C/WHead Temperature, Soldering120°C/WVapor Phase (60 sec)215°CInfrared (15 sec)220°CReflow Soldering (Pb-free)260 (+0/-5)°CTime at Peak Temperature10 sec to 40 sec	Table 3.	
Analog, Digital Inputs¹ Peak Current, S or D Continuous Current, S or D Operating Temperature Range Industrial (B Version) Storage Temperature Range Junction Temperature SC70 Package, Power Dissipation θ _{JA} Thermal Impedance Lead Temperature, Soldering Vapor Phase (60 sec) Infrared (15 sec) Reflow Soldering (Pb-free) Peak Temperature -0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first 100 mA (pulsed at 1 ms, 10% duty cycle max) 30 mA -40°C to +85°C -65°C to +150°C 150°C 315 mW 332°C/W 120°C/W 215°C 220°C	Parameter	Rating
whichever occurs first 100 mA (pulsed at 1 ms, 10% duty cycle max) 30 mA Operating Temperature Range Industrial (B Version) Storage Temperature Range Junction Temperature SC70 Package, Power Dissipation θ _{JA} Thermal Impedance θ _{JC} Thermal Impedance Lead Temperature, Soldering Vapor Phase (60 sec) Infrared (15 sec) Reflow Soldering (Pb-free) Peak Temperature whichever occurs first 100 mA (pulsed at 1 ms, 10% duty cycle max) 30 mA -40°C to +85°C -65°C to +150°C 315 mW 332°C/W 120°C/W 215°C 220°C	V _{DD} to GND	−0.3 V to +7 V
Continuous Current, S or D Operating Temperature Range Industrial (B Version) Storage Temperature Range Junction Temperature SC70 Package, Power Dissipation θ_{JA} Thermal Impedance θ_{JC} Thermal Impedance Lead Temperature, Soldering Vapor Phase (60 sec) Infrared (15 sec) Reflow Soldering (Pb-free) Peak Temperature 10% duty cycle max) 30 mA -40°C to +85°C -65°C to +150°C 315 mW 332°C/W 120°C/W 215°C 220°C	Analog, Digital Inputs ¹	
Operating Temperature Range Industrial (B Version) Storage Temperature Range Junction Temperature SC70 Package, Power Dissipation θ_{JA} Thermal Impedance θ_{JC} Thermal Impedance Lead Temperature, Soldering Vapor Phase (60 sec) Infrared (15 sec) Reflow Soldering (Pb-free) Peak Temperature Over to +85°C -65°C to +150°C 315 mW 332°C/W 120°C/W 215°C 220°C	Peak Current, S or D	
Industrial (B Version) Storage Temperature Range Junction Temperature SC70 Package, Power Dissipation θ _{JA} Thermal Impedance θ _{JC} Thermal Impedance Lead Temperature, Soldering Vapor Phase (60 sec) Infrared (15 sec) Reflow Soldering (Pb-free) Peak Temperature -40°C to +85°C -65°C to +150°C 315 mW 32°C/W 120°C/W 215°C 220°C	Continuous Current, S or D	30 mA
Storage Temperature Range Junction Temperature SC70 Package, Power Dissipation θ _{JA} Thermal Impedance θ _{JC} Thermal Impedance Lead Temperature, Soldering Vapor Phase (60 sec) Infrared (15 sec) Reflow Soldering (Pb-free) Peak Temperature -65°C to +150°C 150°C 315 mW 120°C/W 220°C	Operating Temperature Range	
Junction Temperature SC70 Package, Power Dissipation θ _{JA} Thermal Impedance θ _{JC} Thermal Impedance Lead Temperature, Soldering Vapor Phase (60 sec) Infrared (15 sec) Reflow Soldering (Pb-free) Peak Temperature 150°C 315 mW 120°C/W 215°C 220°C 220°C	Industrial (B Version)	–40°C to +85°C
SC70 Package, Power Dissipation θ_{JA} Thermal Impedance θ_{JC} Thermal Impedance Lead Temperature, Soldering Vapor Phase (60 sec) Infrared (15 sec) Reflow Soldering (Pb-free) Peak Temperature 260 (+0/-5)°C	Storage Temperature Range	−65°C to +150°C
 θ_{JA} Thermal Impedance θ_{JC} Thermal Impedance Lead Temperature, Soldering Vapor Phase (60 sec) Infrared (15 sec) Reflow Soldering (Pb-free) Peak Temperature 332°C/W 120°C/W 215°C 220°C Reflow Soldering (Pb-free) 260 (+0/-5)°C 	Junction Temperature	150°C
θ _{JC} Thermal Impedance Lead Temperature, Soldering Vapor Phase (60 sec) Infrared (15 sec) Reflow Soldering (Pb-free) Peak Temperature 120°C/W 215°C 220°C 220°C 220°C	SC70 Package, Power Dissipation	315 mW
Lead Temperature, Soldering Vapor Phase (60 sec) Infrared (15 sec) Reflow Soldering (Pb-free) Peak Temperature 215°C 220°C 220°C 220°C 260 (+0/-5)°C	θ_{JA} Thermal Impedance	332°C/W
Vapor Phase (60 sec) 215°C Infrared (15 sec) 220°C Reflow Soldering (Pb-free) Peak Temperature 260 (+0/-5)°C	θ_{JC} Thermal Impedance	120°C/W
Infrared (15 sec) Reflow Soldering (Pb-free) Peak Temperature 220°C 220°C 260 (+0/-5)°C	Lead Temperature, Soldering	
Reflow Soldering (Pb-free) Peak Temperature 260 (+0/-5)°C	Vapor Phase (60 sec)	215°C
Peak Temperature 260 (+0/-5)°C	Infrared (15 sec)	220°C
	Reflow Soldering (Pb-free)	
Time at Peak Temperature 10 sec to 40 sec	Peak Temperature	260 (+0/-5)°C
	Time at Peak Temperature	10 sec to 40 sec

 $^{^{\}rm 1}$ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 4. Truth Table

ADG779 IN	Switch S1	Switch S2
0	On	Off
1	Off	On

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

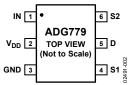


Figure 2. Pin Configuration

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	IN	Logic Control Input.
2	V_{DD}	Most Positive Power Supply Potential.
3	GND	Ground (0 V) Reference.
4	S1	Source Terminal. Can be an input or an output.
5	D	Drain Terminal. Can be an input or an output.
6	S2	Source Terminal. Can be an input or an output.

TERMINOLOGY

 \mathbf{V}_{DD}

Most positive power supply potential.

 I_{DD}

Positive supply current.

GND

Ground (0 V) reference.

S

Source terminal. Can be an input or an output.

D

Drain terminal. Can be an input or an output.

IN

Logic control input.

 $V_D(V_S)$

Analog voltage on drain (D) and source (S) terminals.

Ron

Ohmic resistance between the D and S.

R_{FLAT (ON)}

Flatness is defined as the difference between the maximum and minimum value of on resistance as measured.

 ΔR_{ON}

On-resistance mismatch between any two channels.

Is (Off)

Source leakage current with the switch off.

ID (Off)

Drain leakage current with the switch off.

 I_D , I_S (On)

Channel leakage current with the switch on.

 V_{INI}

Maximum input voltage for Logic 0.

VINE

Minimum input voltage for Logic 1.

 $I_{\rm INL}\left(I_{\rm INH}\right)$

Input current of the digital input.

Cs (Off)

Off switch source capacitance. Measured with reference to ground.

C_D (Off)

Off switch drain capacitance. Measured with reference to ground.

C_D, C_s (On)

On switch capacitance. Measured with reference to ground.

 C_{IN}

Digital input capacitance.

 t_{ON}

Delay time between the 50% and 90% points of the digital input and switch on condition.

toff

Delay time between the 50% and 90% points of the digital input and switch off condition.

 t_{BBM}

On or off time measured between the 80% points of both switches when switching from one to another.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during on/off switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another because of parasitic capacitance.

-3 dB Bandwidth

The frequency at which the output is attenuated by 3 dB.

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

THD + N

The ratio of harmonic amplitudes plus noise of a signal to the fundamental.

TYPICAL PERFORMANCE CHARACTERISTICS

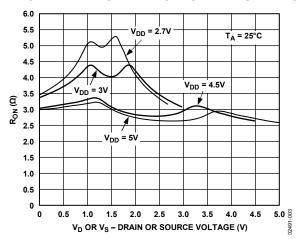


Figure 3. On Resistance as a Function of V_D (V_S) Single Supplies

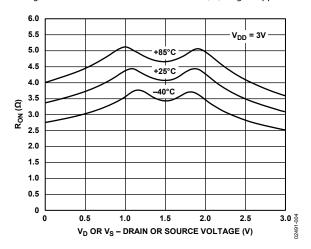


Figure 4. On Resistance as a Function of V_D (V_S) for Different Temperatures $V_{DD} = 3 V$

Figure 5. On Resistance as a Function of V_D (V_S) for Different Temperatures $V_{DD} = 5 V$

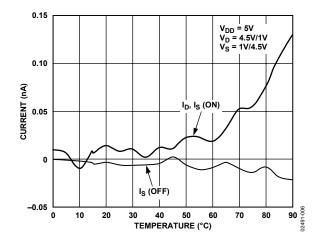


Figure 6. Leakage Currents as a Function of Temperature

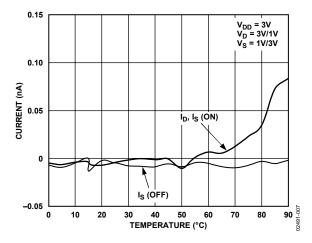


Figure 7. Leakage Currents as a Function of Temperature

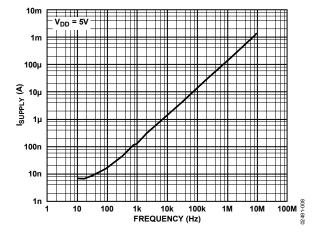


Figure 8. Supply Current vs. Input Switching Frequency

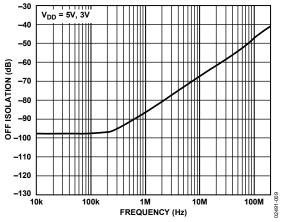


Figure 9. Off Isolation vs. Frequency

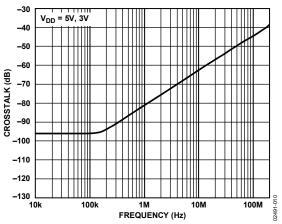


Figure 10. Crosstalk vs. Frequency

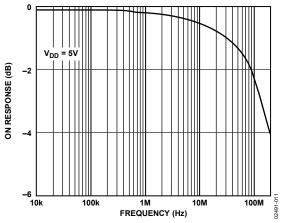
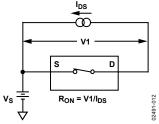



Figure 11. On Response vs. Frequency

TEST CIRCUITS

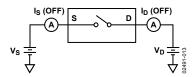


Figure 13. Off Leakage

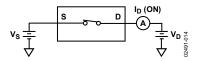


Figure 14. On Leakage

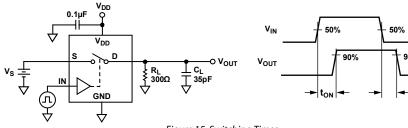


Figure 15. Switching Times

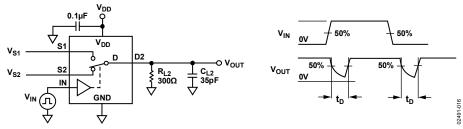


Figure 16. Break-Before-Make Time Delay, t_D

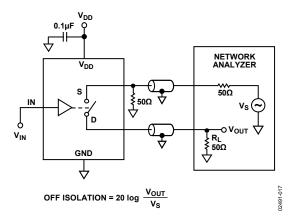


Figure 17. Off Isolation

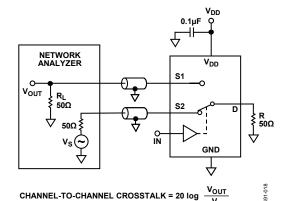


Figure 18. Channel-to-Channel Crosstalk

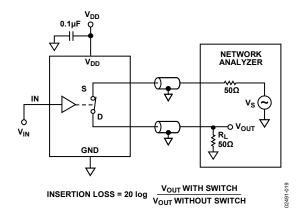
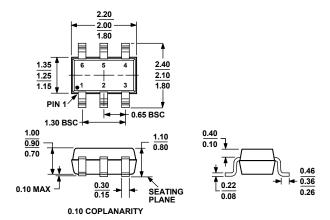



Figure 19. Bandwidth

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-203-AB

Figure 20. 6-Lead Thin Shrink Small Outline Transistor Package [SC70] (KS-6) Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding ¹
ADG779BKS-R2	−40°C to +85°C	6-Lead Thin Shrink Small Outline Transistor Package (SC70)	KS-6	SKB
ADG779BKS-REEL	-40°C to +85°C	6-Lead Thin Shrink Small Outline Transistor Package (SC70)	KS-6	SKB
ADG779BKS-REEL7	-40°C to +85°C	6-Lead Thin Shrink Small Outline Transistor Package (SC70)	KS-6	SKB
ADG779BKSZ-R2 ²	−40°C to +85°C	6-Lead Thin Shrink Small Outline Transistor Package (SC70)	KS-6	SOM
ADG779BKSZ-REEL ²	−40°C to +85°C	6-Lead Thin Shrink Small Outline Transistor Package (SC70)	KS-6	SOM
ADG779BKSZ-REEL7 ²	-40°C to +85°C	6-Lead Thin Shrink Small Outline Transistor Package (SC70)	KS-6	SOM

¹ Brand on these packages is limited to three characters due to space constraints.

Rev. A | Page 12 of 12

 $^{^{2}}$ Z = Pb-free part.