$1^{2} C$-Compatible, Wide Bandwidth,
 Five 2:1 Multiplexer
 ADG795A/ADG795G

FEATURES

Bandwidth: 325 MHz
Low insertion loss and on resistance: 2.6Ω typical
On resistance flatness: 0.3Ω typical
Single 3 V/5 V supply operation
3.3 V analog signal range (5 V supply, 75Ω load)
Low quiescent supply current: 1 nA typical
Fast switching times: $\mathrm{t}_{\mathrm{o}}=\mathbf{1 8 6} \mathbf{n s}, \mathrm{t}_{\text {off }}=\mathbf{1 7 7} \mathbf{n s}$
ESD protection
4 kV human body model (HBM)
200 V machine model (MM)
1 kV field-induced charged device model (FICDM)
$I^{2} C^{\oplus}$-compatible interface
Compact 24-lead LFCSP

APPLICATIONS

S-Video RGB/YPbPr video switches
HDTV
Projection TV
DVD-R/RW
AV receivers

GENERAL DESCRIPTION

The ADG795A/ADG795G are monolithic CMOS devices comprising five 2:1 multiplexers/demultiplexers controllable via a standard $\mathrm{I}^{2} \mathrm{C}$ serial interface. The CMOS process provides ultralow power dissipation, yet gives high switching speed and low on resistance.

The on-resistance profile is very flat over the full analog input range and wide bandwidth ensures excellent linearity and low distortion. These features, combined with a wide input signal range make the ADG795A/ADG795G the ideal switching solution for a wide range of TV applications including S-video, RGB and YPbPr video switches.

The switches conduct equally well in both directions when on. In the off condition, signal levels up to the supplies are blocked. The ADG795A/ADG795G switches exhibit break-before-make switching action. The ADG795G has one general-purpose logic output pins controlled by the $I^{2} \mathrm{C}$ interface that can also be used to control other non- $\mathrm{I}^{2} \mathrm{C}$-compatible devices such as video filters. The integrated $\mathrm{I}^{2} \mathrm{C}$ interface provides a large degree of flexibility in the system design. It has three configurable $\mathrm{I}^{2} \mathrm{C}$ address pins

Rev. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

ADG795A/ADG795G

TABLE OF CONTENTS

\qquad
Applications. 1
Functional Block Diagrams. 1
General Description 1
Product Highlights 1
Specifications 3
$\mathrm{I}^{2} \mathrm{C}$ Timing Specifications. 7
Timing Diagram 8
Absolute Maximum Ratings 9
ESD Caution 9
Pin Configuration and Function Descriptions. 10
Typical Performance Characteristics 11
Test Circuits. 14
Terminology 16
Theory of Operation 17
$I^{2} \mathrm{C}$ Serial Interface 17
$\mathrm{I}^{2} \mathrm{C}$ Address 17
Write Operation. 17
LDSW bit 19
Power On/Software Reset. 19
Read Operation. 19
Evaluation Board 20
Using the ADG795G Evaluation Board 20
Outline Dimensions 23
Ordering Guide 23

REVISION HISTORY

7/06-Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1.

Parameter	Conditions	Min	Typ ${ }^{1}$	Max	Unit
ANALOG SWITCH					
Analog Signal Range ${ }^{2}$	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{RL}_{\mathrm{L}}=1 \mathrm{M} \Omega$	0		4	V
	$\mathrm{V}_{5}=\mathrm{V}_{\mathrm{DD}}, \mathrm{R}_{\mathrm{L}}=75 \Omega$	0		3.3	V
On Resistance, Ron	$V_{D}=0 \mathrm{~V}, \mathrm{l}_{\mathrm{DS}}=-10 \mathrm{~mA}$, see Figure 22		2.2	3.5	Ω
	$\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}$ to 1 V , $\mathrm{l}_{\mathrm{Ds}}=-10 \mathrm{~mA}$, see Figure 22			4	Ω
On-Resistance Matching Between Channels, Δ Ron	$\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{los}=-10 \mathrm{~mA}$		0.15	0.5	Ω
	$\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=-10 \mathrm{~mA}$			0.6	Ω
On-Resistance Flatness, Rflation)	$\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}$ to 1 V , los $=-10 \mathrm{~mA}$		0.3	0.55	Ω
LEAKAGE CURRENTS					
Source Off Leakage ($\mathrm{I}_{\text {S(OFF) }}$)	$\mathrm{V}_{\mathrm{D}}=4 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{S}=1 \mathrm{~V} / 4 \mathrm{~V}$, see Figure 23		± 0.25		nA
Drain Off Leakage (lo(OfF))	$\mathrm{V}_{\mathrm{D}}=4 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{S}=1 \mathrm{~V} / 4 \mathrm{~V}$, see Figure 23		± 0.25		nA
Channel On Leakage ($\mathrm{I}_{\mathrm{DON})} \mathrm{I}_{\text {(ION) }}$)	$V_{D}=V_{S}=4 \mathrm{~V} / 1 \mathrm{~V}$, see Figure 24		± 0.25		nA
DYNAMIC CHARACTERISTICS ${ }^{3}$					
ton, tenable	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{S}=2 \mathrm{~V}$, see Figure 28		186	250	ns
toff, tisable	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{S}=2 \mathrm{~V}$, see Figure 28		177	240	ns
Break-Before-Make Time Delay, to	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{RL}=50 \Omega, \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=2 \mathrm{~V}$, see Figure 29	1	3		ns
$1^{2} \mathrm{C}$-to-GPO Propagation Delay, $\mathrm{t}_{\mathrm{H}, \mathrm{t}} \mathrm{t}_{\mathrm{L}}$	ADG795G only			130	ns
Off Isolation	$f=10 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, see Figure 26		-60		dB
Channel-to-Channel Crosstalk	$f=10 \mathrm{MHz}, \mathrm{RL}_{\mathrm{L}}=50 \Omega$, see Figure 27				
Same Multiplexer			-55		dB
Different Multiplexer			-70		dB
-3 dB Bandwidth	$\mathrm{RL}=50 \Omega$, see Figure 25		325		MHz
THD + N	$\mathrm{R}_{\mathrm{L}}=100 \Omega$		0.14		\%
Charge Injection	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$, see Figure 30		5		pC
$\mathrm{Cs}_{\text {s(OFF) }}$			10		pF
$\mathrm{CD}_{\text {(IfFF) }}$			13		pF
$\mathrm{C}_{\mathrm{D}(\text { ON) }} \mathrm{C}_{\text {S(ON) }}$			27		pF
Power Supply Rejection Ratio, PSRR	$f=20 \mathrm{kHz}$		70		dB
Differential Gain Error	CCIR330 test signal		0.32		
Differential Phase Error	CCIR330 test signal		0.44		Degrees
LOGIC INPUTS ${ }^{3}$					
A0, A1, A2					
Input High Voltage, $\mathrm{V}_{\text {INH }}$		2.0			V
Input Low Voltage, $\mathrm{V}_{\text {INL }}$				0.8	V
Input Current, $\mathrm{I}_{\text {INL }}$ or $\mathrm{l}_{\mathrm{INH}}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{DD}		0.005	± 1	$\mu \mathrm{A}$
Input Capacitance, $\mathrm{ClN}_{\text {IN }}$			3		pF
SCL, SDA					
Input High Voltage, $\mathrm{V}_{\text {INH }}$		$0.7 \times \mathrm{V}_{\mathrm{DD}}$		$V_{D D}+0.3$	V
Input Low Voltage, $\mathrm{V}_{\text {INL }}$		-0.3		$+0.3 \times \mathrm{VDD}$	V
Input Leakage Current, Iln	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{DD}		0.005	± 1	$\mu \mathrm{A}$
Input Hysteresis			$0.05 \times \mathrm{V}_{\text {DD }}$		V
Input Capacitance, $\mathrm{Cl}_{\text {IN }}$			3		pF

ADG795A/ADG795G

Parameter	Conditions	Min	Typ ${ }^{1}$	Max	Unit
LOGIC OUTPUTS ${ }^{3}$					
Output Low Voltage, Vol	$\mathrm{I}_{\text {SINK }}=3 \mathrm{~mA}$			0.4	V
	$\mathrm{I}_{\mathrm{IINK}}=6 \mathrm{~mA}$			0.6	V
Floating-State Leakage Current				± 1	$\mu \mathrm{A}$
Floating-State Output Capacitance				10	pF
GPO1 Pin and GPO2 Pin					
Output Low Voltage, Vol	$\mathrm{I}_{\text {LOAD }}=+2 \mathrm{~mA}$			0.4	V
Output High Voltage, V_{OH}	$\mathrm{I}_{\text {LOAD }}=-2 \mathrm{~mA}$	2.0			V
POWER REQUIREMENTS					
IdD	Digital inputs $=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}, I^{2} \mathrm{C}$ interface inactive		0.001	1	$\mu \mathrm{A}$
	$1^{12} \mathrm{C}$ interface active, $\mathrm{f}_{5 \mathrm{CL}}=400 \mathrm{kHz}$			0.2	mA
	$1^{2} \mathrm{C}$ interface active, $\mathrm{f}_{5 \mathrm{cL}}=3.4 \mathrm{MHz}$			0.7	mA

${ }^{1}$ All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise stated.
${ }^{2}$ Guaranteed by initial characterization, not subject to production test.
${ }^{3}$ Guaranteed by design, not subject to production test.
$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.
Table 2.

Parameter	Conditions	Min	Typ ${ }^{1}$	Max	Unit
ANALOG SWITCH					
Analog Signal Range ${ }^{2}$	$\mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega$	0		2.2	V
	$V_{S}=V_{\text {DD }}, R_{L}=75 \Omega$	0		1.7	V
On Resistance, Ron	$V_{D}=0 \mathrm{~V}, \mathrm{l}_{\mathrm{LS}}=-10 \mathrm{~mA}$, see Figure 22		2.2	4	Ω
	$\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}$ to 1 V , los $=-10 \mathrm{~mA}$, see Figure 22			6	Ω
On-Resistance Matching Between Channels, Δ Ron	$\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{l}_{\mathrm{DS}}=-10 \mathrm{~mA}$		0.15	0.6	Ω
	$\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V}, \mathrm{los}=-10 \mathrm{~mA}$			1.1	Ω
On-Resistance Flatness, Rflation)	$\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}$ to 1 V , $\mathrm{los}=-10 \mathrm{~mA}$		0.3	2.8	Ω
LEAKAGE CURRENTS					
Source Off Leakage ($\mathrm{I}_{\text {S(OFF) }}$)	$V_{D}=2 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{5}=1 \mathrm{~V} / 2 \mathrm{~V}$, see Figure 23		± 0.25		nA
Drain Off Leakage (lo(OfF)	$V_{D}=2 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{S}=1 \mathrm{~V} / 2 \mathrm{~V}$, see Figure 23		± 0.25		nA
Channel On Leakage (ID(ON), $\mathrm{I}_{\text {(OON }}$)	$V_{D}=V_{S}=2 \mathrm{~V} / 1 \mathrm{~V}$, see Figure 24		± 0.25		nA
DYNAMIC CHARACTERISTICS ${ }^{3}$					
ton, tenable	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{S}=2 \mathrm{~V}$, see Figure 28		198	270	ns
toff, tisable	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{S}=2 \mathrm{~V}$, see Figure 28		195	260	ns
Break-Before-Make Time Delay, to	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{RL}=50 \Omega, \mathrm{~V}_{51}=\mathrm{V}_{s 2}=2 \mathrm{~V}$, see Figure 29	1	3		ns
$1^{2} \mathrm{C}$-to-GPO Propagation Delay, $\mathrm{t}_{\text {H, }}, \mathrm{t}_{\mathrm{L}}$	ADG795G only			121	ns
Off Isolation	$f=10 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, see Figure 26		-60		dB
Channel-to-Channel Crosstalk	$f=10 \mathrm{MHz}, \mathrm{RL}^{\text {L }}=50 \Omega$, see Figure 27				
Same Multiplexer			-55		dB
Different Multiplexer			-70		dB
-3 dB Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega$, see Figure 25		310		MHz
THD + N	$\mathrm{R}_{\mathrm{L}}=100 \Omega$		0.14		\%
Charge Injection	$C_{L}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$, see Figure 30		2.5		pC
$\mathrm{C}_{\text {s(OFF) }}$			10		pF
$\mathrm{C}_{\text {d(off })}$			13		pF
$\mathrm{Cd}_{\text {don) }} \mathrm{Cs}_{\text {SON }}$			27		pF
Power Supply Rejection Ratio, PSRR	$f=20 \mathrm{kHz}$		70		dB
Differential Gain Error	CCIR330 test signal		0.28		
Differential Phase Error	CCIR330 test signal		0.28		Degree s
LOGIC INPUTS ${ }^{3}$					
A0, A1, A2					
Input High Voltage, $\mathrm{V}_{\text {INH }}$		2.0			V
Input Low Voltage, VINL				0.8	V
Input Current, InL or $\mathrm{l}_{\text {INH }}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{DD}		0.005	± 1	$\mu \mathrm{A}$
Input Capacitance, $\mathrm{CIN}_{1 \mathrm{~N}}$			3		pF
SCL, SDA					
Input High Voltage, $\mathrm{V}_{\text {INH }}$		$0.7 \times \mathrm{V}_{\mathrm{DD}}$		$V_{D D}+0.3$	V
Input Low Voltage, $\mathrm{V}_{\text {INL }}$		-0.3		$+0.3 \times \mathrm{VDD}$	V
Input Leakage Current, IIn	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V_{DD}		0.005	± 1	$\mu \mathrm{A}$
Input Hysteresis			$0.05 \times \mathrm{V}_{\text {DD }}$		V
Input Capacitance, Cl_{1}			3		pF

ADG795A/ADG795G

Parameter	Conditions	Min	Typ ${ }^{1}$	Max	Unit
LOGIC OUTPUTS ${ }^{3}$ SDA Pin Output Low Voltage, Vol Floating-State leakage Current Floating-State Output Capacitance GPO1 Pin and GPO2 Pin Output Low Voltage, Vol Output High Voltage, Vон	$\begin{aligned} & \mathrm{I}_{\text {SINK }}=3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{SINK}}=6 \mathrm{~mA} \end{aligned}$ $\begin{aligned} & I_{\text {LOAD }}=+2 \mathrm{~mA} \\ & I_{\text {LOAD }}=-2 \mathrm{~mA} \end{aligned}$	2.0	3	$\begin{aligned} & 0.4 \\ & 0.6 \\ & \pm 1 \\ & \\ & 0.4 \end{aligned}$	V V $\mu \mathrm{A}$ pF V V
POWER REQUIREMENTS ID	Digital inputs $=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD}}, I^{2} \mathrm{C}$ interface inactive $1^{2} \mathrm{C}$ interface active, $\mathrm{fscl}=400 \mathrm{kHz}$ ${ }^{12} \mathrm{C}$ interface active, $\mathrm{f}_{\mathrm{scL}}=3.4 \mathrm{MHz}$		0.001	$\begin{aligned} & 1 \\ & 0.1 \\ & 0.2 \end{aligned}$	$\mu \mathrm{A}$ mA mA

${ }^{1}$ All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise stated.
${ }^{2}$ Guaranteed by initial characterization, not subject to production test.
${ }^{3}$ Guaranteed by design, not subject to production test.

I²C TIMING SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. See Figure 2 for timing diagram.
Table 3.

Parameter ${ }^{1}$	Conditions	Min	Max	Unit	Description
fscl	Standard mode Fast mode High speed mode $C_{B}=100 \mathrm{pF}$ max $C_{B}=400 \mathrm{pF}$ max		$\begin{aligned} & \hline 100 \\ & 400 \\ & \\ & 3.4 \\ & 1.7 \end{aligned}$	kHz kHz MHz MHz	Serial clock frequency
t_{1}	Standard mode Fast mode High speed mode $C_{B}=100 \mathrm{pF}$ max $\mathrm{C}_{\mathrm{B}}=400 \mathrm{pF}$ max	$\begin{aligned} & \hline 4 \\ & 0.6 \\ & 60 \\ & 120 \end{aligned}$		$\mu \mathrm{s}$ $\mu \mathrm{s}$ ns ns	thig, SCL high time
t_{2}	Standard mode Fast mode High speed mode $C_{B}=100 \mathrm{pF}$ max $\mathrm{C}_{\mathrm{B}}=400 \mathrm{pF}$ max	$\begin{aligned} & \hline 4.7 \\ & 1.3 \\ & \\ & 160 \\ & 320 \\ & \hline \end{aligned}$		$\mu \mathrm{s}$ $\mu \mathrm{s}$ ns ns	tıow, SCL low time
t_{3}	Standard mode Fast mode High speed mode	$\begin{aligned} & \hline 250 \\ & 100 \\ & 10 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$	tsu;Dat, data setup time
$\mathrm{t}_{4}{ }^{2}$	Standard mode Fast mode High speed mode $C_{B}=100 \mathrm{pF} \max$ $C_{B}=400 \mathrm{pF} \max$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 3.45 \\ & 0.9 \\ & 703 \\ & 150 \end{aligned}$	$\mu \mathrm{s}$ $\mu \mathrm{s}$ ns ns	$t_{\text {HD;DAT, }}$ data hold time
t_{5}	Standard mode Fast mode High speed mode	$\begin{aligned} & 4.7 \\ & 0.6 \\ & 160 \end{aligned}$		$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	$\mathrm{t}_{\text {Su; STA, }}$, setup time for a repeated start condition
t_{6}	Standard mode Fast mode High speed mode	$\begin{aligned} & \hline 4 \\ & 0.6 \\ & 160 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	$\mathrm{thDi}_{\text {; TA, }}$, hold time (repeated) start condition
t_{7}	Standard mode Fast mode	$\begin{aligned} & 4.7 \\ & 1.3 \end{aligned}$		$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$	tbuf, bus free time between a stop and a start condition
t_{8}	Standard mode Fast mode High speed mode	$\begin{aligned} & \hline 4 \\ & 0.6 \\ & 160 \\ & \hline \end{aligned}$		$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$ ns	$\mathrm{t}_{\text {su:so, }}$, setup time for stop condition
t9	Standard mode Fast mode High speed mode $\begin{aligned} & C_{B}=100 \mathrm{pF} \text { max } \\ & C_{B}=400 \mathrm{pF} \text { max } \end{aligned}$	$\begin{aligned} & 20+0.1 C_{B} \\ & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & 1000 \\ & 300 \\ & \\ & 80 \\ & 160 \end{aligned}$	ns ns ns ns	$t_{\text {RDA, }}$ rise time of SDA signal
t_{10}	Standard mode Fast mode High speed mode $C_{B}=100 \mathrm{pF}$ max $C_{B}=400 \mathrm{pF}$ max	$\begin{aligned} & 20+0.1 C_{B} \\ & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & \hline 300 \\ & 300 \\ & 80 \\ & 160 \end{aligned}$	ns ns ns ns	$\mathrm{t}_{\text {fDA }}$, fall time of SDA signal

ADG795A/ADG795G

Parameter ${ }^{1}$	Conditions	Min	Max	Unit	Description
t_{11}	Standard mode Fast mode High speed mode $C_{B}=100 \mathrm{pF}$ max $\mathrm{C}_{\mathrm{B}}=400 \mathrm{pF}$ max	$\begin{aligned} & 20+0.1 C_{B} \\ & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & 1000 \\ & 300 \\ & \\ & 40 \\ & 80 \\ & \hline \end{aligned}$	ns ns ns ns	$\mathrm{t}_{\text {RCL }}$, rise time of SCL signal
$\mathrm{t}_{11 \mathrm{~A}}$	Standard mode Fast mode High speed mode $C_{B}=100 \mathrm{pF}$ max $\mathrm{C}_{\mathrm{B}}=400 \mathrm{pF}$ max	$\begin{aligned} & 20+0.1 C_{B} \\ & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & 1000 \\ & 300 \\ & \\ & 80 \\ & 160 \\ & \hline \end{aligned}$	ns ns ns ns	$\mathrm{t}_{\text {RCL1 }}$, rise time of SCL signal after a repeated start condition and after an acknowledge bit
t_{12}	Standard mode Fast mode High speed mode $\mathrm{C}_{\mathrm{B}}=100 \mathrm{pF}$ max $C_{B}=400 \mathrm{pF}$ max	$\begin{aligned} & 20+0.1 C_{B} \\ & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & \hline 300 \\ & 300 \\ & 40 \\ & 80 \end{aligned}$	ns ns ns ns	$\mathrm{t}_{\text {FCL, }}$ fall time of SCL signal
$\mathrm{tsp}^{\text {P }}$	Fast mode High speed mode	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 50 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Pulse width of suppressed spike

${ }^{1}$ Guaranteed by initial characterization. CB refers to capacitive load on the bus line, tr and tf measured between $0.3 \mathrm{~V}_{\mathrm{DD}}$ and $0.7 \mathrm{~V}_{\mathrm{DD}}$.
${ }^{2}$ A device must provide a data hold time for SDA in order to bridge the undefined region of the SCL falling edge.

TIMING DIAGRAM

Figure 2. Timing Diagram for 2-Wire Serial Interface

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 4.

Parameters	Ratings
VDD to GND	-0.3 V to +6 V
Analog, Digital Inputs	$-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or } 30 \mathrm{~mA}$ whichever occurs first
Continuous Current, S or D	100 mA
Peak Current, S or D	300 mA (pulsed at 1 ms , 10% duty cycle max)
Operating Temperature Range Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
θ_{JA} Thermal Impedance 24-Lead LFCSP	$30^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering (10 sec)	$300^{\circ} \mathrm{C}$
IR Reflow, Peak Temperature (<20 sec)	$260^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating may be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ADG795A/ADG795G

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 3. ADG795G Pinout

NOTES

1. $N C=$ NO CONNECT.
2. THE EXPOSED PAD MUST BE TIED TO GND.

Figure 4. ADG795A Pinout

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	S1A	A-Side Source Terminal for Mux 1. Can be an input or output.
2	S1B	B-Side Source Terminal for Mux 1. Can be an input or output.
3	D1	Drain Terminal for Mux 1. Can be an input or output.
4	D2	Drain Terminal for Mux 2. Can be an input or output.
5	S2B	B-Side Source Terminal for Mux 2. Can be an input or output.
6	S2A	A-Side Source Terminal for Mux 2. Can be an input or output.
7	S3A	A-Side Source Terminal for Mux 3. Can be an input or output.
8	S3B	B-Side Source Terminal for Mux 3. Can be an input or output.
9	D3	Drain Terminal for Mux 3. Can be an input or output.
10	D4	Drain Terminal for Mux 4. Can be an input or output.
11	S4B	B-Side Source Terminal for Mux 4. Can be an input or output.
12	S4A	A-Side Source Terminal for Mux 4. Can be an input or output.
13	S5A	A-Side Source Terminal for Mux 5. Can be an input or output
14	S5B	B-Side Source Terminal for Mux 5. Can be an input or output
15	D5	Drain Terminal for Mux 5. Can be an input or output.
16	NC/GPO1	Not internally connected for ADG795A/General Purpose Logic Output 1 for ADG795G.
17	NC	Not internally connected.
18	A2	Logic Input. Sets Bit A2 from the least significant bit of the 7-bit slave address.
19	A1	Logic Input. Sets Bit A1 from the least significant bit of the 7-bit slave address.
20	A0	Logic Input. Sets Bit A0 from the least significant bit of the 7-bit slave address.
21	SCL	Digital Input, Serial Clock Line. Open-drain input that is used in conjunction with SDA to clock data into
22	the device. External pull-up resistor required.	
23	SDA	Digital I/O. Bi-directional open-drain data line. External pull-up resistor required.
24	VDD	Positive Power Supply Input.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. Analog Signal Range, 3 V Supply

Figure 6. Analog Signal Range, 5 V Supply

Figure 7. On Resistance vs. $V_{D}\left(V_{S}\right), 3 V$ Supply

Figure 8. On Resistance vs. $V_{D}\left(V_{s}\right), 5$ V Supply

Figure 9. On Resistance vs. $V_{D}\left(V_{s}\right)$ for Various Temperatures, 3 V Supply

Figure 10. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Various Temperatures, 5 V Supply

ADG795A/ADG795G

Figure 11. Charge Injection vs. Source Voltage

Figure 12. ton/toff vs. Temperature

Figure 13. Off Isolation vs. Frequency

Figure 14. Crosstalk vs. Frequency

Figure 15. Bandwidth

Figure 16. PSRR vs. Frequency

Figure 17. IDD vs. fCLK Frequency

Figure 18. $I_{D D}$ vs. I^{2} C Logic Input Voltage (SDA, SCL)

Figure 19. 1^{2} C to GPO Propagation Delay vs. Temperature

Figure 20. GPO V VH vs. Load Current

Figure 21. GPO Vol vs. Load Current

ADG795A/ADG795G

TEST CIRCUITS

Figure 22. On Resistance

Figure 23. Off Leakage

Figure 24. On Leakage

Figure 25. Bandwidth

Figure 26. Off Isolation

Figure 27. Channel-to-Channel Crosstalk

Figure 28. Switching Times

Figure 30. Charge Injection

ADG795A/ADG795G

TERMINOLOGY

On Resistance (Ron)

The series on-channel resistance measured between the S pin and D pin.

On Resistance Match (Δ Ros)
The channel-to-channel matching of on resistance when channels are operated under identical conditions.

On Resistance Flatness ($\mathrm{R}_{\mathrm{flat}(\mathrm{ON})}$)
The variation of on resistance over the specified range produced by the specified analog input voltage change with a constant load current.

Channel Off Leakage ($\mathrm{I}_{\text {off }}$)

The sum of leakage currents into or out of an off channel input.

Channel On Leakage (I_{oN})

The current loss/gain through an on-channel resistance, creating a voltage offset across the device.

Input Leakage Current ($\mathbf{I}_{\text {IN }}, \mathbf{I}_{\text {INL }}, \mathbf{I}_{\text {INH }}$)
The current flowing into a digital input when a specified low level or high level voltage is applied to that input.

Input/Output Off Capacitance (Coff)

The capacitance between an analog input and ground when the switch channel is off.

Input/Output On Capacitance (Con)

The capacitance between the inputs or outputs and ground when the switch channel is on.

Digital Input Capacitance ($\mathrm{C}_{\text {IN }}$)

The capacitance between a digital input and ground.

Output On Switching Time (tos)

The time required for the switch channel to close. The time is measured from 50% of the falling edge of the LDSW bit to the time the output reaches 90% of the final value.

Output Off Switching Time (toff)

The time required for the switch to open. The time is measured from 50% of the falling edge of the LDSW bit to the time the output reaches 10% of the final value.
$I^{2} \mathrm{C}$ to GPO propagation delay $\left(\mathrm{t}_{\mathrm{H}}, \mathrm{t}_{\mathrm{L}}\right)$
The time required for the logic value at the GPO pin to settle after loading a GPO command. The time is measured from 50% of the falling edge of the LDSW bit to the time the output reaches 90% of the final value for high and 10% for low.

Total Harmonic Distortion + Noise (THD + N)

The ratio of the harmonic amplitudes plus noise of a signal to the fundamental.

-3 dB Bandwidth

The frequency at which the output is attenuated by 3 dB .

Off Isolation

The measure of unwanted signal coupling through an off switch.

Crosstalk

The measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Charge Injection

The measure of the glitch impulse transferred from the digital input to the analog output during on/off switching.

Differential Gain Error

The measure of how much color saturation shift occurs when the luminance level changes. Both attenuation and amplification can occur; therefore, the largest amplitude change between any two levels is specified and expressed in percent (\%).

Differential Phase Error

The measure of how much hue shift occurs when the luminance level changes. It can be a negative or positive value and is expressed in degrees of subcarrier phase.

Input High Voltage ($\mathrm{V}_{\mathrm{INH}}$)

The minimum input voltage for Logic 1.
Input Low Voltage ($\mathrm{V}_{\mathrm{INL}}$)
The maximum input voltage for Logic 0 .
Output High Voltage (V_{OH})
The minimum output voltage for Logic 1.
Output Low Voltage (V_{oL})
The maximum output voltage for Logic 0 .

I_{DD}

Positive supply current.

THEORY OF OPERATION

The ADG795A/ADG795G are monolithic CMOS devices comprising five 2:1 multiplexers controllable via a standard $\mathrm{I}^{2} \mathrm{C}$ serial interface. The CMOS process provides ultralow power dissipation, yet offers high switching speed and low on resistance.

The on resistance profile is very flat over the full analog input range, and wide bandwidth ensures excellent linearity and low distortion. These features, combined with a wide input signal range, make the ADG795A/ADG795G an ideal switching solution for a wide range of TV applications.

The switches conduct equally well in both directions when on. In the off condition, signal levels up to the supplies are blocked. The integrated serial $I^{2} \mathrm{C}$ interface controls the operation of the switches (ADG795A/ADG795G) and general-purpose logic pins (ADG795G only).

The ADG795A/ADG795G have many attractive features, such as the ability to individually control each multiplexer, the option of reading back the status of any switch. The ADG795G has one general-purpose logic output pin controllable through the $\mathrm{I}^{2} \mathrm{C}$ interface. The following sections describe these features in detail.

$I^{2} \mathbf{C}$ SERIAL INTERFACE

The ADG795A/ADG795G are controlled via an $\mathrm{I}^{2} \mathrm{C}$-compatible serial bus interface (refer to the $I^{2} C$-Bus Specification available from Philips Semiconductor) that allows the part to operate as a slave device (no clock is generated by the ADG795A/ADG795G). The communication protocol between the $\mathrm{I}^{2} \mathrm{C}$ master and the device operates as follows:

1. The master initiates data transfer by establishing a start condition (defined as a high-to-low transition on the SDA line while SCL is high). This indicates that an address/data stream follows. All slave devices connected to the bus respond to the start condition and shift in the next eight bits, consisting of a seven bit address (MSB first) plus an $\mathrm{R} / \overline{\mathrm{W}}$ bit. This bit determines the direction of the data flow during the communication between the master and the addressed slave device.
2. The slave device whose address corresponds to the transmitted address responds by pulling the SDA line low during the ninth clock pulse (this is called the acknowledge bit).

At this stage, all other devices on the bus remain idle while the selected device waits for data to be written to, or read from, its serial register. If the $\mathrm{R} / \overline{\mathrm{W}}$ bit is set high, the master reads from the slave device. However, if the R/ $\overline{\mathrm{W}}$ bit is set low, the master writes to the slave device.
3. Data transmits over the serial bus in sequences of nine clock pulses (eight data bits followed by an acknowledge bit). The transitions on the SDA line must occur during the low period of the clock signal, SCL, and remain stable during the high period of SCL. Otherwise, a low-to-high transition when the clock signal is high can be interpreted as a stop event that ends the communication between the master and the addressed slave device.
4. After transferring all data bytes, the master establishes a stop condition, defined as a low-to-high transition on the SDA line while SCL is high. In write mode, the master pulls the SDA line high during the $10^{\text {th }}$ clock pulse to establish a stop condition. In read mode, the master issues a no acknowledge for the ninth clock pulse (the SDA line remains high). The master then brings the SDA line low before the $10^{\text {th }}$ clock pulse, and then high during the $10^{\text {th }}$ clock pulse to establish a stop condition.

I^{2} C ADDRESS

The ADG795A/ADG795G have a 7 -bit $\mathrm{I}^{2} \mathrm{C}$ address. The four most significant bits are internally hardwired and last three bits (A0, A1, and A2) are user-adjustable. This allows the user to connect up to eight ADG795As/ADG795Gs to the same bus. The $\mathrm{I}^{2} \mathrm{C}$ bit map shows the configuration of the 7 -bit address.

7-Bit ${ }^{2}$ ' C Address Configuration
MSB
1

WRITE OPERATION

When writing to the ADG795A/ADG795G, the user must begin with an address byte and $\mathrm{R} / \overline{\mathrm{W}}$ bit, after which time the switch acknowledges that it is prepared to receive data by pulling SDA low. Data is loaded into the device as a 16 -bit word under the control of a serial clock input, SCL. Figure 31 illustrates the entire write sequence for the ADG795A/ ADG795G. The first data byte (AX7 to AX0) controls the status of the switches while the LDSW and RESETB bits from the second byte control the operation mode of the device. Table 6 shows a list of all commands supported by the ADG795A/ ADG795G with the corresponding byte that needs to be loaded during a write operation.

To achieve the desired configuration, one or more commands can be loaded into the device. Any combination of the commands in Table 6 can be used with these restrictions:

- Only one switch from a given multiplexer can be on at any given time.
- When a sequence of successive commands affect the same element (that is, the switch or GPO pin), only the last command is executed.

ADG795A/ADG795G

Figure 31. Write Operation

Table 6. ADG795A/ADG795G Command List

AX7	AX6	AX5	AX4	AX3	AX2	AX1	AXO	Addressed Switch
0	0	0	0	0	0	0	0	S1A/D1, S2A/D2, S3A/D3, S4A/D4, S5A/D5 off
1	0	0	0	0	0	0	0	S1A/D1, S2A/D2, S3A/D3, S4A/D4, S5A/D5 on
0	0	0	0	0	0	0	1	S1B/D1, S2B/D2, S3B/D3, S4B/D4, S5B/D5 off
1	0	0	0	0	0	0	1	S1B/D1, S2B/D2, S3B/D3, S4B/D4, S5B/D5 on
0	0	0	0	0	0	1	0	S1A/D1 off
1	0	0	0	0	0	1	0	S1A/D1 on
0	0	0	0	0	0	1	1	S1B/D1 off
1	0	0	0	0	0	1	1	S1B/D1 on
0	0	0	0	0	1	0	0	S2A/D2 off
1	0	0	0	0	1	0	0	S2A/D2 on
0	0	0	0	0	1	0	1	S2B/D2 off
1	0	0	0	0	1	0	1	S2B/D2 on
0	0	0	0	0	1	1	0	S3A/D3 off
1	0	0	0	0	1	1	0	S3A/D3 on
0	0	0	0	0	1	1	1	S3B/D3 off
1	0	0	0	0	1	1	1	S3B/D3 on
0	0	0	0	1	0	0	0	S4A/D4 off
1	0	0	0	1	0	0	0	S4A/D4 on
0	0	0	0	1	0	0	1	S4B/D4 off
1	0	0	0	1	0	0	1	S4B/D4 on
0	0	0	0	1	0	1	0	S5A/D5 off
1	0	0	0	1	0	1	0	S5A/D5 on
0	0	0	0	1	0	1	1	S5B/D5 off
1	0	0	0	1	0	1	1	S5B/D5 on
X^{1}	0	0	0	1	1	0	0	Reserved
X^{1}	0	0	0	1	1	0	1	Reserved
X^{1}	0	0	0	1	1	1	0	Mux 1 disabled (all switches connected to D1 are off)
X^{1}	0	0	0	1	1	1	1	Mux 2 disabled (all switches connected to D2 are off)
X^{1}	0	0	1	0	0	0	0	Mux 3 disabled (all switches connected to D3 are off)
X^{1}	0	0	1	0	0	0	1	Mux 4 disabled (all switches connected to D4 are off)
X^{1}	0	0	1	0	0	1	0	Mux 5 disabled (all switches connected to D5 are off)
X^{1}	0	0	1	0	0	1	1	Reserved
1	0	0	1	0	1	0	0	GPO1 high for ADG795G/reserved for ADG795A
0	0	0	1	0	1	0	0	GPO1 low for ADG795G/reserved for ADG795A
0	0	0	1	1	1	1	1	All muxes disabled
1	0	0	1	1	1	1	1	Reserved

[^0]
LDSW BIT

The LDSW bit allows the user to control the way the device executes the commands loaded during the write operations. The ADG795A/ADG795G execute all the commands loaded between two successive write operations that have set the LDSW bit high.

Setting the LDSW high for every write cycle ensures that the device executes the command right after the LDSW bit was loaded into the device. This setting can be used when the desired configuration can be achieved by sending a single command or when the switches and/or GPO pin are not required to be updated at the same time. When the desired configuration requires multiple commands with simultaneous updated, the LDSW bit should be set low while loading the commands (except the last one when the LDSW bit should be set high). Once the last command with LDSW = high is loaded, the device executes all commands received since the last update simultaneously.

POWER ON/SOFTWARE RESET

The ADG795A/ADG795G has a software reset function implemented by the RESETB bit from the second data byte written to the device. For normal operation of the multiplexers and GPO pin, this bit should be set high. When RESETB = low or after power-up, the switches from all multiplexers are turned off (open) and the GPO pin is set low.

READ OPERATION

When reading data back from the ADG795A/ADG795G, the user must begin with an address byte and $\mathrm{R} / \overline{\mathrm{W}}$ bit. The switch then acknowledges that it is prepared to transmit data by pulling SDA low. Following this acknowledgement, the ADG795A/ADG795G transmit two bytes on the next clock edges. These bytes contain the status of the switches, and each byte is followed by an acknowledge bit. A logic high bit represents a switch in the on (close) state while a low represents a switch in the off (open) state. For the GPO pin (ADG795G only), the bit represents the logic value of the pin. Figure 32 illustrates the entire read sequence.

The bit maps accompanying Figure 32 show the relationship between the elements of the ADG795A and ADG795G (that it, the switches and GPO pins) and the bits that represent their status after a completed read operation.

Bit Map of the ADG795A

RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
S1A/D1	S1B/D1	S2A/D2	S2B/D2	S3A/D3	S3B/D3	S4A/D4	S4B/D4	S5A/D5	S5B/D5	-	-	-	-	-	-

Bit Map of the ADG795G

RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RBO
S1A/D1	S1B/D1	S2A/D2	S2B/D2	S3A/D3	S3B/D3	S4A/D4	S4B/D4	S5A/D5	S5B/D5	-	-	GPO1	-	-	-

Read Operation

Figure 32. ADG795A/ADG795G Read Operation

ADG795A/ADG795G

EVALUATION BOARD

The ADG795G evaluation kit allows designers to evaluate the high performance of the device with a minimum of effort.

The evaluation kit includes a printed circuit board populated with the ADG795G. The evaluation board can be used to evaluate the performance of both the ADG795A and ADG795G. It interfaces to the USB port of a PC, or it can be used as a standalone evaluation board.

Software for the evaluation board allows the user to program the ADG795G easily through the USB port. The software runs on any PC that has Microsoft ${ }^{\star}$ Windows ${ }^{\star} 2000$ or Windows XP installed with a minimum screen resolution of 1200×768. See Figure 33 and Figure 34 for schematics of the evaluation board.

USING THE ADG795G EVALUATION BOARD

The ADG795G evaluation kit is a test system designed to simplify the evaluation of the device. Each input/output of the part comes with a socket specifically chosen for easy audio/video evaluation. An evaluation board data sheet is also available and provides full instructions for operating the evaluation board.

Figure 33. Eval-ADG795GEB Schematic, USB Controller Section

OUTLINE DIMENSIONS

Figure 35. 24-Lead Lead Frame Chip Scale Package [LFCSP_VQ] 4 mm x 4 mm Body, Very Thin Quad (CP-24-2)
Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	$1^{2} \mathrm{C}$ Speed	Package Description	Package Option
ADG795ABCPZ-REEL ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$100 \mathrm{kHz}, 400 \mathrm{kHz}$	24-Lead LFCSP_VQ	CP-24-2
ADG795ABCPZ-500RL7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$100 \mathrm{kHz}, 400 \mathrm{kHz}$	24-Lead LFCSP_VQ	CP-24-2
ADG795ACCPZ-REEL ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$100 \mathrm{kHz}, 400 \mathrm{kHz}, 3.4 \mathrm{MHz}$	24-Lead LFCSP_VQ	CP-24-2
ADG795ACCPZ-500RL7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$100 \mathrm{kHz}, 400 \mathrm{kHz}, 3.4 \mathrm{MHz}$	24-Lead LFCSP_VQ	CP-24-2
ADG795GBCPZ-REEL ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$100 \mathrm{kHz}, 400 \mathrm{kHz}$	24-Lead LFCSP_VQ	CP-24-2
ADG795GBCPZ-500RL7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$100 \mathrm{kHz}, 400 \mathrm{kHz}$	24-Lead LFCSP_VQ	CP-24-2
ADG795GCCPZ-REEL ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$100 \mathrm{kHz}, 400 \mathrm{kHz}, 3.4 \mathrm{MHz}$	24-Lead LFCSP_VQ	CP-24-2
ADG795GCCPZ-500RL7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$100 \mathrm{kHz}, 400 \mathrm{kHz}, 3.4 \mathrm{MHz}$	24-Lead LFCSP_VQ	CP-24-2
EVAL-ADG795GEB ${ }^{2}$			Evaluation Board	

[^1]
ADG795A/ADG795G

NOTES

[^0]: ${ }^{1} X=$ Logic state does not matter.

[^1]: ${ }^{1} \mathrm{Z}=\mathrm{Pb}$-free part.
 ${ }^{2}$ Evaluation board is RoHS compliant.

