Low-ohmic, single-pole, double-throw switch
Rev. 01 - 8 October 2007
Product data sheet

1. General description

The NX3L1G3157 provides one, low-ohmic, single-pole, double-throw analog switch suitable for use as an analog or digital multiplexer/demultiplexer. It has a digital select input (S) with Schmitt-trigger action, two independent inputs/outputs (Y0, Y1) and a common input/output (Z).

Schmitt-trigger action at the select input (S) makes the circuit tolerant to slower input rise and fall times across the entire V_{Cc} range from 1.4 V to 3.6 V .

The NX3L1G3157 allows signals with amplitude up to V_{CC} to be transmitted from Z to Y 0 or Y 1 ; or from Y0 or Y1 to Z. It's low ON resistance (0.5Ω) and flatness (0.13Ω) ensures minimal attenuation and distortion of transmitted signals.

2. Features

■ Wide supply voltage range from 1.4 V to 3.6 V

- Very low ON resistance:
-1.6 Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$
-1.0 Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$
0.55Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$
0.50Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$
- Break-before-make switching
- High noise immunity
- ESD protection:
- HBM JESD22-A114E Class 3A exceeds 7500 V
- MM JESD22-A115-A exceeds 200 V
- CDM AEC-Q100-011 revision B exceeds 1000 V
- CMOS low-power consumption
- Latch-up performance exceeds 100 mA per JESD 78 Class II Level B
- Direct interface with TTL levels at 3.0 V
- Control input accepts voltages above supply voltage
- High current handling capability (350 mA continuous current under 3.3 V supply)
- Specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

3. Applications

- Cell phone
- PDA
- Portable media player

4. Ordering information

Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
NX3L1G3157GM	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body $1 \times 1.45 \times 0.5 \mathrm{~mm}$	SOT886

5. Marking

Table 2. Marking

Type number	Marking code
NX3L1G3157GM	MJ

6. Functional diagram

Fig 1. Logic symbol

Fig 2. Logic diagram

7. Pinning information

7.1 Pinning

7.2 Pin description

Table 3. Pin description

Symbol	Pin	Description
Y1	1	independent input or output
GND	2	ground $(0 \mathrm{~V})$
Y0	3	independent input or output
Z	4	common output or input
V $_{\text {CC }}$	5	supply voltage
S	6	select input

8. Functional description

Table 4. Function table[1]

Input S	Channel on
L	Y 0
H	Y 1

[1] H = HIGH voltage level;
$\mathrm{L}=\mathrm{LOW}$ voltage level.

9. Limiting values

Table 5. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
$V_{C C}$	supply voltage		-0.5	+4.6	V
V_{1}	input voltage		[1] -0.5	+4.6	V
$\mathrm{V}_{\text {SW }}$	switch voltage		[2] -0.5	$\mathrm{V}_{\text {CC }}+0.5$	V
I_{IK}	input clamping current	$\mathrm{V}_{1}<-0.5 \mathrm{~V}$	-50	-	mA
$I_{\text {SK }}$	switch clamping current	$\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{C C}+0.5 \mathrm{~V}$	-	± 50	mA
Isw	switch current	$\mathrm{V}_{\mathrm{SW}}>-0.5 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{SW}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V} ;$ source or sink current	-	± 350	mA
		$\mathrm{V}_{\mathrm{SW}}>-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{SW}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$; pulsed at 1 ms duration, < 10% duty cycle; peak current	-	± 500	mA
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	[3] -	250	mW

[1] The minimum input voltage rating may be exceeded if the input current rating is observed.
[2] The minimum and maximum switch voltage ratings may be exceeded if the switch clamping current rating is observed.
[3] For XSON6 packages: above $45^{\circ} \mathrm{C}$ the value of $P_{\text {tot }}$ derates linearly with $2.4 \mathrm{~mW} / \mathrm{K}$.

10. Recommended operating conditions

Table 6. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V_{CC}	supply voltage	select input S	1.4	-	3.6	V
$\mathrm{~V}_{\mathrm{I}}$	input voltage		0	-	3.6	V
$\mathrm{~V}_{\mathrm{SW}}$	switch voltage	$\underline{[1]} 0$	-	V_{CC}	V	
$\mathrm{T}_{\mathrm{amb}}$	ambient temperature		-40	-	+125	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	input transition rise and fall rate	$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 3.6 V	$\underline{[2]}-$	-	200	$\mathrm{~ns} / \mathrm{V}$

[1] To avoid sinking GND current from terminal Z when switch current flows in terminal Yn, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal Z, no GND current will flow from terminal Yn. In this case, there is no limit for the voltage drop across the switch.
[2] Applies to control signal levels.

11. Static characteristics

Table 7. Static characteristics
At recommended operating conditions; voltages are referenced to GND (ground 0 V).

Symbol	Parameter	Conditions	$25^{\circ} \mathrm{C}$			$-40{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	Min	$\begin{gathered} \operatorname{Max} \\ \left(85^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} \text { Max } \\ \left(125^{\circ} \mathrm{C}\right) \end{gathered}$	
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.95 V	$0.65 \mathrm{~V}_{\mathrm{CC}}$	-	-	$0.65 \mathrm{~V}_{\text {cC }}$	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	1.7	-	-	1.7	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	2.0	-	-	2.0	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.95 V	-	-	$0.35 V_{\text {CC }}$	-	$0.35 V_{\text {CC }}$	$0.35 \mathrm{~V}_{\text {CC }}$	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	-	0.7	-	0.7	0.7	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	-	-	0.8	-	0.8	0.8	V
1	input leakage current	select input S ; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3.6 V ; $\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 3.6 V	-	-	-	-	± 0.5	± 1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	Y0 and Y1 port; $\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 3.6 V ; see Figure 4	-	-	± 5	-	± 50	± 500	$n A$
$\mathrm{I}_{\text {S(ON })}$	ON-state leakage current	$\begin{aligned} & \text { Z port; } \\ & \mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \text {; } \\ & \text { see Figure } 5 \end{aligned}$	-	-	± 5	-	± 50	± 500	$n A$
ICC	supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \\ & \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{SW}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	-	-	100	-	690	6000	$n A$
C_{1}	input capacitance		-	1.0	-	-	-	-	pF

Table 7. Static characteristics ...continued At recommended operating conditions; voltages are referenced to GND (ground 0 V).

Symbol	Parameter	Conditions	$25^{\circ} \mathrm{C}$			$-40{ }^{\circ} \mathrm{C}$ to +125 ${ }^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	Min	$\begin{gathered} \operatorname{Max} \\ \left(85^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} \operatorname{Max} \\ \left(125^{\circ} \mathrm{C}\right) \end{gathered}$	
$\mathrm{C}_{\text {S(OFF) }}$	OFF-state capacitance		-	35	-	-	-	-	pF
$\mathrm{C}_{\text {S(ON) }}$	ON-state capacitance		-	130	-	-	-	-	pF

11.1 Test circuits

$\mathrm{V}_{\mathrm{I}}=0.3 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}$; $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}$ or 0.3 V .
Fig 4. Test circuit for measuring OFF-state leakage current

$\mathrm{V}_{\mathrm{I}}=0.3 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}$; $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}$ or 0.3 V .
Fig 5. Test circuit for measuring ON -state leakage current

11.2 ON resistance

Table 8. ON resistance
At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for graphs see Figure 7 to Figure 12.

Symbol	Parameter	Conditions		$-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit
				Min	Typ[1]	Max	Min	Max	
$\mathrm{R}_{\mathrm{ON} \text { (peak) }}$	ON resistance (peak)	$\begin{aligned} & V_{1}=G N D \text { to } V_{C C} ; \\ & I_{\text {Sw }}=100 \mathrm{~mA} ; \\ & \text { see Figure } 6 \end{aligned}$							
		$\mathrm{V}_{C C}=1.4 \mathrm{~V}$		-	1.6	4.5	-	5.5	Ω
		$\mathrm{V}_{\text {CC }}=1.65 \mathrm{~V}$		-	1.0	2.0	-	2.5	Ω
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$		-	0.55	0.8	-	1.0	Ω
		$\mathrm{V}_{C C}=2.7 \mathrm{~V}$		-	0.5	0.75	-	0.9	Ω
$\Delta \mathrm{R}_{\mathrm{ON}}$	ON resistance mismatch between channels	$\begin{aligned} & V_{1}=G N D \text { to } V_{C C} ; \\ & I_{\text {Sw }}=100 \mathrm{~mA} \end{aligned}$	[2]						
		$\mathrm{V}_{C C}=1.4 \mathrm{~V}$		-	0.08	0.3	-	0.3	Ω
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$		-	0.08	0.2	-	0.3	Ω
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$		-	0.07	0.2	-	0.2	Ω
		$\mathrm{V}_{C C}=2.7 \mathrm{~V}$		-	0.07	0.2	-	0.2	Ω
$\mathrm{R}_{\mathrm{ON} \text { (flat) }}$	ON resistance (flatness)	$\begin{aligned} & V_{1}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{I}_{\mathrm{SW}}=100 \mathrm{~mA} \end{aligned}$	[3]						
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$		-	1.0	4.0	-	4.0	Ω
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$		-	0.5	1.5	-	1.5	Ω
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$		-	0.15	0.3	-	0.35	Ω
		$\mathrm{V}_{C C}=2.7 \mathrm{~V}$		-	0.13	0.3	-	0.35	Ω

[1] Typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
[2] Measured at identical V_{CC}, temperature and input voltage.
[3] Flatness is defined as the difference between the maximum and minimum value of $O N$ resistance measured at identical $V_{C C}$ and temperature

11.3 ON resistance test circuit and graphs

$\mathrm{R}_{\mathrm{ON}}=\mathrm{V}_{\mathrm{SW}} / \mathrm{I}_{\mathrm{SW}}$.

Fig 6. Test circuit for measuring ON resistance

(1) $\mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V}$.
(2) $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$.
(3) $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$.
(4) $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$.
(5) $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$.

Measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
Fig 7. Typical ON resistance as a function of input voltage

(1) $\mathrm{T}_{\text {amb }}=125^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\mathrm{amb}}=85^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
(4) $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$.

Fig 8. ON resistance as a function of input voltage; $\mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V}$

(1) $\mathrm{T}_{\text {amb }}=125^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\mathrm{amb}}=85^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
(4) $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$.

Fig 9. ON resistance as a function of input voltage; $\mathrm{V}_{\mathrm{Cc}}=1.8 \mathrm{~V}$

(1) $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\text {amb }}=85^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$.
(4) $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$.

Fig 10. ON resistance as a function of input voltage; $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$

(1) $\mathrm{T}_{\text {amb }}=125^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\text {amb }}=85^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$.
(4) $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$.

Fig 11. ON resistance as a function of input voltage; $\mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}$

(1) $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\mathrm{amb}}=85^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
(4) $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$.

Fig 12. ON resistance as a function of input voltage; $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$

12. Dynamic characteristics

Table 9. Dynamic characteristics
At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for load circuit see Figure 15.

Symbol	Parameter	Conditions		$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to +125 ${ }^{\circ} \mathrm{C}$			Unit
				Min	Typ[1]	Max	Min	$\begin{gathered} \text { Max } \\ \left(85{ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} \text { Max } \\ \left(125^{\circ} \mathrm{C}\right) \end{gathered}$	
ten	enable time	S to Z or Yn ; see Figure 13	[2]							
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V		-	28	43	-	48	52	ns
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V		-	23	35	-	38	42	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V		-	17	27	-	29	32	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V		-	14	25	-	27	30	ns
$\mathrm{t}_{\text {dis }}$	disable time	S to Z or Yn ; see Figure 13	[3]							
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V		-	9	20	-	25	30	ns
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V		-	6	15	-	20	23	ns
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V		-	5	11	-	14	16	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V		-	4	10	-	12	14	ns
t_{b-m}	break-before-make time	see Figure 14	[4]							
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V		-	19	-	4	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V		-	17	-	4	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V		-	13	-	2	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V		-	10	-	2	-	-	ns

[1] Typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ and 3.3 V respectively.
[2] $t_{e n}$ is the same as $t_{P Z H}$ and $t_{P Z L}$
[3] $t_{\text {dis }}$ is the same as $t_{P L Z}$ and $t_{P H Z}$
[4] Break-before-make guaranteed by design.

12.1 Waveform and test circuits

Measurement points are given in Table 10.
Logic level: V_{OH} is typical output voltage level that occurs with the output load.
Fig 13. Enable and disable times

Table 10. Measurement points

Supply voltage	Input	Output
$\mathrm{V}_{\mathbf{C C}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{X}}$
1.4 V to 3.6 V	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$0.9 \mathrm{~V}_{\mathrm{OH}}$

a. Test circuit

b. Input and output pulse definitions

Fig 14. Test circuit for measuring break-before-make timing

Test data is given in Table 11.
Definitions test circuit:
$R_{L}=$ Load resistance.
$C_{L}=$ Load capacitance including jig and probe capacitance.
$\mathrm{V}_{\mathrm{EXT}}=$ External voltage for measuring switching times.
Fig 15. Load circuit for switching times

Table 11. Test data

Supply voltage	Input		Load	
$\mathbf{V}_{\text {CC }}$	$\mathbf{V}_{\mathbf{I}}$	$\mathbf{t}_{\mathbf{r}}, \mathbf{t}_{\mathbf{f}}$	\mathbf{C}_{L}	$\mathbf{R}_{\mathbf{L}}$
1.4 V to 3.6 V	$\mathrm{~V}_{\mathrm{CC}}$	$\leq 2.5 \mathrm{~ns}$	35 pF	50Ω

12.2 Additional dynamic characteristics

Table 12. Additional dynamic characteristics
At recommended operating conditions; voltages are referenced to GND (ground = 0 V)

Symbol	Parameter	Conditions	$25^{\circ} \mathrm{C}$			$-40{ }^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	Min	$\begin{gathered} \text { Max } \\ \left(85^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} \text { Max } \\ \left(125^{\circ} \mathrm{C}\right) \end{gathered}$	
THD	total harmonic distortion	$\begin{aligned} & \mathrm{f}_{\mathrm{i}}=20 \mathrm{~Hz} \text { to } 20 \mathrm{KHz} ; \\ & \mathrm{R}_{\mathrm{L}}=32 \Omega ; \text { see Figure } 16 \end{aligned}$							
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=1 \mathrm{~V}(\mathrm{p}-\mathrm{p}) \end{aligned}$	-	0.15	-	-	-	-	\%
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{I}}=1.2 \mathrm{~V}(\mathrm{p}-\mathrm{p}) \end{aligned}$	-	0.10	-	-	-	-	\%
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{I}}=1.5 \mathrm{~V}(\mathrm{p}-\mathrm{p}) \end{aligned}$	-	0.015	-	-	-	-	\%
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=2 \mathrm{~V}(\mathrm{p}-\mathrm{p}) \end{aligned}$	-	0.024	-	-	-	-	\%
$\mathrm{f}_{(-3 \mathrm{~dB})}$	-3 dB frequency response	$\mathrm{R}_{\mathrm{L}}=50 \Omega$; see Figure 17							
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 3.6 V	-	60	-	-	-	-	MHz
$\alpha_{\text {iso }}$	isolation (OFF-state)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{f}_{\mathrm{i}}=100 \mathrm{KHz} ; \\ & \text { see Figure } 18 \end{aligned}$							
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 3.6 V	-	-90	-	-	-	-	dB
$Q_{\text {inj }}$	charge injection	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{nF} ; \mathrm{V}_{\text {gen }}=0 \mathrm{~V} ; \\ & \mathrm{R}_{\text {gen }}=0 \Omega ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega ; \text { see Figure } 19 \\ & \hline \end{aligned}$							
		$\mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V}$	-	3	-	-	-	-	pC
		$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$	-	4	-	-	-	-	pC
		$\mathrm{V}_{C C}=2.5 \mathrm{~V}$	-	6	-	-	-	-	pC
		$\mathrm{V}_{C C}=3.3 \mathrm{~V}$	-	9	-	-	-	-	pC

12.3 Test circuits

Fig 16. Test circuit for measuring total harmonic distortion

Adjust f_{i} voltage to obtain 0 dBm level at output. Increase f_{i} frequency until dB meter reads -3 dB .
Fig 17. Test circuit for measuring the frequency response when channel is in ON-state

Adjust f_{i} voltage to obtain 0 dBm level at input
Fig 18. Test circuit for measuring isolation (OFF-state)

a. Test circuit

v_{0}

b. Input and output pulse definitions

Definition: $Q_{\text {inj }}=\Delta V_{O} \times C_{L}$.
$\Delta \mathrm{V}_{\mathrm{O}}=$ output voltage variation.
$\mathrm{R}_{\mathrm{gen}}=$ generator resistance.
$\mathrm{V}_{\text {gen }}=$ generator voltage.
Fig 19. Test circuit for measuring charge injection

13. Package outline

DIMENSIONS (mm are the original dimensions)

UNIT	$\mathbf{A}^{(\mathbf{1})}$ $\boldsymbol{m a x}$	$\mathbf{A}_{\mathbf{1}}$ $\boldsymbol{m a x}$	\mathbf{b}	\mathbf{D}	\mathbf{E}	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{1}}$
mm	0.5	0.04	0.25	1.5	1.05	0.6	0.5	0.35	0.40
			0.17	1.4	0.95			0.27	0.32

Notes

1. Including plating thickness.
2. Can be visible in some manufacturing processes.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			

Fig 20. Package outline SOT886 (XSON6)

14. Abbreviations

Table 13. Abbreviations

Acronym	Description
CDM	Charged Device Model
CMOS	Complementary Metal Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model
PDA	Personal Digital Assistant
TTL	Transistor-Transistor Logic

15. Revision history

Table 14. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
NX3L1G3157_1	20071008	Product data sheet	-	-

16. Legal information

16.1 Data sheet status

Document status $[\underline{[1][2]}$	Product status $[3]$	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term 'short data sheet' is explained in section "Definitions".
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft - The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information

Short data sheet - A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

16.3 Disclaimers

General - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof
Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or
malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.
Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.
Terms and conditions of sale - NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.
No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For additional information, please visit: http://www.nxp.com
For sales office addresses, send an email to: salesaddresses@nxp.com

18. Contents

1 General description 1
2 Features 1
3 Applications 1
4 Ordering information 2
5 Marking 2
6 Functional diagram 2
7 Pinning information 2
7.1 Pinning 2
7.2 Pin description 3
8 Functional description 3
9 Limiting values 3
10 Recommended operating conditions. 4
11 Static characteristics 4
11.1 Test circuits 5
11.2 ON resistance 6
11.3 ON resistance test circuit and graphs 7
12 Dynamic characteristics 9
12.1 Waveform and test circuits 10
12.2 Additional dynamic characteristics 12
12.3 Test circuits 12
13 Package outline 15
14 Abbreviations. 16
15 Revision history 16
16 Legal information 17
16.1 Data sheet status 17
16.2 Definitions. 17
16.3 Disclaimers 17
16.4 Trademarks 17
17 Contact information 17
18 Contents 18
founded by

