NX3V1T66 # Low-voltage analog switch Rev. 02 — 24 July 2008 **Product data sheet** #### **General description** 1. The NX3V1T66 provides one single-pole single-throw analog switch function. It has two input/output terminals (Y and Z) and an active HIGH enable input pin (E). When pin E is LOW, the analog switch is turned off. A low input voltage threshold allows pin E to be driven by lower level logic signals without a significant increase in supply current I_{CC}. This makes it possible for the NX3V1T66 to switch 3.6 V signals with a 1.8 V digital controller, eliminating the need for logic level translation. The NX3V1T66 allows signals with amplitude up to V_{CC} to be transmitted from Y to Z or from Z to Y. Its ultra-low ON resistance (0.3 Ω) and flatness (0.1 Ω) ensures minimal attenuation and distortion of transmitted signals. #### **Features** 2. - Wide supply voltage range from 1.4 V to 3.6 V - Very low ON resistance (peak): - 0.8 Ω (typical) at V_{CC} = 1.4 V - 0.5 Ω (typical) at V_{CC} = 1.65 V - 0.3 Ω (typical) at $V_{CC} = 2.3 \text{ V}$ - 0.25 Ω (typical) at V_{CC} = 2.7 V - High noise immunity - ESD protection: - ◆ HBM JESD22-A114E Class 3A exceeds 7500 V - MM JESD22-A115-A exceeds 200 V - CDM AEC-Q100-011 revision B exceeds 1000 V - CMOS low-power consumption - Latch-up performance exceeds 100 mA per JESD 78 Class II Level A - Enable input accepts voltages above supply voltage - 1.8 V control logic at V_{CC} = 3.6 V - High current handling capability (500 mA continuous current under 3.3 V supply) - Specified from -40 °C to +85 °C and from -40 °C to +125 °C #### **Applications** 3. - Cell phone - PDA - Portable media player ### 4. Ordering information Table 1. Ordering information | Type number | Package | | | | | | | | |-------------|-------------------|--------|---|----------|--|--|--|--| | | Temperature range | Name | Description | Version | | | | | | NX3V1T66GW | –40 °C to +125 °C | TSSOP5 | plastic thin shrink small outline package; 5 leads;
body width 1.25 mm | SOT353-1 | | | | | | NX3V1T66GM | –40 °C to +125 °C | XSON6 | plastic extremely thin small outline package; no leads; 6 terminals; body 1 \times 1.45 \times 0.5 mm | SOT886 | | | | | ### 5. Marking #### Table 2. Marking | Type number | Marking code | |-------------|--------------| | NX3V1T66GW | dO | | NX3V1T66GM | dO | ### 6. Functional diagram ### 7. Pinning information #### 7.1 Pinning NX3V1T66_2 © NXP B.V. 2008. All rights reserved. #### 7.2 Pin description Table 3. Pin description | Symbol | Pin | | Description | |----------|----------|--------|-----------------------------| | | SOT353-1 | SOT886 | | | Υ | 1 | 1 | independent input or output | | Z | 2 | 2 | independent output or input | | GND | 3 | 3 | ground (0 V) | | E | 4 | 4 | enable input (active HIGH) | | n.c. | - | 5 | not connected | | V_{CC} | 5 | 6 | supply voltage | ### 8. Functional description Table 4. Function table[1] | Input E | Switch | |---------|-----------| | L | OFF-state | | Н | ON-state | ^[1] H = HIGH voltage level; L = LOW voltage level. ### 9. Limiting values Table 5. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | Min | Max | Unit | |------------------|-------------------------|--|------------------|----------------|------| | V_{CC} | supply voltage | | -0.5 | +4.6 | V | | V_{I} | input voltage | enable input E | [<u>1]</u> -0.5 | +4.6 | V | | V_{SW} | switch voltage | | [2] -0.5 | $V_{CC} + 0.5$ | V | | I _{IK} | input clamping current | $V_1 < -0.5 \text{ V}$ | -50 | - | mA | | I _{SK} | switch clamping current | $V_1 < -0.5 \text{ V or } V_1 > V_{CC} + 0.5 \text{ V}$ | - | ±50 | mΑ | | I _{SW} | switch current | $V_{SW} > -0.5 \text{ V or } V_{SW} < V_{CC} + 0.5 \text{ V};$ source or sink current | - | ±500 | mA | | | | $V_{SW} > -0.5$ V or $V_{SW} < V_{CC} + 0.5$ V; pulsed at 1 ms duration, < 10 % duty cycle; peak current | - | ±750 | mA | | T _{stg} | storage temperature | | -65 | +150 | °C | | P _{tot} | total power dissipation | $T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$ | [3] _ | 250 | mW | ^[1] The minimum input voltage rating may be exceeded if the input current rating is observed. ^[2] The minimum and maximum switch voltage ratings may be exceeded if the switch clamping current rating is observed. ^[3] For TSSOP5 package: above 87.5 °C the value of P_{tot} derates linearly with 4.0 mW/K. For XSON6 package: above 45 °C the value of P_{tot} derates linearly with 2.4 mW/K. ### 10. Recommended operating conditions Table 6. Recommended operating conditions | Symbol | Parameter | Conditions | Min | Max | Unit | |---------------------|-------------------------------------|--|--------------|----------|------| | V_{CC} | supply voltage | | 1.4 | 3.6 | V | | V_{I} | input voltage | enable input E | 0 | 3.6 | V | | V_{SW} | switch voltage | | <u>[1]</u> 0 | V_{CC} | V | | T_{amb} | ambient temperature | | -40 | +125 | °C | | $\Delta t/\Delta V$ | input transition rise and fall rate | $V_{CC} = 1.4 \text{ V to } 3.6 \text{ V}$ | [2] _ | 200 | ns/V | ^[1] To avoid sinking GND current from of terminal Z when switch current flows in terminal Y, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal Z, no GND current will flow from terminal Y. In this case, there is no limit for the voltage drop across the switch. #### 11. Static characteristics Table 7. Static characteristics At recommended operating conditions; voltages are referenced to GND (ground 0 V). | Symbol | Parameter | Conditions | Tai | _{mb} = 25 | S °C | T _{amb} = | –40 °C to | +125 °C | Unit | |---------------------|---------------------------------|---|-----|--------------------|------|--------------------|----------------|-----------------|------| | | | | Min | Тур | Max | Min | Max
(85 °C) | Max
(125 °C) | | | V_{IH} | HIGH-level | V _{CC} = 1.4 V to 1.6 V | 0.9 | - | - | 0.9 | - | - | V | | | input voltage | V _{CC} = 1.65 V to 1.95 V | 0.9 | - | - | 0.9 | - | - | V | | | | V _{CC} = 2.3 V to 2.7 V | 1.1 | - | - | 1.1 | - | - | V | | | | V _{CC} = 2.7 V to 3.6 V | 1.3 | - | - | 1.3 | - | - | V | | V_{IL} | LOW-level | V _{CC} = 1.4 V to 1.6 V | - | - | 0.3 | - | 0.3 | 0.3 | V | | | input voltage | V _{CC} = 1.65 V to 1.95 V | - | - | 0.4 | - | 0.4 | 0.3 | V | | | | V _{CC} = 2.3 V to 2.7 V | - | - | 0.4 | - | 0.4 | 0.4 | V | | | | V _{CC} = 2.7 V to 3.6 V | - | - | 0.5 | - | 0.5 | 0.5 | V | | II | input leakage
current | enable input E; V_I = GND to 3.6 V; V_{CC} = 1.4 V to 3.6 V | - | - | - | - | ±0.5 | ±1 | μΑ | | I _{S(OFF)} | OFF-state
leakage
current | Y port; see Figure 5;
$V_{CC} = 1.4 \text{ V to } 3.6 \text{ V};$ | - | - | ±5 | - | ±50 | ±500 | nA | | I _{S(ON)} | ON-state
leakage
current | Z port; see Figure 6;
$V_{CC} = 1.4 \text{ V to } 3.6 \text{ V};$ | - | - | ±5 | - | ±50 | ±500 | nA | | I _{CC} | supply current | $V_I = V_{CC}$ or GND; $V_{CC} = 3.6 \text{ V}$;
$V_{SW} = \text{GND or } V_{CC}$; $I_O = 0 \text{ A}$ | - | - | ±100 | - | 690 | 6000 | nA | | ΔI_{CC} | additional | $V_{SW} = GND \text{ or } V_{CC}$ | | | | | | | | | | supply current | $V_1 = 2.6 \text{ V}; V_{CC} = 3.6 \text{ V}$ | - | 0.35 | 0.7 | - | 1 | 1 | μΑ | | | | $V_I = 1.8 \text{ V}; V_{CC} = 3.6 \text{ V}$ | - | 2.5 | 4 | - | 5 | 5 | μΑ | | | | $V_{I} = 1.8 \text{ V}; V_{CC} = 2.5 \text{ V}$ | - | 50 | 200 | - | 300 | 500 | nA | ^[2] Applies to control signal levels. Table 7. Static characteristics ...continued At recommended operating conditions; voltages are referenced to GND (ground 0 V). | Symbol | Parameter | Conditions | | onditions $T_{amb} = 25 ^{\circ}C$ | | T _{amb} = | Unit | | | |--------------------|-----------------------|------------|-----|-------------------------------------|-----|--------------------|----------------|-----------------|----| | | | | Min | Тур | Max | Min | Max
(85 °C) | Max
(125 °C) | | | C _I | input capacitance | | - | 1.0 | - | - | - | - | pF | | $C_{S(OFF)}$ | OFF-state capacitance | | - | 70 | - | - | - | - | pF | | C _{S(ON)} | ON-state capacitance | | - | 205 | - | - | - | - | pF | #### 11.1 Test circuits #### 11.2 ON resistance Table 8. Resistance Ron At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for graphs see Figure 8 to Figure 13. | Symbol | Parameter | Conditions | T _{amb} = -40 °C to | | | | T _{amb} = −40 °0 | C to +125 °C | Unit | |--|--|--------------------------|------------------------------|--------|------|-----|---------------------------|--------------|------| | | | | Min | Typ[1] | Max | Min | Max | | | | R _{ON(peak)} ON resistance (peak) | $V_I = GND \text{ to } V_{CC};$
$I_{SW} = 100 \text{ mA}; \text{ see } \frac{\text{Figure 7}}{\text{MB}}$ | | | | | | | | | | | | V _{CC} = 1.4 V | - | 8.0 | 1.9 | - | 2.1 | Ω | | | | | V _{CC} = 1.65 V | - | 0.5 | 0.8 | - | 0.9 | Ω | | | | V _{CC} = 2.3 V | - | 0.3 | 0.5 | - | 0.6 | Ω | | | | | | V _{CC} = 2.7 V | - | 0.25 | 0.45 | - | 0.5 | Ω | | Table 8. Resistance R_{ON} ...continued At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for graphs see Figure 8 to Figure 13. | Symbol | Parameter | Conditions | T _{amb} : | = -40 °C 1
°C | to +85 | T _{amb} = -40 °(| Unit | | |-----------------------|--------------------------|--|--------------------|------------------|--------|---------------------------|------|---| | | | | Min | Typ[1] | Max | Min | Max | | | $R_{\text{ON(flat)}}$ | ON resistance (flatness) | $V_I = GND \text{ to } V_{CC};$
$I_{SW} = 100 \text{ mA}$ | | | | | | | | | | V _{CC} = 1.4 V | - | 0.5 | 1.7 | - | 1.8 | Ω | | | | V _{CC} = 1.65 V | - | 0.25 | 0.6 | - | 0.7 | Ω | | | | $V_{CC} = 2.3 \text{ V}$ | - | 0.1 | 0.2 | - | 0.2 | Ω | | | | $V_{CC} = 2.7 \text{ V}$ | - | 0.1 | 0.2 | - | 0.2 | Ω | ^[1] Typical values are measured at T_{amb} = 25 °C. ### 11.3 ON resistance test circuit and graphs 6 of 18 ^[2] Flatness is defined as the difference between the maximum and minimum value of ON resistance measured at identical V_{CC} and temperature. - (1) $T_{amb} = 125 \, ^{\circ}C$. - (2) $T_{amb} = 85 \, ^{\circ}C$. - (3) $T_{amb} = 25 \, ^{\circ}C$. - (4) $T_{amb} = -40 \, ^{\circ}C$. Fig 9. ON resistance as a function of input voltage; $V_{CC} = 1.5 \text{ V}$ - (1) $T_{amb} = 125 \, ^{\circ}C$. - (2) $T_{amb} = 85 \, ^{\circ}C$. - (3) $T_{amb} = 25 \, ^{\circ}C$. - (4) $T_{amb} = -40 \, ^{\circ}C$. Fig 10. ON resistance as a function of input voltage; $V_{CC} = 1.8 \text{ V}$ - (1) $T_{amb} = 125 \, ^{\circ}C$. - (2) $T_{amb} = 85 \, ^{\circ}C$. - (3) $T_{amb} = 25 \, ^{\circ}C$. - (4) $T_{amb} = -40 \, ^{\circ}C$. Fig 11. ON resistance as a function of input voltage; $V_{CC} = 2.5 \text{ V}$ - (1) $T_{amb} = 125 \, ^{\circ}C$. - (2) $T_{amb} = 85 \, ^{\circ}C$. - (3) $T_{amb} = 25 \, ^{\circ}C$. - (4) $T_{amb} = -40 \, ^{\circ}C$. Fig 12. ON resistance as a function of input voltage; $V_{CC} = 2.7 \text{ V}$ NXP Semiconductors NX3V1T66 Low-voltage analog switch ### 12. Dynamic characteristics Table 9. Dynamic characteristics At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for test circuit Figure 15. | Symbol | Parameter | Conditions | | 25 °C | | -4 | 0 °C to + | 125 °C | Unit | |------------------|--------------|--|-----|--------|-----|-----|----------------|-----------------|------| | | | | Min | Typ[1] | Max | Min | Max
(85 °C) | Max
(125 °C) | | | t _{en} | enable time | E to Y; see Figure 14 | · | | | | | | | | | | V _{CC} = 1.4 V to 1.6 V | - | 35 | 49 | - | 53 | 57 | ns | | | | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ | - | 28 | 40 | - | 43 | 48 | ns | | | | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ | - | 20 | 30 | - | 32 | 35 | ns | | | | V _{CC} = 2.7 V to 3.6 V | - | 18 | 28 | - | 30 | 32 | ns | | t _{dis} | disable time | E to Y; see Figure 14 | | | | | | | | | | | V _{CC} = 1.4 V to 1.6 V | - | 32 | 70 | - | 80 | 90 | ns | | | | V _{CC} = 1.65 V to 1.95 V | - | 23 | 55 | - | 60 | 65 | ns | | | | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ | - | 14 | 25 | - | 30 | 35 | ns | | | | $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$ | - | 11 | 20 | - | 25 | 30 | ns | ^[1] Typical values are measured at T_{amb} = 25 °C and V_{CC} = 1.5 V, 1.8 V, 2.5 V and 3.3 V respectively. #### 12.1 Waveform and test circuits Measurement points are given in Table 10. Logic level: V_{OH} is the typical output voltage that occurs with the output load. Fig 14. Enable and disable times Table 10. Measurement points | Supply voltage | Input | Output | |-----------------|--------------------|--------------------| | V _{CC} | V _M | V _X | | 1.4 V to 3.6 V | 0.5V _{CC} | 0.9V _{OH} | Test data is given in Table 11. Definitions test circuit: R_L = Load resistance. C_L = Load capacitance including jig and probe capacitance. V_{EXT} = External voltage for measuring switching times. Fig 15. Load circuit for switching times Table 11. Test data | Supply voltage | Input | | Load | | | |-----------------|-----------------|---------------------------------|-------|----------------|--| | V _{CC} | V _I | t _r , t _f | CL | R _L | | | 1.4 V to 3.6 V | V _{CC} | ≤ 2.5 ns | 35 pF | 50 Ω | | NX3V1T66_2 © NXP B.V. 2008. All rights reserved. ### 12.2 Additional dynamic characteristics Table 12. Additional dynamic characteristics At recommended operating conditions; voltages are referenced to GND (ground = 0 V); V_l = GND or V_{CC} (unless otherwise specified); t_r = $t_f \le 2.5$ ns; T_{amb} = 25 °C. | Symbol | Parameter | Conditions | M | lin | Тур | Max | Unit | |---|----------------|---|------------|-----|------|-----|------| | THD | total harmonic | f_i = 20 Hz to 20 kHz; R_L = 32 Ω ; see Figure 16 | <u>[1]</u> | | | | | | | distortion | $V_{CC} = 1.4 \text{ V}; V_I = 1 \text{ V (p-p)}$ | | - | 0.05 | - | % | | | | $V_{CC} = 1.65 \text{ V}; V_I = 1.2 \text{ V (p-p)}$ | | - | 0.03 | - | % | | | | $V_{CC} = 2.3 \text{ V}; V_{I} = 1.5 \text{ V (p-p)}$ | | - | 0.01 | - | % | | | | $V_{CC} = 2.7 \text{ V}; V_1 = 2 \text{ V (p-p)}$ | | - | 0.01 | - | % | | f _(-3dB) -3 dB frequency | | $R_L = 50 \Omega$; see Figure 17 | [1] | | | | | | | response | V _{CC} = 1.4 V to 3.6 V | | - | 25 | - | MHz | | α_{iso} isolation (OFF-state) | | f_i = 100 kHz; R_L = 50 Ω ; see Figure 18 | [1] | | | | | | | | V _{CC} = 1.4 V to 3.6 V | | - | -90 | - | dB | | V _{ct} crosstalk voltage | | between digital inputs and switch;
$f_i = 1 \text{ MHz}$; $C_L = 50 \text{ pF}$; $R_L = 50 \Omega$; see Figure 19 | | | | | | | | | $V_{CC} = 1.4 \text{ V to } 3.6 \text{ V}$ | | - | 0.32 | - | V | | Q _{inj} charge injection | | f_i = 1 MHz; C_L = 0.1 nF; R_L = 1 M Ω ; V_{gen} = 0 V; R_{gen} = 0 Ω ; see Figure 20 | | | | | | | | | V _{CC} = 1.5 V | | - | 6.5 | - | рС | | | | V _{CC} = 1.8 V | | - | 6.5 | - | рС | | | | V _{CC} = 2.5 V | | - | 6.5 | - | рС | | | | V _{CC} = 3.3 V | | - | 6.5 | - | рС | ^[1] f_i is biased at $0.5V_{CC}$. #### 12.3 Test circuits Adjust f_i voltage to obtain 0 dBm level at output. Increase f_i frequency until dB meter reads –3 dB. Fig 17. Test circuit for measuring the frequency response when channel is in ON-state Adjust fi voltage to obtain 0 dBm level at input. Fig 18. Test circuit for measuring isolation (OFF-state) 001aah381 b. Input and output pulse definitions Fig 19. Test circuit for measuring crosstalk voltage between digital inputs and switch a. Test circuit b. Input and output pulse definitions Definition: $Q_{inj} = \Delta V_O \times C_L$. ΔV_{O} = output voltage variation. R_{gen} = generator resistance. V_{gen} = generator voltage. Fig 20. Test circuit for measuring charge injection ### 13. Package outline TSSOP5: plastic thin shrink small outline package; 5 leads; body width 1.25 mm SOT353-1 | UNIT | A
max. | A ₁ | A ₂ | A ₃ | bp | С | D ⁽¹⁾ | E ⁽¹⁾ | е | e ₁ | HE | L | Lp | v | w | у | Z ⁽¹⁾ | θ | |------|-----------|----------------|----------------|----------------|--------------|--------------|------------------|------------------|------|----------------|-------------|-------|--------------|-----|-----|-----|------------------|----------| | mm | 1.1 | 0.1
0 | 1.0
0.8 | 0.15 | 0.30
0.15 | 0.25
0.08 | 2.25
1.85 | 1.35
1.15 | 0.65 | 1.3 | 2.25
2.0 | 0.425 | 0.46
0.21 | 0.3 | 0.1 | 0.1 | 0.60
0.15 | 7°
0° | 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. | OUTLINE | | REFER | EUROPEAN | ISSUE DATE | | | |----------|-----|--------|--------------|------------|------------|----------------------------------| | VERSION | IEC | JEDEC | EC JEITA PRO | | PROJECTION | 1330E DATE | | SOT353-1 | | MO-203 | SC-88A | | | -00-09-01
03-02-19 | Fig 21. Package outline SOT353-1 (TSSOP5) Fig 22. Package outline SOT886 (XSON6) NX3V1T66_2 © NXP B.V. 2008. All rights reserved. ### 14. Abbreviations #### Table 13. Abbreviations | Acronym | Description | |---------|---| | CDM | Charged Device Model | | CMOS | Complementary Metal Oxide Semiconductor | | ESD | ElectroStatic Discharge | | HBM | Human Body Model | | MM | Machine Model | | PDA | Personal Digital Assistant | | TTL | Transistor-Transistor Logic | ### 15. Revision history #### Table 14. Revision history | Document ID | Release date | Data sheet status | Change notice | Supersedes | |----------------|----------------------------------|-------------------------|---------------------|------------| | NX3V1T66_2 | 20080724 | Product data sheet | - | NX3V1T66_1 | | Modifications: | Added type r | number NX3V1T66GW (TSSO | P5 / SOT353-1 packa | ge) | | NX3V1T66_1 | 20080327 | Product data sheet | - | - | ### 16. Legal information #### 16.1 Data sheet status | Document status[1][2] | Product status[3] | Definition | |--------------------------------|-------------------|---| | Objective [short] data sheet | Development | This document contains data from the objective specification for product development. | | Preliminary [short] data sheet | Qualification | This document contains data from the preliminary specification. | | Product [short] data sheet | Production | This document contains the product specification. | - [1] Please consult the most recently issued document before initiating or completing a design. - [2] The term 'short data sheet' is explained in section "Definitions" - [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. #### 16.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. #### 16.3 Disclaimers **General** — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. **Suitability for use** — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. **Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability. Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail. **No offer to sell or license** — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. #### 16.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. #### 17. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com **NXP Semiconductors** ### **NX3V1T66** #### Low-voltage analog switch #### 18. Contents | 1 | General description | |------|---| | 2 | Features | | 3 | Applications | | 4 | Ordering information 2 | | 5 | Marking 2 | | 6 | Functional diagram 2 | | 7 | Pinning information 2 | | 7.1 | Pinning | | 7.2 | Pin description | | 8 | Functional description 3 | | 9 | Limiting values | | 10 | Recommended operating conditions 4 | | 11 | Static characteristics 4 | | 11.1 | Test circuits 5 | | 11.2 | ON resistance 5 | | 11.3 | ON resistance test circuit and graphs 6 | | 12 | Dynamic characteristics 8 | | 12.1 | Waveform and test circuits 9 | | 12.2 | Additional dynamic characteristics 10 | | 12.3 | Test circuits | | 13 | Package outline | | 14 | Abbreviations | | 15 | Revision history 16 | | 16 | Legal information | | 16.1 | Data sheet status | | 16.2 | Definitions | | 16.3 | Disclaimers | | 16.4 | Trademarks17 | | 17 | Contact information | | 18 | Contents | Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.