Low-Voltage Single SPDT Analog Switch

DESCRIPTION

The DG9411 is a single-pole/double-throw monolithic CMOS analog switch designed for high performance switching of analog signals. Combining low power, high speed ($\mathrm{t}_{\mathrm{ON}}: 9 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{OFF}}: 5 \mathrm{~ns}$), low on-resistance ($\mathrm{r}_{\mathrm{DS}(\mathrm{on})}: 7 \Omega$) and small physical size (SC70), the DG9411 is ideal for portable and battery powered applications requiring high performance and efficient use of board space.

The DG9411 is built on Vishay Siliconix's low voltage JI2 process. An epitaxial layer prevents latchup. Break-before make is guaranteed for DG9411.

Each switch conducts equally well in both directions when on, and blocks up to the power supply level when off.

FEATURES

- Low voltage operation (2.25 V to 5.5 V)
- Low on-resistance - $r_{\text {DS(on): }}: 7 \Omega$
- Fast switching - $\mathrm{t}_{\mathrm{ON}}: 9 \mathrm{~ns}, \mathrm{t}_{\mathrm{OFF}}: 5 \mathrm{~ns}$
- Low charge injection $-\mathrm{Q}_{\mathrm{INJ}}: 5 \mathrm{pC}$
- Low power consumption
- TTL/CMOS compatible
- 6-Pin SC70 package

BENEFITS

- Reduced power consumption
- Simple logic interface
- High accuracy
- Reduce board space

APPLICATIONS

- Cellular phones
- Communication systems
- Portable test equipment
- Battery operated systems
- Sample and hold circuits

RoHS* COMPLIANT

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE		
Logic	NC	NO
0	ON	OFF
1	OFF	ON

Logic "0" $\leq 0.8 \mathrm{~V}$
Logic "1" $\geq 2.4 \mathrm{~V}$

ORDERING INFORMATION		
Temp Range	Package	Part Number
-40 to $85^{\circ} \mathrm{C}$	SC70-6	DG9411DL-T1 DG9411DL-T1-E3

[^0]| ABSOLUTE MAXIMUM RATINGS | | | |
| :---: | :---: | :---: | :---: |
| Parameter | | Limit | Unit |
| Reference V+ to GND | | - 0.3 to + 6 | V |
| IN, COM, NC, $\mathrm{NO}^{\text {a }}$ | | -0.3 to (V++0.3) | |
| Continuous Current (Any Terminal) | | ± 50 | mA |
| Peak Current (Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle) | | ± 200 | |
| Storage Temperature | | - 65 to 150 | ${ }^{\circ} \mathrm{C}$ |
| Power Dissipation (Packages) ${ }^{\text {b }}$ | $6-\mathrm{Pin} \mathrm{SC} 70^{\text {c }}$ | 250 | mW |

Notes:

a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC Board.
c. Derate $3.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

SPECIFICATIONS $\mathrm{V}+=2.5 \mathrm{~V}$							
Parameter	Symbol	Test Conditions Unless Otherwise Specified$\begin{aligned} & \mathrm{V}+=2.5 \mathrm{~V}, \pm 10 \% \\ & \mathrm{~V}_{\mathrm{IN}}=0.4 \text { or } 2.0 \mathrm{~V}^{\mathrm{e}} \end{aligned}$	Temp ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {b }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {d }}$	$\begin{gathered} \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}} \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$		Full	0		V+	V
Drain-Source On-Resistance	${ }^{\text {r DS(on) }}$	$\mathrm{V}+=2.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1.0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}$	Room Full ${ }^{\text {d }}$		$\begin{aligned} & 26 \\ & 29 \end{aligned}$	$\begin{aligned} & 35 \\ & 40 \end{aligned}$	Ω
$\mathrm{r}_{\mathrm{DS} \text { (on) }}$ Flatness ${ }^{\text {d }}$	${ }^{\text {r DS(on) }}$ Flatness	$\mathrm{V}+=2.5 \mathrm{~V}$	Room		10		
Switch Off Leakage Current ${ }^{\dagger}$	$\mathrm{I}_{\text {(foff) }}$	$\mathrm{V}+=2.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0.5 \mathrm{~V} / 1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1.5 \mathrm{~V} / 0.5 \mathrm{~V}$	$\begin{gathered} \text { Room } \\ \text { Full }^{\text {d }} \end{gathered}$	$\begin{aligned} & -250 \\ & -3.0 \end{aligned}$		$\begin{aligned} & 250 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
	$\mathrm{I}_{\mathrm{D} \text { (off) }}$		Room Full ${ }^{\text {d }}$	$\begin{aligned} & \hline-250 \\ & -3.0 \end{aligned}$		$\begin{aligned} & 250 \\ & 3.0 \end{aligned}$	pA
Channel-On Leakage Current ${ }^{\dagger}$	$I_{\text {(on) }}$	$\mathrm{V}+=2.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=0.5 \mathrm{~V} / 1.5 \mathrm{~V}$	$\begin{aligned} & \text { Room } \\ & \text { Full }^{\text {d }} \end{aligned}$	$\begin{aligned} & -250 \\ & -3.0 \end{aligned}$		$\begin{gathered} 250 \\ 3.0 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
Digital Control							
Input High Voltage	$\mathrm{V}_{\text {INH }}$		Full	2			
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.4	
Input Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {in }}$		Full		3		pF
Input Current	$\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$	Full	-1		1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-On Time	${ }_{\text {ton }}$	$\begin{gathered} \mathrm{V}_{\mathrm{D}} \text { or } \mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ \text { Figures } 1 \text { and } 2 \end{gathered}$	Room Full		16	$\begin{aligned} & 40 \\ & 45 \end{aligned}$	ns
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$		$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$		7	$\begin{aligned} & 23 \\ & 28 \end{aligned}$	
Break-Before-Make Time	t_{d}		Room ${ }^{\text {d }}$	1	12		
Charge Injection ${ }^{\text {d }}$	$\mathrm{Q}_{\text {INJ }}$	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \\ \text { Figure } 3 \end{gathered}$	Room		5	10	pC
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room		-73		dB
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room		- 70		
Source-Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {S(off) }}$	$\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{V}+\mathrm{f}=1 \mathrm{MHz}$	Room		7		pF
Channel-On Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{D} \text { (on) }}$		Room		20		
Drain-to-Source Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {DS(off) }}$		Room		20		
Power Supply							
Power Supply Range	V+			2.25		2.75	V
Power Supply Current ${ }^{\text {d }}$	${ }^{\text {I }}$	$\mathrm{V}_{\text {IN }}=0$ or V_{+}			0.01	1.0	$\mu \mathrm{A}$
Power Consumption	P_{C}					0.3	$\mu \mathrm{W}$

SPECIFICATIONS $\mathrm{V}+=3 \mathrm{~V}$							
Parameter	Symbol	Test Conditions Unless Otherwise Specified$\begin{gathered} \mathrm{V}_{+}=3 \mathrm{~V}, \pm 10 \% \\ \mathrm{~V}_{\mathrm{IN}}=0.4 \text { or } 2.0 \mathrm{~V}^{\mathrm{e}} \end{gathered}$	Temp ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40 \text { to } 85^{\circ} \mathrm{C} \\ \hline \end{gathered}$			Unit
				Min ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {b }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {d }}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}} \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$		Full	0		V+	V
Drain-Source On-Resistance ${ }^{\text {d }}$	$r_{\text {dS(on) }}$	$\mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}$	Room Full		$\begin{aligned} & 15 \\ & 19 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	Ω
$\mathrm{r}_{\text {DS(on) }}$ Flatness ${ }^{\text {d }}$	$r_{\text {DS(on) }}$ Flatness	$V_{S}=0$ to $\mathrm{V}+\mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}$	Room		7.5		
Switch Off Leakage Current ${ }^{\text {f }}$	$\mathrm{I}_{\text {S(off) }}$	$\mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V} / 1 \mathrm{~V}$	Room Full	$\begin{aligned} & \hline-500 \\ & -4.0 \end{aligned}$		$\begin{gathered} 500 \\ 4.0 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
	$\mathrm{I}_{\mathrm{D} \text { (off) }}$		Room Full	$\begin{aligned} & \hline-500 \\ & -4.0 \end{aligned}$		$\begin{gathered} 500 \\ 4.0 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
Channel-On Leakage Current ${ }^{\dagger}$	$I_{\text {d (on) }}$	$\mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V}$	Room Full	$\begin{aligned} & \hline-500 \\ & -4.0 \end{aligned}$		$\begin{gathered} 500 \\ 4.0 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
Digital Control							
Input High Voltage	$\mathrm{V}_{\text {INH }}$		Full	2			V
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.8	
Input Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {in }}$		Full		3		pF
Input Current	$\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0$ or V_{+}	Full	-1		1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-On Time ${ }^{\text {d }}$	t_{ON}	$V_{D} \text { or } V_{S}=2.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ Figures1 and 2	Room Full		12	$\begin{aligned} & 15 \\ & 20 \\ & \hline \end{aligned}$	ns
Turn-Off Time ${ }^{\text {d }}$	$\mathrm{t}_{\text {OFF }}$		Room Full		6	$\begin{gathered} \hline 8 \\ 10 \end{gathered}$	
Break-Before-Make Time ${ }^{\text {d }}$	t_{d}		Room	1	7		
Charge Injection ${ }^{\text {d }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega,$ Figure 3	Room		5	10	pC
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room		-73		dB
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room		- 70		
Source-Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {S(off) }}$	$\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{V}+\mathrm{f}=1 \mathrm{MHz}$	Room		7		pF
Channel-On Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {(on) }}$		Room		20		
Drain-to-Source Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {DS(off) }}$		Room		20		
Power Supply							
Power Supply Range	V+			2.7		3.3	V
Power Supply Current	I+	$\mathrm{V}_{\mathrm{IN}}=0 \text { or } \mathrm{V}_{+}$			0.01	1.0	$\mu \mathrm{A}$
Power Consumption	P_{C}					0.4	$\mu \mathrm{W}$

Vishay Siliconix

SPECIFICATIONS $\mathrm{V}+=5 \mathrm{~V}$							
Parameter	Symbol	Test Conditions Unless Otherwise Specified$\begin{gathered} \mathrm{V}+=5 \mathrm{~V}, \pm 10 \% \\ \mathrm{~V}_{\mathrm{IN}}=0.8 \text { or } 2.4 \mathrm{~V}^{\mathrm{e}} \end{gathered}$	Temp ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {b }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {d }}$	$\begin{gathered} \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}} \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$		Full	0		V+	V
Drain-Source On-Resistance	${ }^{\text {d }}$ S(on)	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}$	Room Full		$\begin{gathered} \hline 7 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & 12 \\ & 16 \end{aligned}$	Ω
$\mathrm{r}_{\text {DS(on) }}$ Flatness $^{\text {d }}$	${ }^{\mathrm{r}_{\mathrm{DS}}(o n)}$ Flatness	$\mathrm{V}+=2.5 \mathrm{~V}$	Room		2		
Switch Off Leakage Current	$\mathrm{I}_{\mathrm{S} \text { (off) }}$	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V}$	Room Full	$\begin{array}{r} -1.0 \\ -4.0 \end{array}$		$\begin{aligned} & 1.0 \\ & 4.0 \end{aligned}$	nA
	$I_{\text {(off) }}$		Room Full	$\begin{aligned} & -1.0 \\ & -4.0 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 4.0 \end{aligned}$	
Channel-On Leakage Current	$I_{\text {(on) }}$	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} / 4.5 \mathrm{~V}$	Room Full	$\begin{aligned} & -1.0 \\ & -3.0 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 4.5 \end{aligned}$	
Digital Control							
Input High Voltage	$\mathrm{V}_{\text {INH }}$		Full	2.4			V
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.8	
Input Capacitance	$\mathrm{C}_{\text {in }}$		Full		3		pF
Input Current	$\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{I}_{\mathrm{INH}}$	$\mathrm{V}_{\text {IN }}=0$ or V_{+}	Full	-1		1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-On Time ${ }^{\text {d }}$	t_{ON}	$V_{D} \text { or } V_{S}=3 V, R_{L}=300 \Omega, C_{L}=35 \mathrm{pF}$ Figure 1 and 2	Room Full		9	$\begin{aligned} & 11 \\ & 15 \end{aligned}$	ns
Turn-Off Time ${ }^{\text {d }}$	toff		Room Full		5	$\begin{aligned} & \hline 7 \\ & 9 \end{aligned}$	
Break-Before-Make Time ${ }^{\text {d }}$	t_{d}		Room	1	4		
Charge Injection ${ }^{\text {d }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega,$ Figure 3	Room		5	10	pC
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room		-73		dB
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room		-70		
Source-Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {S(off) }}$	$\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{V}+, \mathrm{f}=1 \mathrm{MHz}$	Room		7		pF
Channel-On Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{D} \text { (on) }}$		Room		20		
Drain-to-Source Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {DS(off) }}$		Room		20		
Power Supply							
Power Supply Range	V+			4.5		5.5	V
Power Supply Current	I+	$\mathrm{V}_{\text {IN }}=0$ or V_{+}			0.01	1.0	$\mu \mathrm{A}$
Power Consumption	P_{C}					0.6	$\mu \mathrm{W}$

Notes:
a. Room $=25^{\circ} \mathrm{C}$, Full = as determined by the operating suffix.
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.
c. Typical values are for design aid only, not guaranteed nor subject to production testing.
d. Guarantee by design, nor subjected to production test.
e. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
f. Guaranteed by 5 V leakage testing, not production tested.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DG9411

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

Vishay Siliconix
TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

Charge Injection vs. Analog Voltage

TEST CIRCUITS

Logic "1" = Switch On
Logic input waveforms inverted for switches that have the opposite logic sense.

Figure 1. Switching Time

Figure 2. Break-Before-Make Interval

IN depends on switch configuration: input polarity determined by sense of switch.

Figure 3. Charge Injection

TEST CIRCUITS

Figure 4. Off-Isolation

Figure 5. Channel Off/On Capacitance

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?71347.

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

[^0]: * Pb containing terminations are not RoHS compliant, exemptions may apply.

