Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers

Abstract

General Description The MAX5974_ provide control for wide-input-voltage, active-clamped, current-mode PWM, forward converters in Power-over-Ethernet (PoE) powered device (PD) applications. The MAX5974A/MAX5974C are well-suited for universal or telecom input range, while the MAX5974B/ MAX5974D also accommodate low input voltage down to 10.5 V . The devices include several features to enhance supply efficiency. The AUX driver recycles magnetizing current instead of wasting it in a dissipative clamp circuit. Programmable dead time between the AUX and main driver allows for zero-voltage switching (ZVS). Under lightload conditions, the devices reduce the switching frequency (frequency foldback) to reduce switching losses. The MAX5974A/MAX5974B feature unique circuitry to achieve output regulation without using an optocoupler, while the MAX5974C/MAX5974D utilize the traditional optocoupler feedback method. An internal error amplifier with a 1% reference is very useful in nonisolated design, eliminating the need for an external shunt regulator. The devices feature a unique feed-forward maximum duty-cycle clamp that makes the maximum clamp voltage during transient conditions independent of the line voltage, allowing the use of a power MOSFET with lower breakdown voltage. The programmable frequency dithering feature provides low-EMI, spread-spectrum operation. The MAX5974_ are available in 16-pin TQFN-EP packages and are rated for operation over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Features

- Peak Current-Mode Control, Active-Clamped Forward PWM Controller
- Regulation Without Optocoupler (MAX5974A/ MAX5974B)
- Internal 1\% Error Amplifier
- 100 kHz to 600 kHz Programmable $\pm 8 \%$ Switching Frequency, Synchronization Up to 1.2 MHz
- Programmable Frequency Dithering for Low-EMI, Spread-Spectrum Operation
- Programmable Dead Time, PWM Soft-Start, Current Slope Compensation
- Programmable Feed-Forward Maximum DutyCycle Clamp, 80\% Maximum Limit
- Frequency Foldback for High-Efficiency LightLoad Operation
- Internal Bootstrap UVLO with Large Hysteresis
- 100~A (typ) Startup Supply Current
- Fast Cycle-by-Cycle Peak Current-Limit, 35ns Typical Propagation Delay
- 115ns Current-Sense Internal Leading-Edge Blanking
- Output Short-Circuit Protection with Hiccup Mode
- Reverse Current Limit to Prevent Transformer Saturation Due to Reverse Current
- $3 \mathrm{~mm} \times 3 \mathrm{~mm}$, Lead-Free, 16-Pin TQFN-EP

Applications
PoE IEEE ${ }^{\circledR}$ 802.3af/at Powered Devices High-Power PD (Beyond the 802.3af/at Standard) Active-Clamped Forward DC-DC Converters IP Phones
Wireless Access Nodes
Security Cameras
Ordering Information

PART	TOP MARK	PIN-PACKAGE	UVLO THRESHOLD (V)	FEEDBACK MODE
MAX5974AETE+	+ AHY	16 TQFN-EP*	20	Sample/Hold
MAX5974BETE $+^{* *}$	+ AHZ	16 TQFN-EP*	10	Sample/Hold
MAX5974CETE+	+ AIA	16 TQFN-EP*	20	Continuously Connected
MAX5974DETE $+{ }^{* *}$	+ AIB	16 TQFN-EP*	10	Continuously Connected

Note: All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range.
+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad. \quad **Future product—Contact factory for availability.
IEEE is a registered service mark of the Institute of Electrical and Electronics Engineers, Inc.

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers

ABSOLUTE MAXIMUM RATINGS

	+24V
EN, NDRV, AUXDRV to GND	0.3V)
RT, DT, FFB, COMP, SS, DCLMP, DITHE to GND	SYNC -0.3V to +6V
FB to GND (MAX5974A/MAX5974B only).	-6V to +6V
FB to GND (MAX5974C/MAX5974D only)	-0.3V to +6V
CS, CSSC to GND	-0.8V to +6V
PGND to GND	-0.3V to +0.3V
aximum Input/Output Current (continuous	
, AUXDRV	100mA

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{VIN}=12 \mathrm{~V}\right.$ (for MAX5974A/MAX5974C, bring VIN up to 21 V for startup), $\mathrm{V}_{\mathrm{CS}}=\mathrm{V}_{\text {CSSC }}=\mathrm{V}_{\text {DITHER/SYNC }}=\mathrm{V}_{\text {FB }}=\mathrm{V}_{\text {FFB }}=\mathrm{V}_{\text {DCLMP }}=$ $V_{G N D}, V_{E N}=+2 \mathrm{~V}, \mathrm{NDRV}=\mathrm{AUXDRV}=\mathrm{SS}=\mathrm{COMP}=$ unconnected, RRT $=34.8 \mathrm{k} \Omega$, RDT $=25 \mathrm{k} \Omega, \mathrm{CIN}=1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
UNDERVOLTAGE LOCKOUT/STARTUP (IN)						
Bootstrap UVLO Wakeup Level	VINUVR	VIN rising	19.1	19.8	20.4	V
			9.4	9.8	10.25	
Bootstrap UVLO Shutdown Level	VINUVF	VIN falling	6.65	7	7.35	V
IN Supply Current in Undervoltage Lockout	Istart	$\begin{aligned} & \text { VIN }=+18 \mathrm{~V} \text { (for MAX5974A/ } \\ & \text { MAX5974C); } \\ & \text { VIN = +9V (for MAX5974B/MAX5974D), } \\ & \text { when in bootstrap UVLO } \end{aligned}$		100	150	$\mu \mathrm{A}$
IN Supply Current After Startup	IC	V IN $=+12 \mathrm{~V}$		1.8	3	mA
ENABLE (EN)						
Enable Threshold	VenR	VEN rising	1.17	1.215	1.26	V
	VENF	VEN falling	1.09	1.14	1.19	
Input Current	IEN				1	$\mu \mathrm{A}$
OSCILLATOR (RT)						
RT Bias Voltage	VRT			1.23		V
NDRV Switching Frequency Range	fsw		100		600	kHz
NDRV Switching Frequency Accuracy			-8		+8	\%
Maximum Duty Cycle	DMAX	fsw $=250 \mathrm{kHz}$	79	80	82	\%

Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers

ELECTRICAL CHARACTERISTICS (continued)

($V_{\text {IN }}=12 \mathrm{~V}$ (for MAX5974A/MAX5974C, bring $V_{I N}$ up to 21 V for startup), $\mathrm{V}_{\mathrm{CS}}=\mathrm{V}_{C S S C}=\mathrm{V}_{\text {DITHER/SYNC }}=\mathrm{V}_{\text {FB }}=\mathrm{V}_{\text {FFB }}=\mathrm{V}_{\mathrm{DCLMP}}=$ $V_{G N D}, V_{E N}=+2 \mathrm{~V}, \mathrm{NDRV}=\mathrm{AUXDRV}=\mathrm{SS}=\mathrm{COMP}=$ unconnected, R RT $=34.8 \mathrm{k} \Omega, \mathrm{RDT}=25 \mathrm{k} \Omega, \mathrm{CIN}=1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
SYNCHRONIZATION (SYNC)							
Synchronization Logic-High Input	VIH-SYNC			2.91			V
Synchronization Pulse Width				50			ns
Synchronization Frequency Range	fSYNCIN			$\begin{aligned} & 1.1 \mathrm{x} \\ & \text { fsw } \end{aligned}$		$\begin{array}{r} 2 \times \\ \text { fsw } \end{array}$	kHz
Maximum Duty Cycle During Synchronization				DMAX \times fSYNC/ fsw			\%
DITHERING RAMP GENERATOR (DITHER)							
Charging Current		VIITHER $=0 \mathrm{~V}$		45	50	55	$\mu \mathrm{A}$
Discharging Current		VDITHER $=2.2 \mathrm{~V}$		43	50	57	$\mu \mathrm{A}$
Ramp's High Trip Point				2			V
Ramp's Low Trip Point				0.4			V
SOFT-START AND RESTART (SS)							
Charging Current	ISS-CH			9.5	10	10.5	$\mu \mathrm{A}$
Discharging Current	ISS-D	V SS $=2 \mathrm{~V}$, normal shutdown		0.65	1.34	2	mA
	ISS-DH	(VEN < VENF or VIN < VINUVF), VSS $=2 \mathrm{~V}$, hiccup mode discharge for trestart (Note 3)		1.6	2	2.4	$\mu \mathrm{A}$
Discharge Threshold to Disable Hiccup and Restart	VSS-DTH			0.15			V
Minimum Restart Time During Hiccup Mode	trSTRT-MIN			1024			Clock Cycles
Normal Operating High Voltage	VSS-HI			5			V
Duty-Cycle Control Range	VSS-DMAX	DMAX (typ) $=($ VSS-DMAX/2.46V)		0		2	V
DUTY-CYCLE CLAMP (DCLMP)							
DCLMP Input Current	IDCLMP	VDCLMP $=0$ to 5V		-100	0	+100	nA
Duty-Cycle Control Range	VDCLMP-R		VDCLMP $=0.5 \mathrm{~V}$	73	75.4	77.5	\%
		$\begin{aligned} & \text { DMAX (typ) }= \\ & 1-\left(\text { VDCLMP/2.43V }^{2}\right) \end{aligned}$	VDCLMP $=1 \mathrm{~V}$	54	56	58	
			VDCLMP $=2 \mathrm{~V}$	14.7	16.5	18.3	
NDRV DRIVER							
Pulldown Impedance	RNDRV-N	INDRV (sinking) $=100 \mathrm{~mA}$			1.9	3.4	Ω
Pullup Impedance	RNDRV-P	INDRV (sourcing) $=50 \mathrm{~mA}$			4.7	8.3	Ω
Peak Sink Current				1			A
Peak Source Current				0.65			A
Fall Time	tNDRV-F	CNDRV $=1 \mathrm{nF}$		14			ns
Rise Time	tNDRV-R	CNDRV $=1 \mathrm{nF}$		27			ns

Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers

ELECTRICAL CHARACTERISTICS (continued)
$\left(V_{I N}=12 \mathrm{~V}\right.$ (for MAX5974A/MAX5974C, bring VIN up to 21 V for startup), $\mathrm{V}_{\mathrm{CS}}=\mathrm{V}_{\mathrm{CSSC}}=\mathrm{V}_{\text {DITHER/SYNC }}=\mathrm{V}_{\text {FB }}=\mathrm{V}_{\text {FFB }}=\mathrm{V}_{\text {DCLMP }}=$ $V_{G N D}, V_{E N}=+2 \mathrm{~V}, \mathrm{NDRV}=\mathrm{AUXDRV}=\mathrm{SS}=\mathrm{COMP}=$ unconnected, $\mathrm{R}_{\mathrm{R}}=34.8 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{D}}=25 \mathrm{k} \Omega, \mathrm{CIN}=1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers

ELECTRICAL CHARACTERISTICS (continued)

($V_{I N}=12 \mathrm{~V}$ (for MAX5974A/MAX5974C, bring VIN up to 21 V for startup), $\mathrm{V}_{\mathrm{CS}}=\mathrm{V}_{\mathrm{CSSC}}=\mathrm{V}_{\text {DITHER/SYNC }}=\mathrm{V}_{\text {FB }}=\mathrm{V}_{\text {FFB }}=\mathrm{V}_{\mathrm{DCLMP}}=$ $V_{G N D}, V_{E N}=+2 \mathrm{~V}, \mathrm{NDRV}=\mathrm{AUXDRV}=\mathrm{SS}=\mathrm{COMP}=$ unconnected, RRT $=34.8 \mathrm{k} \Omega$, RDT $=25 \mathrm{k} \Omega, \mathrm{CIN}=1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T} A=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ERROR AMPLIFIER							
FB Reference Voltage	Vref	$V_{F B}$ when ICOMP $=0$,$\mathrm{V}_{\mathrm{COMP}}=2.5 \mathrm{~V}$	MAX5974A/ MAX5974B	1.5	1.52	1.54	V
			MAX5974C/ MAX5974D	1.202	1.215	1.227	
FB Input Bias Current	IFB	$V_{\text {FB }}=0$ to 1.75 V	MAX5974A/ MAX5974B	-250		+250	nA
			MAX5974C/ MAX5974D	-500		+100	
Voltage Gain	AEAMP				80		dB
Transconductance	gM		MAX5974A/ MAX5974B	1.8	2.55	3.2	mS
			MAX5974C/ MAX5974D	1.8	2.66	3.5	
Transconductance Bandwidth	BW	Open loop (typical gain = 1) -3 dB frequency	MAX5974A/ MAX5974B		2		MHz
			MAX5974C/ MAX5974D	30			
Source Current		$\mathrm{V}_{\mathrm{FB}}=1 \mathrm{~V}, \mathrm{~V}$ Comp $=2.5 \mathrm{~V}$		300	375	455	$\mu \mathrm{A}$
Sink Current		$\mathrm{V}_{\mathrm{FB}}=1.75 \mathrm{~V}, \mathrm{VCOMP}=1 \mathrm{~V}$		300	375	455	$\mu \mathrm{A}$
FREQUENCY FOLDBACK (FFB)							
VcSAVG-to-FFB Comparator Gain					10		V/V
FFB Bias Current	IFFB	VFFB $=0 \mathrm{~V}, \mathrm{VCS}=0 \mathrm{~V}$ (not in FFB mode)		26	30	33	$\mu \mathrm{A}$
NDRV Switching Frequency During Foldback	fSW-FB				fsw/2		kHz

Note 2: All devices are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over temperature are guaranteed by design.
Note 3: See the Output Short-Circuit Protection with Hiccup Mode section.
Note 4: The parameter is measured at the trip point of latch with $\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$. Gain is defined as $\Delta \mathrm{V}_{\mathrm{COMP}} / \Delta \mathrm{V}_{\mathrm{CSSC}}$ for $0.15 \mathrm{~V}<$ $\Delta \mathrm{V}$ CSSC $<0.25 \mathrm{~V}$.

Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers

$\left(V_{\text {IN }}=12 \mathrm{~V}\right.$ (for MAX5974A/MAX5974C, bring VIN up to 21 V for startup), $\mathrm{V}_{\mathrm{CS}}=\mathrm{V}_{\text {CSSC }}=\mathrm{V}_{\text {DITHER/SYNC }}=\mathrm{V}_{\mathrm{FB}}=\mathrm{V}_{\mathrm{FFB}}=\mathrm{V}_{\mathrm{DCLMP}}=$ VGND, $\mathrm{VEN}=2 \mathrm{~V}, \mathrm{NDRV}=\mathrm{AUXDRV}=\mathrm{SS}=\mathrm{COMP}=$ unconnected, RRT $=34.8 \mathrm{k} \Omega, \operatorname{RDT}=25 \mathrm{k} \Omega$, unless otherwise noted.)

Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers

Typical Operating Characteristics (continued)
($\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$ (for MAX5974A/MAX5974C, bring $\mathrm{V}_{\text {IN }}$ up to 21 V for startup), $\mathrm{V}_{\mathrm{CS}}=\mathrm{V}_{\text {CSSC }}=\mathrm{V}_{\text {DITHER/SYNC }}=\mathrm{V}_{\text {FB }}=\mathrm{V}_{\text {FFB }}=\mathrm{V}_{\text {DCLMP }}=$ VGND, $\mathrm{VEN}=2 \mathrm{~V}, \mathrm{NDRV}=\mathrm{AUXDRV}=\mathrm{SS}=\mathrm{COMP}=$ unconnected, RRT $=34.8 \mathrm{k} \Omega$, RDT $=25 \mathrm{k} \Omega$, unless otherwise noted.)

Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers

(VIN = 12V (for MAX5974A/MAX5974C, bring VIN up to 21 V for startup), $\mathrm{V}_{\mathrm{CS}}=\mathrm{V}_{\text {CSSC }}=\mathrm{V}_{\text {DITHER/SYNC }}=\mathrm{V}_{\text {FB }}=\mathrm{V}_{\text {FFB }}=\mathrm{V}_{\mathrm{DCLMP}}=$ VGND, $\mathrm{VEN}=2 \mathrm{~V}, \mathrm{NDRV}=\mathrm{AUXDRV}=\mathrm{SS}=\mathrm{COMP}=$ unconnected, RRT $=34.8 \mathrm{k} \Omega$, RDT $=25 \mathrm{k} \Omega$, unless otherwise noted.)

REVERSE CURRENT-LIMIT THRESHOLD
vs. TEMPERATURE

CURRENT-SENSE GAIN
vs. TEMPERATURE

Typical Operating Characteristics (continued)

SLOPE COMPENSATION CURRENT
vs. TEMPERATURE

FEEDBACK VOLTAGE
vs. TEMPERATURE

PEAK CURRENT-LIMIT THRESHOLD
vs. TEMPERATURE

NDRV MINIMUM ON-TIME
vs. TEMPERATURE

FEEDBACK VOLTAGE
vs. TEMPERATURE

Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers

Typical Operating Characteristics (continued)
($\mathrm{V}^{\prime} \mathrm{N}=12 \mathrm{~V}$ (for MAX5974A/MAX5974C, bring VIN up to 21V for startup), $\mathrm{V}_{\mathrm{CS}}=\mathrm{V}_{\text {CSSC }}=\mathrm{V}_{\text {DITHER/SYNC }}=\mathrm{V}_{\text {FB }}=\mathrm{V}_{\text {FFB }}=\mathrm{V}_{\text {DCLMP }}=$ VGND, $\mathrm{VEN}=2 \mathrm{~V}, \mathrm{NDRV}=\mathrm{AUXDRV}=\mathrm{SS}=\mathrm{COMP}=$ unconnected, RRT $=34.8 \mathrm{k} \Omega$, RDT $=25 \mathrm{k} \Omega$, unless otherwise noted.)

Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers

Typical Operating Characteristics (continued)
($\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$ (for MAX5974A/MAX5974C, bring $\mathrm{V}_{\text {IN }}$ up to 21 V for startup), $\mathrm{V}_{\mathrm{CS}}=\mathrm{V}_{\mathrm{CSSC}}=\mathrm{V}_{\text {DITHER/SYNC }}=\mathrm{V}_{\text {FB }}=\mathrm{V}_{\text {FFB }}=\mathrm{V}_{\text {DCLMP }}=$ VGND, $\mathrm{VEN}=2 \mathrm{~V}, \mathrm{NDRV}=\mathrm{AUXDRV}=\mathrm{SS}=\mathrm{COMP}=$ unconnected, RRT $=34.8 \mathrm{k} \Omega$, RDT $=25 \mathrm{k} \Omega$, unless otherwise noted.)

Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers

Pin Configuration

Pin Description

PIN	NAME	FUNCTION
1	DT	Dead-Time Programming Resistor Connection. Connect resistor RDT from DT to GND to set the desired dead time between the NDRV and AUXDRV signals. See the Dead Time section to calculate the resistor value for a particular dead time.
2	DITHER/ SYNC	Frequency Dithering Programming or Synchronization Connection. For spread-spectrum frequency operation, connect a capacitor from DITHER to GND and a resistor from DITHER to RT. To synchronize the internal oscillator to the externally applied frequency, connect DITHER/SYNC to the synchronization pulse.
3	RT	Switching Frequency Programming Resistor Connection. Connect resistor RRT from RT to GND to set the PWM switching frequency. See the Oscillator/Switching Frequency section to calculate the resistor value for the desired oscillator frequency.
4	FFB	Frequency Foldback Threshold Programming Input. Connect a resistor from FFB to GND to set the output average current threshold below which the converter folds back the switching frequency to $1 / 2$ of its original value. Connect to GND to disable frequency foldback.
5	COMP	Transconductance Amplifier Output and PWM Comparator Input. COMP is level shifted down and connected to the inverting input of the PWM comparator.

Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers

Pin Description (continued)

PIN	NAME	FUNCTION
6	FB	Transconductance Amplifier Inverting Input
7	GND	Signal Ground
8	CSSC	Current Sense with Slope Compensation Input. A resistor connected from CSSC to CS programs the amount of slope compensation. See the Programmable Slope Compensation section.
9	CS	Current-Sense Input. Current-sense connection for average current sense and cycle-by-cycle current limit. Peak current-limit trip voltage is 400mV and reverse current-limit trip voltage is $-100 m V$.
10	PGND	Power Ground. PGND is the return path for gate-driver switching currents.
11	NDRV	Main Switch Gate-Driver Output
12	AUXDRV	pMOS Active Clamp Switch Gate-Driver Output. AUXDRV can also be used to drive a pulse transformer for synchronous flyback application.
14	EN	Converter Supply Input. IN has wide UVLO hysteresis, enabling the design of efficient power supplies. When the enable input EN is used to program a UVLO level for the power source, connect a zener diode between IN and PGND to ensure that VIN is always clamped below its absolute maximum rating of 24V.
15	Enable Input. The gate drivers are disabled and the device is in a low-power UVLO mode when the voltage on EN is below VENF. When the voltage on EN is above VENR, the device checks for other enable conditions. See the Enable Input section for more information about interfacing to EN.	
16	DCLMP	Feed-Forward Maximum Duty-Cycle Clamp Programming Input. Connect a resistive divider between the input supply voltage DCLMP and GND. The voltage at DCLMP sets the maximum duty cycle (DMAX) of the converter inversely proportional to the input supply voltage, so that the MOSFET remains protected during line transients.
-	SS	Soft-Start Programming Capacitor Connection. Connect a capacitor from SS to GND to program the soft-start period. This capacitor also determines hiccup mode current-limit restart time. A resistor from SS to GND can also be used to set the DMAX below 75\%.
13	Exposed Pad. Internally connected to GND. Connect to a large ground plane to maximize thermal performance. Not intended as an electrical connection point.	
10		

Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers

Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers

MAX5974A/MAX5974B/MAX5974C/MAX5974D

Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers

Detailed Description

The MAX5974A/MAX5974B/MAX5974C/MAX5974D are optimized for controlling a 25 W to 50 W active-clamped, self-driven synchronous rectification forward converter in continuous-conduction mode. The main switch gate driver (NDRV) and the active-clamped switch driver (AUXDRV) are sized to optimize efficiency for 25 W design. The features-rich devices are ideal for PoE IEEE 802.3af/at-powered devices.

The MAX5974A/MAX5974C offer a 20 V bootstrap UVLO wake-up level with a 13 V wide hysteresis. The low startup and operating currents allow the use of a smaller storage capacitor at the input without compromising startup and hold times. The MAX5974A/MAX5974C are well-suited for universal input (rectified 85V AC to 265 V AC) or telecom ($-36 \mathrm{~V} D \mathrm{D}$ to $-72 \mathrm{~V} D \mathrm{D}$) power supplies.

The MAX5974B/MAX5974D have a UVLO rising threshold of 10 V and can accomodate for low-input voltage (12 V DC to 24 V DC) power sources such as wall adapters.
Power supplies designed with the MAX5974A/MAX5974C use a high-value startup resistor, RIN, that charges a reservoir capacitor, CIN (see the Typical Application Circuits). During this initial period, while the voltage is less than the internal bootstrap UVLO threshold, the device typically consumes only $100 \mu \mathrm{~A}$ of quiescent current. This low startup current and the large bootstrap UVLO hysteresis help to minimize the power dissipation across RIN even at the high end of the universal AC input voltage (265V AC).
Feed-forward maximum duty-cycle clamping detects changes in line conditions and adjusts the maximum duty cycle accordingly to eliminate the clamp voltage's (i.e., the main power FET's drain voltage) dependence on the input voltage.
For EMI-sensitive applications, the programmable frequency dithering feature allows up to $\pm 10 \%$ variation in the switching frequency. This spread-spectrum modulation technique spreads the energy of switching harmonics over a wider band while reducing their peaks, helping to meet stringent EMI goals.
The devices include a cycle-by-cycle current limit that turns off the main and AUX drivers whenever the internally set threshold of 400 mV is exceeded. Eight consecutive occurrences of current-limit events trigger hiccup mode, which protects external components by halting switching for a period of time (tRSTRT) and allowing the overload current to dissipate in the load and body diode of the synchronous rectifier before soft-start is reattempted.

The reverse current-limit feature of the devices turns the AUX driver off for the remaining off period when Vcs exceeds the -100 mV threshold. This protects the transformer core from saturation due to excess reverse current under some extreme transient conditions.

Current-Mode Control Loop The advantages of current-mode control over voltagemode control are twofold. First, there is the feed-forward characteristic brought on by the controller's ability to adjust for variations in the input voltage on a cycle-by-cycle basis. Second, the stability requirements of the current-mode controller are reduced to that of a single-pole system, unlike the double pole in voltage-mode control.

The devices use a current-mode control loop where the scaled output of the error amplifier (COMP) is compared to a slope-compensated current-sense signal at CSSC.

Enable Input

The enable input EN is used to enable or disable the device. Connect EN to IN for always enabled applications. Connecting EN to ground disables the device and reduces current consumption to $100 \mu \mathrm{~A}$.

The enable input has an accurate threshold of 1.26 V (max). For applications that require a UVLO on the power source, connect a resistive divider from the power source to EN to GND as shown in Figure 1. A zener diode between IN and PGND is required to prevent IN from exceeding its absolute maximum rating of 24 V when the device is disabled. The zener diode should be inactive below the maximum UVLO rising threshold voltage VINUVR(MAX) (21V for the MAX5974A/MAX5974C and 10.5 V for the MAX5974B/MAX5974D). Design the resistive divider by first selecting the value of REN1 to be on the order of $100 \mathrm{k} \Omega$. Then calculate REN2 as follows:

$$
R_{E N 2}=R_{E N 1} \frac{V_{E N(M A X)}}{V_{S(U V L O)}-V_{E N(M A X)}}
$$

where $\mathrm{VEN}_{\mathrm{EN}}(\mathrm{MAX})$ is the maximum enable threshold voltage and is equal to 1.26 V and $\mathrm{V}_{S}(\mathrm{UVLO})$ is the desired UVLO threshold for the power source, below which the devices are disabled.

In the case where EN is externally controlled and UVLO for the power source is unnecessary, connect EN to IN and an open-drain or open-collector output as shown in Figure 2. The digital output connected to EN should be capable of withstanding IN's absolute maximum voltage of 24 V .

Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers

Figure 1. Programmable UVLO for the Power Source

Figure 2. External Control of the Enable Input

Bootstrap Undervoltage Lockout
The devices have an internal bootstrap UVLO that is very useful when designing high-voltage power supplies (see the Block Diagrams). This allows the device to bootstrap itself during initial power-up. The MAX5974A/MAX5974C soft-start when VIN exceeds the bootstrap UVLO threshold of VINUVR (20V typ).

Because the MAX5974B/MAX5974D are designed for use with low-voltage power sources such as wall adapters outputting 12 V to 24 V , they have a lower UVLO wake-up threshold of 10 V .

Startup Operation

The device starts up when the voltage at IN exceeds 20V (MAX5974A/MAX5974C) or 10V (MAX5974B/ MAX5974D) and the enable input voltage is greater than 1.26 V .

During normal operation, the voltage at $I N$ is normally derived from a tertiary winding of the transformer (MAX5974C/MAX5974D). However, at startup there is no energy being delivered through the transformer; hence, a special bootstrap sequence is required. In the Typical Application Circuits, CIN charges through the startup resistor, RIN, to an intermediate voltage. Only $100 \mu \mathrm{~A}$ of the current supplied through RIN is used by the ICs, the remaining input current charges CIN until VIN reaches the bootstrap UVLO wake-up level. Once VIN exceeds this level, NDRV begins switching the n-channel MOSFET and transfers energy to the secondary and tertiary outputs. If the voltage on the tertiary output builds to higher than 7 V (the bootstrap UVLO shutdown level), then startup has been accomplished and sustained operation commences. If V IN drops below 7 V before startup is complete, the device goes back to low-current UVLO. In this case, increase the value of CIN in order to store enough energy to allow for the voltage at the tertiary winding to build up.
While the MAX5974A/MAX5974B derive their input voltage from the coupled inductor output during normal operation, the startup behavior is similar to that of the MAX5974C/MAX5974D.

Soft-Start
A capacitor from SS to GND, CSS, programs the softstart time. VSS controls the oscillator duty cycle during

Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers

startup to provide a slow and smooth increase of the duty cycle to its steady-state value. Calculate the value of CSS as follows:

$$
\mathrm{C}_{S S}=\frac{\mathrm{I}_{\mathrm{SS}-\mathrm{CH}} \times \mathrm{t}_{\mathrm{SS}}}{2 \mathrm{~V}}
$$

where Iss-CH ($10 \mu \mathrm{~A}$ typ) is the current charging Css during soft-start and tss is the programmed soft-start time.
A resistor can also be added from the SS pin to GND to clamp VSS < 2 V and, hence, program the maximum duty cycle to be less than 80% (see the Duty-Cycle Clamping section).
n-Channel MOSFET Gate Driver
The NDRV output drives an external n-channel MOSFET. NDRV can source/sink in excess of $650 \mathrm{~mA} / 1000 \mathrm{~mA}$ peak current; therefore, select a MOSFET that yields acceptable conduction and switching losses. The external MOSFET used must be able to withstand the maximum clamp voltage.

p-Channel MOSFET Gate Driver

The AUXDRV output drives an external p-channel MOSFET with the aid of a level shifter. The level shifter consists of CAUX, RAUX, and D5 as shown in the Typical Application Circuits. When AUXDRV is high, CAUX is recharged through D5. When AUXDRV is low, the gate of the p-channel MOSFET is pulled below the source by the voltage stored on CAUX, turning on the pFET.

Dead Time
Dead time between the main and AUX output edges allow ZVS to occur, minimizing conduction losses and improving efficiency. The dead time (tDT) is applied to both leading and trailing edges of the main and AUX outputs as shown in Figure 3. Connect a resistor between DT and GND to set tDT to any value between 40 ns and 400ns:

$$
\mathrm{R}_{\mathrm{DT}}=\frac{10 \mathrm{k} \Omega}{40 \mathrm{~ns}} \times \mathrm{t}_{\mathrm{DT}}
$$

Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers

Oscillator/Switching Frequency

The ICs' switching frequency is programmable between 100 kHz and 600 kHz with a resistor RRT connected between RT and GND. Use the following formula to determine the appropriate value of RRT needed to generate the desired output-switching frequency (fsw):

$$
R_{R T}=\frac{8.7 \times 10^{9}}{f_{S W}}
$$

where fsw is the desired switching frequency.

Peak Current Limit

The current-sense resistor (Rcs in the Typical Application Circuits), connected between the source of the n-channel MOSFET and PGND, sets the current limit. The current-limit comparator has a voltage trip level (VCS-PEAK) of 400 mV . Use the following equation to calculate the value of Rcs:

$$
\mathrm{R}_{\mathrm{CS}}=\frac{400 \mathrm{mV}}{\mathrm{I}_{\mathrm{PRI}}}
$$

where IPRI is the peak current in the primary side of the transformer, which also flows through the MOSFET. When the voltage produced by this current (through the current-sense resistor) exceeds the current-limit comparator threshold, the MOSFET driver (NDRV) terminates the current on-cycle, within 35ns (typ).
The devices implement 115 ns of leading-edge blanking to ignore leading-edge current spikes. These spikes are caused by reflected secondary currents, current-
discharging capacitance at the FET's drain, and gatecharging current. Use a small RC network for additional filtering of the leading-edge spike on the sense waveform when needed. Set the corner frequency between 10 MHz and 20 MHz .
After the leading-edge blanking time, the device monitors VCS for any breaches of the peak current limit of 400 mV . The duty cycle is terminated immediately when Vcs exceeds 400 mV .

Reverse Current Limit

The devices protect the transformer against saturation due to reverse current by monitoring the voltage across RCS while the AUX output is low and the p-channel FET is on.

Output Short-Circuit Protection with Hiccup Mode

When the device detects eight consecutive peak currentlimit events, both NDRV and AUXDRV driver outputs are turned off for a restart period, tRSTRT. After tRSTRT, the device undergoes soft-start. The duration of the restart period depends on the value of the capacitor at SS (CSS). During this period, CsS is discharged with a pulldown current of Iss-DH ($2 \mu \mathrm{~A}$ typ). Once its voltage reaches 0.15 V , the restart period ends and the device initiates a soft-start sequence. An internal counter ensures that the minimum restart period (tRSTRT-MIN) is 1024 clock cycles when the time required for Css to discharge to 0.15 V is less than 1024 clock cycles. Figure 4 shows the behavior of the device prior and during hiccup mode.

Figure 4. Hiccup Mode Timing Diagram

Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers

Frequency Foldback for High-Efficiency

Light-Load Operation

The frequency foldback threshold can be programmed from 0 to 20% of the full load current using a resistor from FFB to GND.

The CS voltage is sampled during the NDRV on-time, averaged using an internal RC filter, and gained up by 10 to generate a voltage, VCSAVG. When VCSAVg falls below VFFB, the device folds back the switching frequency to $1 / 2$ the original value to reduce switching losses and increase the converter efficiency. The new switching frequency starts at the beginning of a new cycle as shown in Figure 5. Calculate the value of RFFB as follows:

$$
\mathrm{R}_{\mathrm{FFB}}=\frac{10 \times \mathrm{I}_{\mathrm{LOAD}(\mathrm{LIGHT})} \times \mathrm{R}_{\mathrm{CS}}}{\mathrm{I}_{\mathrm{FFB}}}
$$

where RFFB is the resistor between FFB and GND, ILOAD(LIGHT) is the current at light-load conditions that triggers frequency foldback, Rcs is the value of the sense resistor connected between CS and PGND, and IFFB is the current sourced from FFB to RFFB ($30 \mu \mathrm{~A}$ typ).

Duty-Cycle Clamping

The maximum duty cycle is determined by the lowest of three voltages: 2 V , the voltage at SS (VSS), and the voltage (2.43 V - VDCLMP). The maximum duty cycle is calculated as:

$$
\mathrm{D}_{\mathrm{MAX}}=\frac{\mathrm{V}_{\mathrm{MIN}}}{2.43 \mathrm{~V}}
$$

where $\mathrm{V}_{\mathrm{MIN}}=$ minimum (2 V , V SS, $2.43 \mathrm{~V}-\mathrm{V}$ DCLMP).

Figure 5. Entering Frequency Foldback

Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers

Using an external clock increases the maximum duty cycle by a factor equal to fSYNC/fsw. This factor should be accounted for in setting the maximum duty cycle using any of the methods described in the Duty-Cycle Clamping section. The formula below shows how the maximum duty cycle is affected by the external clock frequency:

$$
\mathrm{D}_{\mathrm{MAX}}=\frac{\mathrm{V}_{\mathrm{MIN}}}{2.43 \mathrm{~V}} \times \frac{\mathrm{f}_{\mathrm{SYNC}}}{f_{\mathrm{SW}}}
$$

where $\mathrm{V}_{\mathrm{MIN}}$ is described in the Duty-Cycle Clamping section, fsw is the switching frequency as set by the resistor connected between RT and GND, and fsYNC is the external clock frequency.

Frequency Dithering for SpreadSpectrum Applications (Low EMI)

The switching frequency of the converter can be dithered in a range of $\pm 10 \%$ by connecting a capacitor from DITHER/SYNC to GND, and a resistor from DITHER to RT as shown in the Typical Application Circuits. This results in lower EMI.
A current source at DITHER/SYNC charges the capacitor CDITHER to 2 V at 50 HA . Upon reaching this trip point, it discharges CDITHER to 0.4 V at $50 \mu \mathrm{~A}$. The charging and discharging of the capacitor generates a triangular waveform on DITHER/SYNC with peak levels at 0.4 V and 2 V and a frequency that is equal to:

$$
\mathrm{f}_{\text {TRI }}=\frac{50 \mu \mathrm{~A}}{\mathrm{C}_{\text {DITHER }} \times 3.2 \mathrm{~V}}
$$

Typically, fTRI should be set close to 1 kHz . The resistor RDITHER connected from DITHER/SYNC to RT determines the amount of dither as follows:

$$
\% \text { DITHER }=\frac{4}{3} \times \frac{R_{\text {RT }}}{R_{\text {DITHER }}}
$$

where \%DITHER is the amount of dither expressed as a percentage of the switching frequency. Setting RDITHER to $10 \times$ RRT generates $\pm 10 \%$ dither.

Programmable Slope Compensation

The device generates a current ramp at CSSC such that its peak is $50 \mu \mathrm{~A}$ at 80% duty cycle of the oscillator. An external resistor connected from CSSC to the CS then converts this current ramp into programmable slope-
compensation amplitude, which is added to the currentsense signal for stability of the peak current-mode control loop. The ramp rate of the slope compensation signal is given by:

$$
m=\frac{R_{\operatorname{CSSC}} \times 50 \mu A \times f_{S W}}{80 \%}
$$

where m is the ramp rate of the slope-compensation signal, RCSSC is the value of the resistor connected between CSSC and CS used to program the ramp rate, and fSW is the switching frequency.

Error Amplifier

The MAX5974A/MAX5974B include an internal error amplifier with a sample-and-hold input. The feedback input of the MAX5974C/MAX5974D is continuously connected. The noninverting input of the error amplifier is connected to the internal reference and feedback is provided at the inverting input. High open-loop gain and unity-gain bandwidth allow good closed-loop bandwidth and transient response. Calculate the power-supply output voltage using the following equation:

$$
V_{\text {OUT }}=V_{\mathrm{REF}} \times \frac{R_{\mathrm{FB} 1}+R_{\mathrm{FB} 2}}{R_{\mathrm{FB} 2}}
$$

where $V_{\text {REF }}=1.52 \mathrm{~V}$ for the MAX5974A/MAX5974B and $V_{\text {REF }}=1.215 \mathrm{~V}$ for the MAX5974C/MAX5974D. The amplifier's noninverting input is internally connected to a soft-start circuit that gradually increases the reference voltage during startup. This forces the output voltage to come up in an orderly and well-defined manner under all load conditions.

Applications Information

Startup Time Considerations

The bypass capacitor at $\mathbb{N}, \mathrm{C} I \mathrm{~N}$, supplies current immediately after the devices wake up (see the Typical Application Circuits). Large values of CIN increase the startup time, but also supply gate charge for more cycles during initial startup. If the value of CIN is too small, VIN drops below $7 V$ because NDRV does not have enough time to switch and build up sufficient voltage across the tertiary output (MAX5974C/MAX5974D) or coupled inductor output (MAX5974A/MAX5974B), which powers the device. The device goes back into UVLO and does not start. Use a low-leakage capacitor for CIN .

Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers

Typically, offline power supplies keep startup times to less than 500ms even in low-line conditions (85V AC input for universal offline or 36V DC for telecom applications). Size the startup resistor, RIN, to supply both the maximum startup bias of the device $(100 \mu \mathrm{~A})$ and the charging current for CIN. CIN must be charged to 20 V within the desired 500 ms time period. CIN must store enough charge to deliver current to the device for at least the soft-start time (tSS) set by Css. To calculate the approximate amount of capacitance required, use the following formula:

$$
\begin{aligned}
\mathrm{I}_{\mathrm{G}} & =\mathrm{Q}_{\mathrm{GTOT}}{ }^{S} \mathrm{SW} \\
\mathrm{C}_{I N} & =\frac{\left(I_{I N}+\mathrm{I}_{\mathrm{G}}\right)\left(\mathrm{t}_{S S}\right)}{V_{\mathrm{HYST}}}
\end{aligned}
$$

where IIN is the ICs' internal supply current (1.8 mA) after startup, QGTOT is the total gate charge for the n-channel and p-channel FETs, fSW is the ICs' switching frequency, VHYST is the bootstrap UVLO hysteresis (13V typ), and tss is the soft-start time. RIN is then calculated as follows:

$$
\mathrm{R}_{\text {IN }} \cong \frac{V_{\mathrm{S}(\mathrm{MIN})}-V_{\text {INUVR }}}{I_{\text {START }}}
$$

where $\mathrm{VS}(\mathrm{MIN})$ is the minimum input supply voltage for the application (36V for telecom), VINUVR is the bootstrap UVLO wake-up level (20V), and ISTART is the IN supply current at startup ($150 \mu \mathrm{~A}$ max).
Choose a higher value for RIN than the one calculated above if a longer startup time can be tolerated in order to minimize power loss on this resistor.

Active Clamp Circuit

Traditional clamp circuits prevent transformer saturation by channeling the magnetizing current (IM) of the transformer onto a dissipative RC network. To improve efficiency, the active clamp circuit recycles IM between the magnetizing inductance and clamp capacitor. VCLAMP is given by:

$$
V_{C L A M P}=\frac{V_{S}}{1-D}
$$

where V_{S} is the voltage of the power source and D is the duty cycle. To select n-channel and p-channel FETs
with adequate breakdown voltages, use the maximum value of VCLAMP. VCLAMP(MAX) occurs when the input voltage is at its minimum and the duty cycle is at its maximum. VCLAMP(MAX-NORMAL) during normal operation is therefore:

$$
V_{\mathrm{CLAMP}(\mathrm{MAX}-\mathrm{NORMAL})}=\frac{\mathrm{V}_{\mathrm{S}(\mathrm{MIN})}}{1-\frac{\mathrm{N}_{P} \times \mathrm{V}_{\mathrm{O}}}{\mathrm{~N}_{\mathrm{S}} \times \mathrm{V}_{\mathrm{S}(\mathrm{MIN})}}}
$$

where $\mathrm{VS}(\mathrm{MIN})$ is the minimum voltage of the power source, Np/Ns is the primary to secondary turns ratio, and V_{O} is the output voltage. The clamp capacitor, n-channel, and p-channel FETs must have breakdown voltages exceeding this level.
If feed-forward maximum duty-cycle clamp is used then:

$$
\begin{aligned}
& D_{M A X-F F}=\frac{V_{M I N}}{2.43}=\left(1-\frac{V_{\text {DCLMP }}}{2.43}\right) \\
& =\left(1-\frac{V_{S}}{2.43} \times \frac{R_{\text {DCLMP2 }}}{R_{\text {DCLMP1 }}+R_{\text {DCLMP2 }}}\right)
\end{aligned}
$$

Therefore, VCLAMP(MAX-FF) during feed-forward maximum duty clamp is:

$$
\begin{aligned}
& V_{C L A M P}(M A X-F F)=\frac{V_{S}}{1-D_{M A X-F F}} \\
& =\frac{2.43 \times\left(R_{\text {DCLMP1 }}+R_{\text {DCLMP2 }}\right)}{R_{\text {DCLMP2 }}}
\end{aligned}
$$

The AUX driver controls the p-channel FET through a level shifter. The level shifter consists of an RC network (formed by CAUX and RAUX) and diode D5, as shown in the Typical Application Circuits. Choose RaUX and CAUX so that the time constant exceeds 100/fSW. Diode D5 is a small-signal diode with a voltage rating exceeding 25 V .
Additionally, CCLAMP should be chosen such that the complex poles formed with magnetizing inductance (LMAG) and CCLAMP are $2 x$ to $4 x$ away from the loop bandwidth:

$$
\frac{1-\mathrm{D}}{2 \pi \sqrt{\mathrm{~L}_{\mathrm{MAG}} \times \mathrm{C}_{\mathrm{CLAMP}}}}>3 \times \mathrm{f}_{\mathrm{BW}}
$$

Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers

Bias Circuit
 Optocoupler Feedback (MAX5974C/MAX5974D)

An in-phase tertiary winding is needed to power the bias circuit when using optocoupler feedback. The voltage across the tertiary V_{T} during the on-time is:

$$
V_{T}=V_{\text {OUT }} \times \frac{N_{T}}{N_{S}}
$$

where VOUT is the output voltage and $N T / N S$ is the turns ratio from the tertiary to the secondary winding. Select the turns ratio so that V T is above the UVLO shutdown level (7.5 V max) by a margin determined by the holdup time needed to "ride through" a brownout.

Coupled-Inductor Feedback (MAX5974A/MAX5974B)

When using coupled-inductor feedback, the power for the devices can be taken from the coupled inductor during the off-time. The voltage across the coupled inductor, VCOUPLED, during the off-time is:

$$
V_{\text {COUPLED }}=V_{\text {OUT }} \times \frac{N_{\mathrm{C}}}{N_{\mathrm{O}}}
$$

where Vout is the output voltage and $\mathrm{NC} / \mathrm{NO}$ is the turns ratio from the coupled output to the main output winding. Select the turns ratio so that VCOUPLED is above the UVLO shutdown level (7.5 V max) by a margin determined by the holdup time needed to "ride through" a brownout.
This voltage appears at the input of the devices, less a diode drop. An RC network consisting of RSNUB and CSNUB is for damping the reverse recovery transients of diode D6.

During on-time, the coupled output is:

$$
V_{\text {COUPLED-ON }}=-\left(V_{S} \times \frac{N_{S}}{N_{P}}-V_{O U T}\right) \frac{N_{C}}{N_{O}}
$$

where V s is the input supply voltage.
Care must be taken to ensure that the voltage at FB (equal to Vcoupled-on attenuated by the feedback resistive divider) is not more than 5 V :

$$
V_{\mathrm{FB}-\mathrm{ON}}=\mathrm{V}_{\mathrm{COUPLED}-\mathrm{ON}} \times \frac{\mathrm{R}_{\mathrm{FB} 2}}{\left(\mathrm{R}_{\mathrm{FB} 1}+\mathrm{R}_{\mathrm{FB} 2}\right)}<5 \mathrm{~V}
$$

If this condition is not met, a signal diode should be placed from GND (anode) to FB (cathode).

Layout Recommendations

Typically, there are two sources of noise emission in a switching power supply: high di/dt loops and high dV/dt surfaces. For example, traces that carry the drain current often form high di/dt loops. Similarly, the heatsink of the main MOSFET presents a $\mathrm{dV} / \mathrm{dt}$ source; therefore, minimize the surface area of the MOSFET heatsink as much as possible. Keep all PCB traces carrying switching currents as short as possible to minimize current loops. Use a ground plane for best results.
For universal AC input design, follow all applicable safety regulations. Offline power supplies can require UL, VDE, and other similar agency approvals.

Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers

Typical Application Circuits

Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers

\qquad Typical Application Circuits (continued)

Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers

Typical Application Circuits (continued)

Chip Information
PROCESS: BiCMOS

Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
16 TQFN-EP	$\mathrm{T} 1633+4$	$\underline{21-0136}$	$\underline{90-0031}$

Active-Clamped, Spread-Spectrum, Current-Mode PWM Controllers

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$6 / 10$	Initial release	-

