Single-Channel: 6N135M, 6N136M, HCPL2503M, HCPL4502M, HCPL4503M
 Dual-Channel: HCPL2530M, HCPL2531M High Speed Transistor Optocouplers

Features

■ High speed - 1 MBit/s
■ Superior CMR - $10 \mathrm{kV} / \mu \mathrm{s}$
■ Dual-Channel HCPL2530M, HCPL2531M (Preliminary)

- CTR guaranteed $0-70^{\circ} \mathrm{C}$

■ U.L. recognized (File \# E90700, Vol. 2)
■ 5,000Vrms (1 minute) isolation rating
■ Superior CMR of $15,000 \mathrm{~V} / \mu \mathrm{s} \min$. (HCPL4503M)
■ $>8 \mathrm{~mm}$ creepage and clearance (option T)
■ No base connection for improved noise immunity (HCPL4502M, HCPL4503M)

Applications

- Line receivers
- Pulse transformer replacement

■ Output interface to CMOS-LSTTL-TTL

- Wide bandwidth analog coupling

Description

The HCPL4502M, HCPL4503M, HCPL2503M, 6N135M, 6N136M, HCPL2530M and HCPL2531M optocouplers consist of an AIGaAs LED optically coupled to a high speed photodetector transistor.

A separate connection for the bias of the photodiode improves the speed by several orders of magnitude over conventional phototransistor optocouplers by reducing the base-collector capacitance of the input transistor.

An internal noise shield provides superior common mode rejection of up to $50,000 \mathrm{~V} / \mu \mathrm{s}$.

Schematics

6N135M, 6N136M, HCPL2503M, HCPL4502M, HCPL4503M
Pin 7 is not connected in
HCPL4502M and HCPL4503M

Package Outlines

HCPL2530M/HCPL2531M

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Condition	Value	Units
$\mathrm{T}_{\text {STG }}$	Storage Temperature		-40 to +125	${ }^{\circ} \mathrm{C}$
ToPR	Operating Temperature		-40 to +100	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SOL }}$	Lead Solder Temperature (Wave)		260 for 10 sec	${ }^{\circ} \mathrm{C}$
EMITTER				
$\mathrm{I}_{\mathrm{F}}(\mathrm{avg})$	DC/Average Forward Input Current Each Channel ${ }^{(1)}$		25	mA
$\mathrm{I}_{\mathrm{F}}(\mathrm{pk})$	Peak Forward Input Current Each Channel ${ }^{(2)}$	50\% duty cycle, $1 \mathrm{~ms} \mathrm{P.W}$.	50	mA
I_{F} (trans)	Peak Transient Input Current Each Channel	<1 1 s P.W., 300pps	1.0	A
V_{R}	Reverse Input Voltage Each Channel		5	V
P_{D}	Input Power Dissipation Each Channel	6N135M, 6N136M, HCPL2503M, HCPL4502M, HCPL4503M	100	mW
		HCPL2530M, HCPL2531M ${ }^{(3)}$	45	
DETECTOR				
I_{O} (avg)	Average Output Current Each Channel		8	mA
I O (pk)	Peak Output Current Each Channel		16	mA
$\mathrm{V}_{\text {EBR }}$	Emitter-Base Reverse Voltage	6N135M, 6N136M and HCPL2503M only	5	V
V_{CC}	Supply Voltage		-0.5 to 30	V
V_{O}	Output Voltage		-0.5 to 20	V
I_{B}	Base Current	6N135M, 6N136M and HCPL2503M only	5	mA
PD	Output Power Dissipation Each Channel	6N135M, 6N136M, HCPL2503M, HCPL4502M, HCPL4503M ${ }^{(4)}$	100	mW
		HCPL2530M, HCPL2531M	35	mW

Notes:

1. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$ Unless otherwise specified)
Individual Component Characteristics

Symbol	Parameter	Test Conditions	Device	Min.	Typ.*	Max.	Unit
EMITTER							
V_{F}	Input Forward Voltage	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	All		1.45	1.7	V
		$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$	All			1.8	
B_{VR}	Input Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$	All	5.0			V
$\Delta \mathrm{V}_{\mathrm{F}} / \Delta \mathrm{T}_{\mathrm{A}}$	Temperature Coefficient of Forward Voltage	$I_{F}=16 \mathrm{~mA}$	All		-1.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

DETECTOR

IOH	Logic High Output Current	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	All	0.003	0.5	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	6N135M 6N136M HCPL4502M HCPL4503M HCPL2503M	0.005	1	
		$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$	All		50	
$\mathrm{I}_{\mathrm{CCL}}$	Logic Low Supply Current	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\text { Open, } \\ & \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V} \end{aligned}$	6N135M 6N136M HCPL4502M HCPL4503M HCPL2503M	145	200	$\mu \mathrm{A}$
		$\begin{aligned} & I_{F 1}=I_{F 2}=16 \mathrm{~mA}, \\ & V_{O}=\text { Open, } V_{C C}=15 \mathrm{~V} \end{aligned}$	HCPL2530M HCPL2531M	250	400	
$\mathrm{I}_{\mathrm{CCH}}$	Logic High Supply Current	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\text { Open, } \\ & \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	6N135M 6N136M HCPL4502M HCPL4503M HCPL2503M		1	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\text { Open, } \\ & \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V} \end{aligned}$	6N135M 6N136M HCPL4502M HCPL4503M HCPL2503M		2	
		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\text { Open, } \\ & \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V} \end{aligned}$	HCPL2530M HCPL2531M	0.02	4	

*All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Electrical Characteristics (Continued) ($\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$ unless otherwise specified)
Transfer Characteristics

*All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Note:

5. Current Transfer Ratio is defined as a ratio of output collector current, I_{O}, to the forward LED input current, I_{F}, times 100\%.

Electrical Characteristics (Continued) ($\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$ unless otherwise specified)
Switching Characteristics ($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$)

Symbol	Parameter	Test Conditions	Device	Min.	Typ.*	Max.	Unit
$\mathrm{T}_{\text {PHL }}$	Propagation Delay Time to Logic LOW	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega, \\ & \left.\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}^{(6)}{ }^{(\text {Fig. }} \text { (}\right) \end{aligned}$	6N135M HCPL2530M		0.45	1.5	$\mu \mathrm{s}$
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(7)} \text { (Fig. 7) } \end{aligned}$	6N136M HCPL4502M HCPL4503M HCPL2503M HCPL2531M		0.45	0.8	$\mu \mathrm{s}$
		$\mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}{ }^{(6)}$ (Fig. 7)	$\begin{gathered} \text { 6N135M } \\ \text { HCPL2530M } \end{gathered}$			2.0	$\mu \mathrm{s}$
		$\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}{ }^{(7)}$ (Fig. 7)	6N136M HCPL4502M HCPL4503M HCPL2503M HCPL2531M			1.0	$\mu \mathrm{s}$
$\mathrm{T}_{\text {PLH }}$	Propagation Delay Time to Logic HIGH	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C},\left(\mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega,\right. \\ & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}^{(6)} \text { (Fig. 7) } \end{aligned}$	6N135M HCPL2530M		0.5	1.5	$\mu \mathrm{s}$
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}^{(7)} \text { (Fig. 7) } \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	6N136M HCPL4502M HCPL4503M HCPL2503M HCPL2531M		0.3	0.8	$\mu \mathrm{s}$
		$\mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}{ }^{(6)}$ (Fig. 7)	6N135M HCPL2530M			2.0	$\mu \mathrm{s}$
		$\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}{ }^{(7)}$ (Fig. 7)	6N136M HCPL4502M HCPL4503M HCPL2503M HCPL2531M			1.0	$\mu \mathrm{s}$
${ }^{\text {ICM }}{ }^{\text {l }}$	Common Mode Transient Immunity at Logic High	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} \\ & \mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(8)} \text { (Fig. 8) } \end{aligned}$	$\begin{gathered} \text { 6N135M } \\ \text { HCPL2530M } \\ \hline \end{gathered}$		10,000		$\mathrm{V} / \mu \mathrm{s}$
		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \\ & \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(8)} \text { (Fig. 8) } \end{aligned}$	6N136M HCPL4502M HCPL2503M HCPL2531M		10,000		$\mathrm{V} / \mu \mathrm{s}$
		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=1,500 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} \\ & \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(8)} \text { (Fig. 8) } \end{aligned}$	HCPL4503M	15,000	30,000		
$\mathrm{ICM}_{\mathrm{L}} \mathrm{l}$	Common Mode Transient Immunity at Logic Low	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{P}-\mathrm{P},}, \\ & \mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(8)} \text { (Fig. 8) } \end{aligned}$	6N135M HCPL2530M		10,000		$\mathrm{V} / \mathrm{\mu s}$
		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \\ & \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega^{(8)} \text { (Fig. 8) } \end{aligned}$	6N136M HCPL4502M HCPL2503M HCPL2531M		10,000		$\mathrm{V} / \mathrm{\mu s}$
		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=1,500 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} \\ & \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(8)} \text { (Fig. 8) } \end{aligned}$	HCPL4503M	15,000	30,000		

${ }^{* *}$ All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Notes:

6. The $4.1 \mathrm{k} \Omega$ load represents 1 LSTTL unit load of 0.36 mA and $6.1 \mathrm{k} \Omega$ pull-up resistor.
7. The $1.9 \mathrm{k} \Omega$ load represents 1 TTL unit load of 1.6 mA and $5.6 \mathrm{k} \Omega$ pull-up resistor.
8. Common mode transient immunity in logic high level is the maximum tolerable (positive) $\mathrm{dV}_{\mathrm{cm}} / \mathrm{dt}$ on the leading edge of the common mode pulse signal V_{CM}, to assure that the output will remain in a logic high state (i.e., $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$). Common mode transient immunity in logic low level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{cm}} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, V_{CM}, to assure that the output will remain in a logic low state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$).

Electrical Characteristics (Continued) ($T_{A}=0$ to $70^{\circ} \mathrm{C}$ unless otherwise specified)
Isolation Characteristics ($T_{A}=0$ to $70^{\circ} \mathrm{C}$ Unless otherwise specified)

Symbol	Characteristics	Test Conditions	Min	Typ**	Max	Unit
$\mathrm{V}_{\text {ISO }}$	Withstand Insulation Test Voltage	$\begin{aligned} & \mathrm{RH} \leq 50 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{t}} \leq 10 \mu \mathrm{~A}, \\ & \mathrm{t}=1 \mathrm{~min} ., \mathrm{f}=50 \mathrm{~Hz}{ }^{(9)(11)} \end{aligned}$	5,000			$\mathrm{V}_{\text {RMS }}$
$\mathrm{R}_{\mathrm{l}-\mathrm{O}}$	Resistance (Input to Output)	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}=500 \mathrm{VDC}^{(9)}$		10^{11}		Ω
$\mathrm{Cl}_{\text {-O }}$	Capacitance (Input to Output)	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{I}-\mathrm{O}}=0 \mathrm{~V}^{(9)}$		1		pF
HFE	DC Current Gain	$\mathrm{I}_{\mathrm{O}}=3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=5 \mathrm{~V}^{(9)}$		150		
$I_{\text {I-I }}$	Input-Input Insulation Leakage Current	$\begin{aligned} & \mathrm{RH} \leq 45 \%, \mathrm{~V}_{\mathrm{l}-1}=500 \mathrm{VDC}^{(10)} \\ & \mathrm{t}=5 \mathrm{~s},(\mathrm{HCPL} 2530 \mathrm{M} / 2531 \mathrm{M} \text { only }) \end{aligned}$		0.005		$\mu \mathrm{A}$
$\mathrm{R}_{\mathrm{I}-1}$	Input-Input Resistance	$\mathrm{V}_{1-1}=500 \mathrm{VDC}^{(10)}$ (HCPL2530M/2531M only)		10^{11}		Ω
$\mathrm{C}_{\mathrm{I}-1}$	Input-Input Capacitance	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}{ }^{(10)} \\ & \text { (HCPL2530M/2531M only) } \end{aligned}$		0.03		pF

Notes:

9. Device is considered a two terminal device: Pins 1, 2, 3 and 4 are shorted together and Pins 5, 6, 7 and 8 are shorted together.
10. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.
11. $5,000 \mathrm{Vrms}$ for 1 minute duration is equivalent to $6,000 \mathrm{Vrms}$ for 1 second duration.

Typical Performance Curves

Fig. 1 Normalized CTR vs. Forward Current

Fig. 3 Output Current vs. Output Voltage

Fig. 5 Propagation Delay vs. Temperature

Fig. 2 Normalized CTR vs. Temperature

Fig. 4 Logic High Output Current vs. Temperature

Fig. 6 Propagation Delay vs. Load Resistance

Test Circuits

Test Circuit for 6N135M, 6N136M, HCPL2503M, HCPL4502M and HCPL4503M

Fig. 7 Switching Time Test Circuit

Fig. 8 Common Mode Immunity Test Circuit

Package Dimensions

Through Hole

Surface Mount

Lead Coplanarity : 0.004 (0.10) MAX

Note:
All dimensions are in inches (millimeters)

0.4" Lead Spacing

8-Pin DIP - Land Pattern (option S)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/

Ordering Information

Option	Example Part Number	Description
No option	6 N 135 M	Standard through hole lead form
S	6 N 135 SM	Surface mount lead bend
SD	6 N 135 SDM	Surface mount; tape and reel
T	6 N 135 TM	0.4 " lead spacing
V	6 N 135 VM	IEC60747-5-2 (approval pending)
TV	6 N 135 TVM	IEC60747-5-2 (approval pending); 0.4" lead spacing
SV	6 N 135 SVM	IEC60747-5-2 (approval pending); surface mount
SDV	$6 N 135 S D V M$	IEC60747-5-2 (approval pending); surface mount; tape and reel

Marking Information

Definitions	
1	Fairchild logo
2	Device number
3	IEC60747-5-2 mark (Note: Only appears on parts ordered with this option - See order entry table)
4	Two digit year code, e.g., '08'
5	Two digit work week ranging from '01' to '53'
6	Assembly package code

Carrier Tape Specifications

Symbol	Description	Dimension in mm
W	Tape Width	16.0 ± 0.3
t	Tape Thickness	0.30 ± 0.05
P_{0}	Sprocket Hole Pitch	4.0 ± 0.1
D_{0}	Sprocket Hole Diameter	1.55 ± 0.05
E	Sprocket Hole Location	1.75 ± 0.10
F	Pocket Location	7.5 ± 0.1
P_{2}		2.0 ± 0.1
P	Pocket Pitch	12.0 ± 0.1
$\mathrm{~A}_{0}$	Pocket Dimensions	10.30 ± 0.20
$\mathrm{~B}_{0}$		10.30 ± 0.20
$\mathrm{~K}_{0}$		4.90 ± 0.20
$\mathrm{~W}_{1}$	Cover Tape Width	13.2 ± 0.2
d	Cover Tape Thickness	0.1 max
	Max. Component Rotation or Tilt	10°
R	Min. Bending Radius	30

PRELIMINARY

* EZSWITCH ${ }^{\text {TM }}$ and FlashWriter ${ }^{\circledR}$ are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

