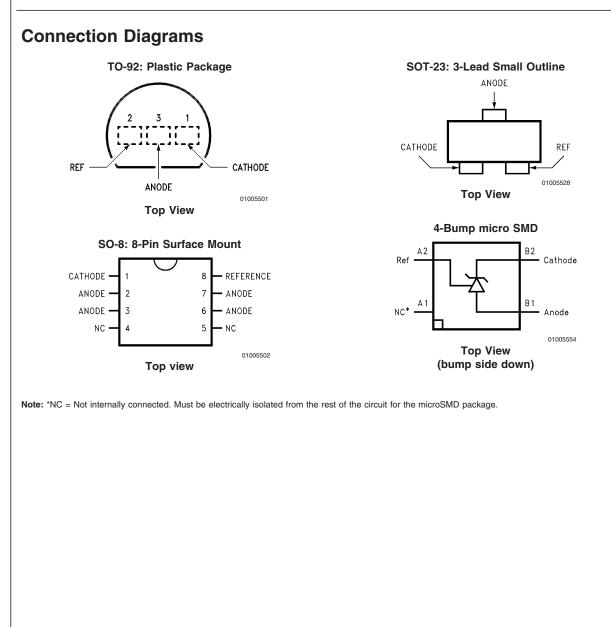
March 2005


M431 Adjustable Precision Zener Shunt Regulator

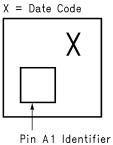
LM431 Adjustable Precision Zener Shunt Regulator General Description Features

The LM431 is a 3-terminal adjustable shunt regulator with guaranteed temperature stability over the entire temperature range of operation. It is now available in a chip sized package (4-Bump micro SMD) using National's micro SMD package technology. The output voltage may be set at any level greater than 2.5V (V_{REF}) up to 36V merely by selecting two external resistors that act as a voltage divided network. Due to the sharp turn-on characteristics this device is an excellent replacement for many zener diode applications.

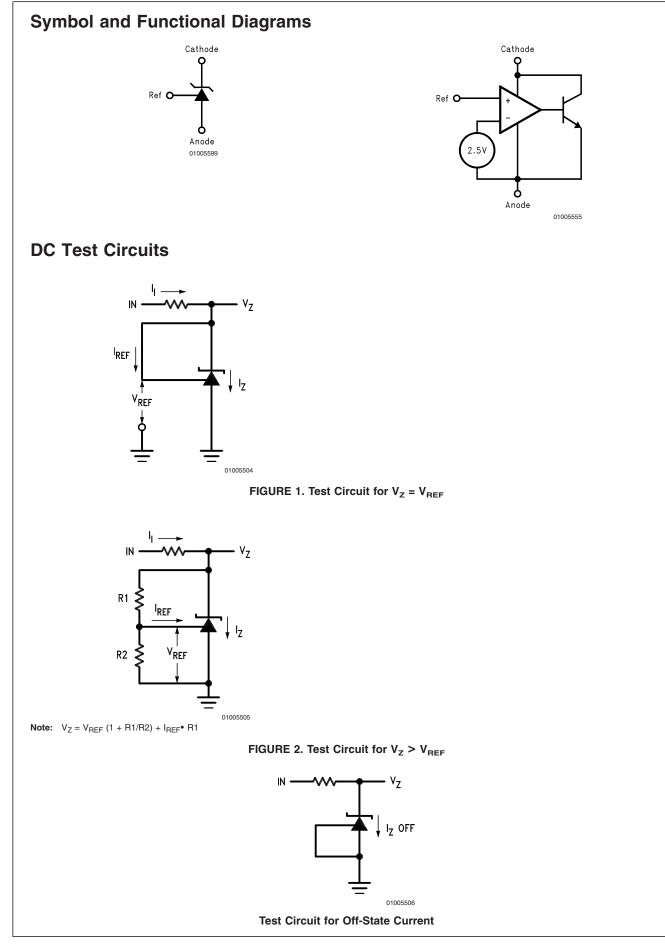
N**ational** Semiconductor

- Average temperature coefficient 50 ppm/°C
- Temperature compensated for operation over the full temperature range
- Programmable output voltage
- Fast turn-on response
- Low output noise
- LM431 in micro SMD package
- See AN-1112 for micro SMD considerations

Downloaded from Elcodis.com electronic components distributor


LM431

Ordering Information


Package	Typical Accuracy Order Number/Package Marking			Temperature Range	Transport Media	NSC Drawing	
	0.5%	1%	2%				
TO-92	LM431CCZ/	LM431BCZ/	LM431ACZ/	0°C to +70°C			
	LM431CCZ	LM431BCZ	LM431ACZ	0 0 10 +70 0	Rails	Z03A	
	LM431CIZ/	LM431BIZ/	LM431AIZ/	40°C to 195°C	nalis	203A	
	LM431CIZ	LM431BIZ	LM431AIZ	–40°C to +85°C			
SO-8	LM431CCM/	LM431BCM/	LM431ACM/		Rails		
	431CCM	431BCM	LM431ACM	0°C to +70°C	naiis	M08A	
	LM431CCMX/	LM431BCMX/	LM431ACMX/		Topo & Dool		
	431CCM	431BCM	LM431ACM		Tape & Reel		
	LM431CIM/	LM431BIM/	LM431AIM/		Rails		
	431CIM	431BIM	LM431AIM	40°C to +85°C	Halls		
	LM431CIMX/	LM431BIMX/	LM431AIMX/	40 C 10 +85 C			
	431CIM	431BIM	LM431AIM		Tape &Reel		
SOT-23	LM431CCM3/	LM431BCM3/	LM431ACM3/		Rails		
	N1B	N1D	N1F	0°C to +70°C	naiis	MF03A	
	LM431CCM3X/	LM431BCM3X	LM431ACM3X/		Topo & Dool		
	N1B	N1D	N1F		Tape & Reel		
	LM431CIM3	LM431BIM3	LM431AIM3		Rails		
	N1A	N1C	N1E	40°C to +85°C	naiis		
	LM431CIM3X	LM431BIM3X	LM431AIM3X	-40 C 10 +65 C			
	N1A	N1C	N1E		Tape &Reel		
micro SMD			LM431AIBP		250 Units Tape and		
			LM431AIBPX	–40°C to +85°C	Reel	BPA04AFB	
	_	_	(Note 1)	-40 C 10 +00 C	3k Units Tape and Reel	DFAV4AFD	

Note 1: The micro SMD package marking is a 1 digit manufacturing Date Code only

01005556

LM431

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature Range	–65°C to +150°C
Operating Temperature Range	
Industrial (LM431xI)	-40°C to +85°C
Commercial (LM431xC)	0°C to +70°C
Soldering Information	
Infrared or Convection (20 sec.)	235°C
Wave Soldering (10 sec.)	260°C (lead temp.)
Cathode Voltage	37V
Continuous Cathode Current	-10 mA to +150
	mA

Reference Voltage	-0.5V			
Reference Input Current	10 mA			
Internal Power Dissipation (Notes 3,				
4)				
TO-92 Package	0.78W			
SO-8 Package	0.81W			
SOT-23 Package	0.28W			
micro SMD Package	0.30W			

Operating Conditions

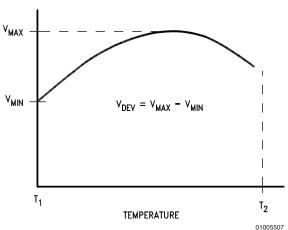
	Min	Max
Cathode Voltage	V_{REF}	37V
Cathode Current	1.0 mA	100 mA

LM431 Electrical Characteristics

 $T_{A} = 25^{\circ}C$ unless otherwise specified

Symbol	Parameter		Conditions	Min	Тур	Max	Units
V _{REF}	Reference Voltage	$V_Z = V_{REF}$, $I_I = 10 \text{ mA}$ LM431A (<i>Figure 1</i>)		2.440	2.495	2.550	V
		$V_Z = V_{REF}$, $I_I = 10 \text{ mA}$		2.470	2.495	2.520	V
		LM431B (Figure 1)					
	$V_Z = V$		$V_Z = V_{REF}, I_I = 10 \text{ mA}$		2.500	2.510	V
		LM431C (Figure 1)					
V _{DEV}	Deviation of Reference Input Voltage Over	$V_Z = V_{REF}$, $I_I = 10$ mA, $T_A =$ Full Range <i>(Figure 1</i>)			8.0	17	mV
	Temperature (Note 5)						
ΔV_{REF}	Ratio of the Change in Reference Voltage	l _z = 10 mA	V_Z from V_{REF} to 10V		-1.4	-2.7	mV/V
ΔV_Z	to the Change in Cathode Voltage	(Figure 2)	V _z from 10V to 36V		-1.0	-2.0	
I _{REF} Reference Input Current		$R_1 = 10 \text{ k}\Omega, \ R_2 = \infty,$			2.0	4.0	μA
		$I_1 = 10 \text{ mA}$ (F	Figure 2)				
∝l _{REF}	-I _{REF} Deviation of Reference Input Current over		R ₂ = ∞,				
	Temperature	I _I = 10 mA,			0.4	1.2	μA
		T _A = Full Ra	nge <i>(Figure 2</i>)				
I _{Z(MIN)}	Minimum Cathode Current for Regulation	$V_Z = V_{REF}$ (Figure 1)			0.4	1.0	mA
I _{Z(OFF)} Off-State Current		$V_{Z} = 36V, V_{F}$	REF = 0V (Figure *NO		0.3	1.0	μA
		TARGET FOR fi*)					
r _Z Dynamic Output Impedance (Note 6)		$V_Z = V_{REF}$, LM431A,				0.75	Ω
		Frequency = 0 Hz (Figure 1)					
		$V_Z = V_{REF}, L$			0.50	Ω	
		Frequency =					

Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Electrical specifications do not apply when operating the device beyond its rated operating conditions.


Note 3: $T_{J Max} = 150^{\circ}C$.

Note 4: Ratings apply to ambient temperature at 25°C. Above this temperature, derate the TO-92 at 6.2 mW/°C, the SO-8 at 6.5 mW/°C, the SOT-23 at 2.2 mW/°C and the micro SMD at 3mW/°C.

Note 5: Deviation of reference input voltage, V_{DEV}, is defined as the maximum variation of the reference input voltage over the full temperature range.

www.national.com

LM431 Electrical Characteristics (Continued)

The average temperature coefficient of the reference input voltage, ${\propto}V_{\text{REF}},$ is defined as:

ppm	$\pm \left[\frac{V_{Max} - V_{Min}}{V_{REF} (at 25^{\circ}C)} \right] 10^{6}$	$\pm \left[\frac{V_{\text{DEV}}}{V_{\text{REF}} \text{ (at 25°C)}}\right] 10^6$
$\propto V_{REF} \frac{PP^{III}}{^{\circ}C} =$	$T_2 - T_1 = -$	T ₂ - T ₁

Where:

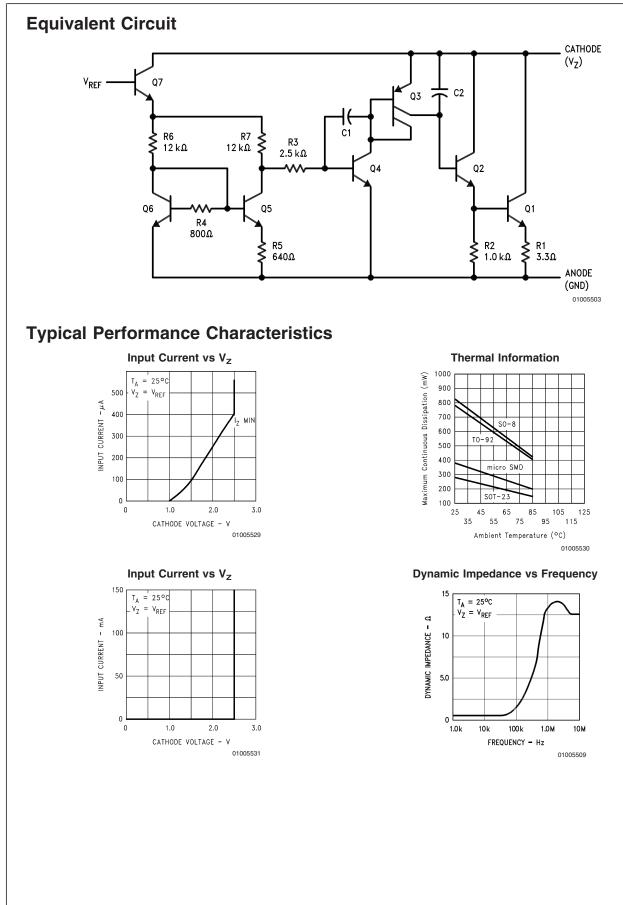
 $T_2 - T_1 =$ full temperature change (0-70°C).

 ${}^{\sim}V_{REF}$ can be positive or negative depending on whether the slope is positive or negative. Example: V_{DEV} = 8.0 mV, V_{REF} = 2495 mV, T₂ - T₁ = 70°C, slope is positive.

$$\propto V_{\text{REF}} = \frac{\left[\frac{8.0 \text{ mV}}{2495 \text{ mV}}\right] 10^{6}}{70^{\circ}\text{C}} = +46 \text{ ppm/}^{\circ}\text{C}$$

Note 6: The dynamic output impedance, r_Z , is defined as:

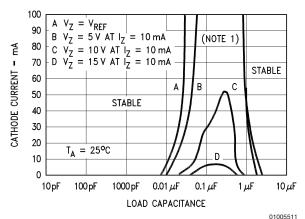
$$r_Z = \frac{\Delta V_Z}{\Delta I_Z}$$


When the device is programmed with two external resistors, R1 and R2, (see Figure 2), the dynamic output impedance of the overall circuit, rz, is defined as:

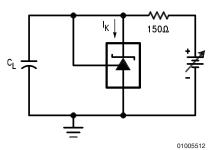
$$r_{Z} = \frac{\Delta V_{Z}}{\Delta I_{Z}} \cong \left[r_{Z} \left(1 + \frac{R1}{R2} \right) \right]$$

www.national.com

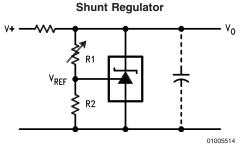
LM431


Downloaded from Elcodis.com electronic components distributor

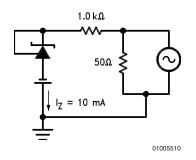
www.national.com

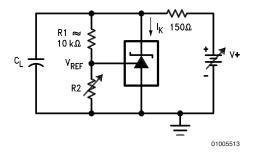

Typical Performance Characteristics (Continued)

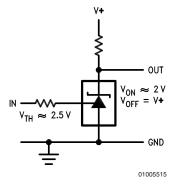
Stability Boundary Conditions

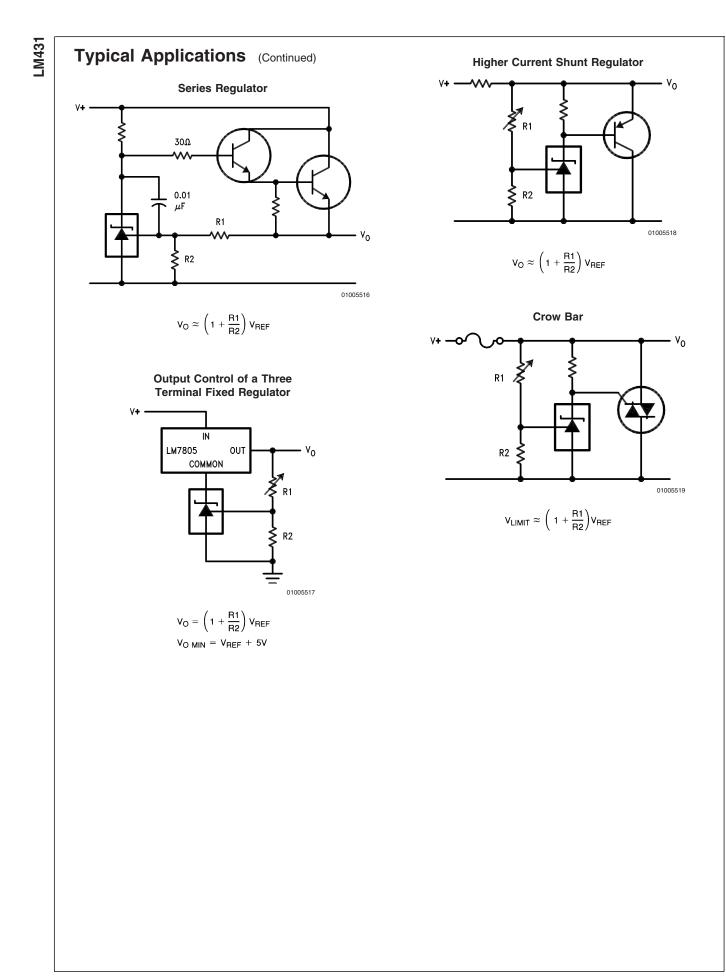


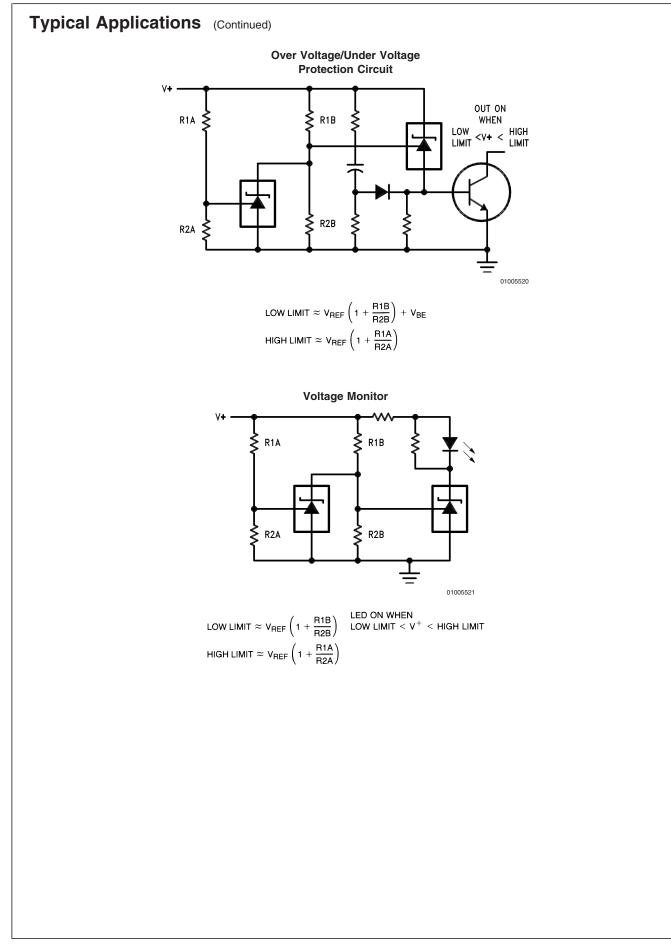
Note: The areas under the curves represent conditions that may cause the device to oscillate. For curves B, C, and D, R2 and V⁺ were adjusted to establish the initial V_Z and I_Z conditions with C_L = 0. V⁺ and C_L were then adjusted to determine the ranges of stability.


Test Circuit for Curve A Above

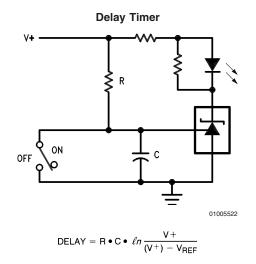

Typical Applications

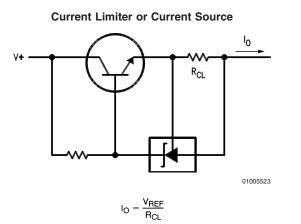




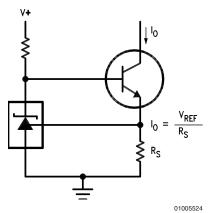

Test Circuit for Curves B, C and D Above

Single Supply Comparator with Temperature Compensated Threshold



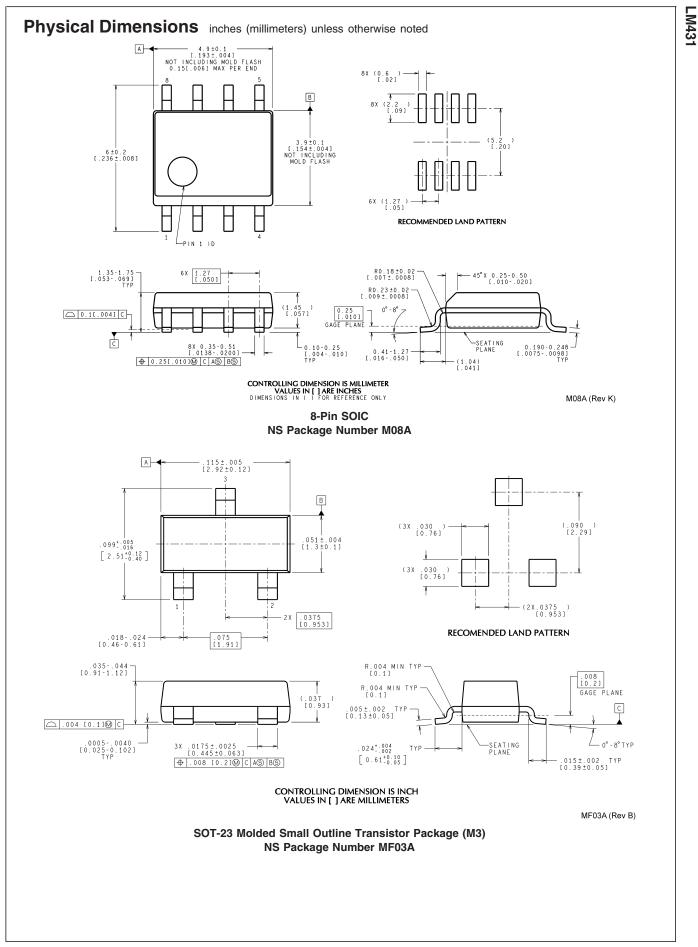


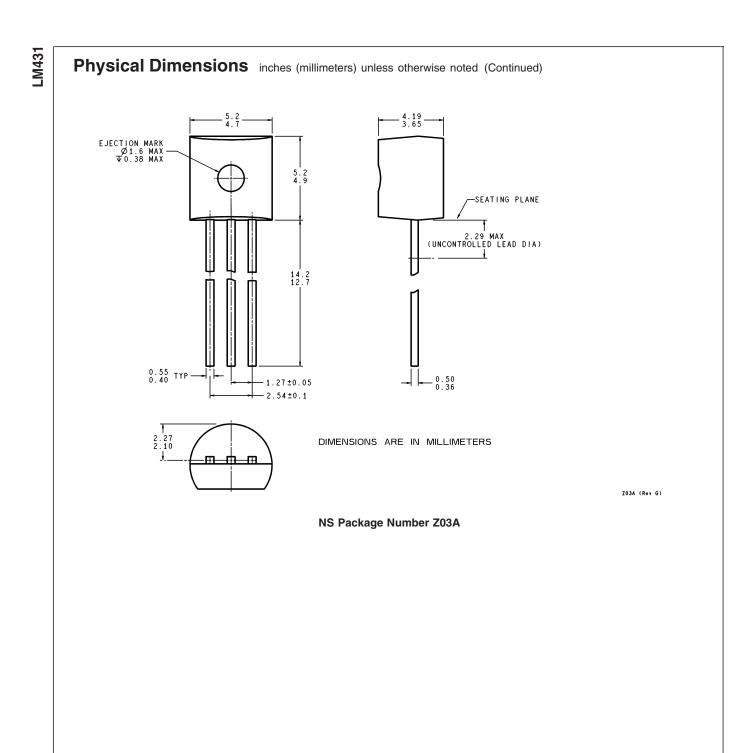
LM431

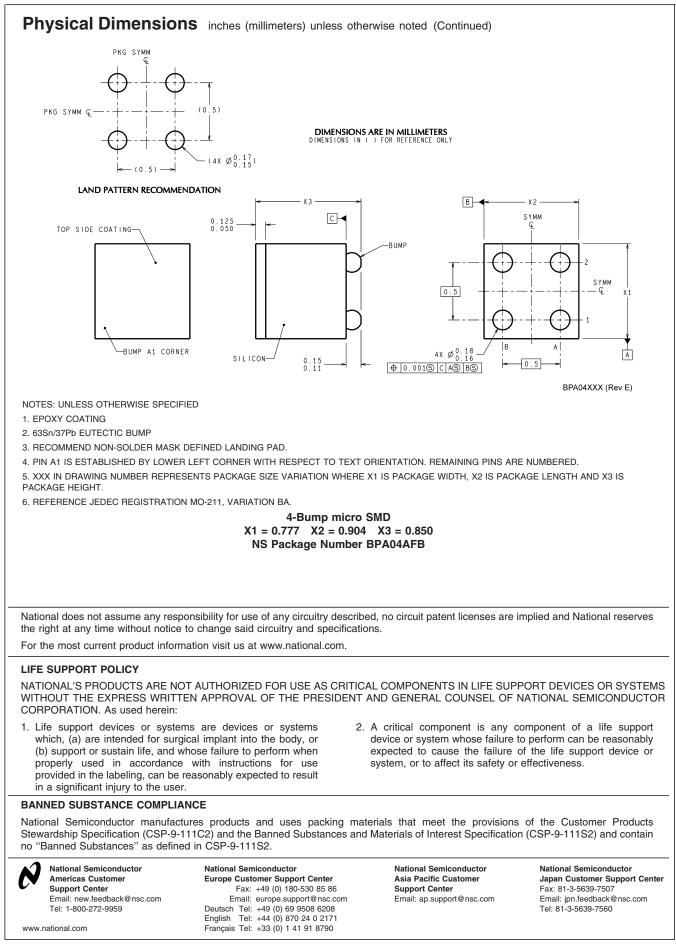


Typical Applications (Continued)

Constant Current Sink


Application Info


1.0 Mounting


To ensure that the geometry of the micro SMD package maintains good physical contact with the printed circuit board, pin A1 (NC) must be soldered to the pcb. Please see AN-1112 for more detailed information regarding board mounting techniques for the micro SMD package.

2.0 LM431 micro SMD Light Sensitivity

When the LM431 micro SMD package is exposed to bright sunlight, normal office fluorescent light, and other LED's and lasers, it operates within the guaranteed limits specified in the electrical characteristics table.

