DATA SHEET

TDA5737A

5 V VHF, hyperband and UHF mixers/oscillators for TV and VCR 3-band tuners

Preliminary specification
2000 Dec 19
Supersedes data of 2000 Nov 08
File under Integrated Circuits, IC02

PHILIPS

5 V VHF, hyperband and UHF mixers/oscillators for TV and VCR 3-band tuners

FEATURES

- Balanced mixer with a common emitter input for band A (single input)
- 2-pin oscillator for band A
- Balanced mixer with a common base input for bands B and C (balanced input)
- 3-pin oscillator for band B
- 4-pin oscillator for band C
- Local oscillator buffer output for external prescaler
- SAW filter preamplifier with a low output impedance to drive the SAW filter directly
- Band gap voltage stabilizer for oscillator stability
- Electronic band switch
- External IF filter between the mixer output and the IF amplifier input.

GENERAL DESCRIPTION

The TDA5737A is a monolithic integrated circuit that performs the mixer/oscillator functions for bands A, B and C in TV and VCR tuners. This low power mixer/oscillator requires a power supply of 5 V and is available in a very small package.

This device gives the user the capability to design an economical and physically small 3-band tuner.

It is suitable for European standards, as illustrated in Fig.16, with the following RF bands: 48.25 to 168.25 MHz , 175.25 to 447.25 MHz and 455.25 to 855.25 MHz . With an appropriate tuned circuit, it is also suitable for NTSC all channel tuners (USA and Japan).

The tuner development time can be drastically reduced by using this device.

APPLICATIONS

- 3-band all channel TV and VCR tuners
- Any standard.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{P}	supply voltage		-	5.0	-	V
I_{P}	supply current		-	50	-	mA
$\mathrm{f}_{\text {(}} \mathrm{RF}$)	RF input frequency	band A; note 1	41	-	171	MHz
		band B; note 1	166	-	451	MHz
		band C; note 1	446	-	861	MHz
G_{v}	voltage gain	band A	-	23	-	dB
		band B	-	34	-	dB
		band C	-	34	-	dB
NF	noise figure	band A	-	7.5	-	dB
		band B	-	8	-	dB
		band C	-	9	-	dB
V 。	output voltage level causing 1% cross modulation in channel	band A	-	116	-	$\mathrm{dB} \mu \mathrm{V}$
		band B	-	115	-	$\mathrm{dB} \mu \mathrm{V}$
		band C	-	115	-	$\mathrm{dB} \mu \mathrm{V}$

Note

1. The limits are related to the tank circuits used in Fig. 16 and the intermediate frequency. Frequency bands may be adjusted by the choice of external components.

5 V VHF, hyperband and UHF

 mixers/oscillators for TV and VCR 3-band tuners
ORDERING INFORMATION

| TYPE
 NUMBER | PACKAGE | | |
| :---: | :---: | :---: | :---: | :---: |
| | NAME | DESCRIPTION | VERSION |
| TDA5737ATS | SSOP24 | plastic shrink small outline package; 24 leads; body width 5.3 mm | SOT340-1 |

BLOCK DIAGRAM

Fig. 1 Block diagram.

5 V VHF, hyperband and UHF mixers/oscillators for TV and VCR 3-band tuners

PINNING

SYMBOL	PIN	DESCRIPTION
COSCIB2	1	band C oscillator input base 2
AOSCIB	2	band A oscillator input base
COSCOC2	3	band C oscillator output collector 2
AOSCOC	4	band A oscillator output collector
COSCOC1	5	band C oscillator output collector 1
BOSCIB	6	band B oscillator input base
COSCIB1	7	band C oscillator input base 1
BOSCOC2	8	band B oscillator output collector 2
BOSCOC1	9	band B oscillator output collector 1
GND	10	ground (0 V)
IFOUT2	11	IF amplifier output 2
IFOUT1	12	IF amplifier output 1
BS	13	band switch input
LOOUT2	14	local oscillator amplifier output 2
LOOUT1	15	local oscillator amplifier output 1
V_{P}	16	supply voltage
BIN2	17	band B input 2
BIN1	18	band B input 1
AIN	19	band A input
CIN2	20	band C input 2
CIN1	21	band C input 1
RFGND	22	ground for RF inputs
IFIN2	23	IF filter input 2
IFIN1	24	IF filter input 1

Fig. 2 Pin configuration.

5 V VHF, hyperband and UHF

mixers/oscillators for TV and VCR 3-band tuners

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{P}	supply voltage	-0.3	+7.0	V
$\mathrm{~V}_{\mathrm{SW}}$	switching voltage	-0.3	+7.0	V
$\mathrm{~V}_{\mathrm{n}(\max)}$	maximum voltage on each pin with a $22 \mathrm{k} \Omega$ resistor connected in series	-	35	V
I_{O}	output current of each pin to ground	-	-10	mA
$\mathrm{t}_{\mathrm{sc}(\max)}$	maximum short-circuit time (all pins)	-	10	s
$\mathrm{~T}_{\text {stg }}$	storage temperature	-55	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	ambient temperature	-20	+80	${ }^{\circ} \mathrm{C}$
T_{j}	junction temperature	-	150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
$R_{\text {th }(j-a)}$	thermal resistance from junction to ambient	in free air	120	K/W

5 V VHF, hyperband and UHF mixers/oscillators for TV and VCR 3-band tuners

CHARACTERISTICS

$\mathrm{V}_{\mathrm{P}}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in circuit of Fig.16; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply						
V_{P}	supply voltage		4.5	5.0	5.5	V
I_{P}	supply current		42	50	58	mA
$\mathrm{V}_{\text {SW }}$	switching voltage depending on supply voltage V_{P}	band A; note 1	0	-	$0.18 \mathrm{~V}_{\mathrm{P}}$	V
		band B; note 1	$0.26 \mathrm{~V}_{P}$	-	$0.47 \mathrm{~V}_{\mathrm{P}}$	V
		band C; note 1	$0.55 \mathrm{~V}_{\mathrm{P}}$	-	V_{P}	V
Isw	switching current	band A; note 1	-	-	2	$\mu \mathrm{A}$
		band B; note 1	-	-	10	$\mu \mathrm{A}$
		band C; note 1	-	-	25	$\mu \mathrm{A}$

Band A mixer (including IF amplifier)

$\mathrm{f}_{\text {(}} \mathrm{RF}$)	RF input frequency	note 2	41	-	171	MHz
G_{v}	voltage gain	$\mathrm{f}_{\mathrm{RF}}=50 \mathrm{MHz}$; see Fig.3; note 3	20.5	23.0	25.5	dB
		$\mathrm{f}_{\mathrm{RF}}=170 \mathrm{MHz}$; see Fig.3; note 3	20.5	23.0	25.5	dB
NF	noise figure	$\mathrm{f}_{\mathrm{RF}}=50 \mathrm{MHz}$; see Figs. 4 and 5	-	7.5	9	dB
		$\mathrm{f}_{\mathrm{RF}}=170 \mathrm{MHz}$; see Figs. 4 and 5	-	9	10	dB
V 。	output voltage causing 1\% cross modulation in channel	$\mathrm{f}_{\mathrm{RF}}=50 \mathrm{MHz}$; see Fig. 6	115	118	-	$\mathrm{dB} \mu \mathrm{V}$
		$\mathrm{f}_{\mathrm{RF}}=170 \mathrm{MHz}$; see Fig. 6	113	116	-	$\mathrm{dB} \mathrm{\mu} \mathrm{~V}$
V_{i}	input voltage level causing 10 kHz pulling in channel	$\mathrm{f}_{\mathrm{RF}}=170 \mathrm{MHz}$; note 4	96	100	-	dBmV
gos	optimum source conductance for noise figure	$\mathrm{f}_{\mathrm{RF}}=50 \mathrm{MHz}$	-	0.5	-	mS
		$\mathrm{f}_{\mathrm{RF}}=170 \mathrm{MHz}$	-	1.1	-	mS
Y_{i}	input admittance	$\mathrm{f}_{\mathrm{RF}}=50$ to 170 MHz ; see Fig. 11	-	0.3	-	mS
C_{i}	input capacitance	$\mathrm{f}_{\mathrm{RF}}=50$ to 170 MHz ; see Fig. 11	-	1.9	-	pF

Band A oscillator

$\mathrm{f}_{\text {osc }}$	oscillator frequency	$0.45 \mathrm{~V}<\mathrm{V}_{\mathrm{t}}<28 \mathrm{~V}$; notes 1 and 5	80	-	210	MHz
$\mathrm{f}_{\text {shift }}$	frequency shift	$\Delta \mathrm{V}_{\mathrm{P}}=5 \%$; note 6	-	-	53	kHz
$\mathrm{f}_{\text {drift }}$	frequency drift	no compensation $\Delta \mathrm{T}=25^{\circ} \mathrm{C}$; NP0 capacitors; note 7 5 s to 15 minutes after switch on; NP0 capacitors; note 8	-	$\begin{aligned} & 550 \\ & 150 \end{aligned}$	tbf tbf	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
		with compensation; see Fig. 17 $\Delta \mathrm{T}=25^{\circ} \mathrm{C}$; notes 7 and 9 5 s to 15 minutes after switch on; notes 8 and 9		$\begin{aligned} & 300 \\ & 20 \end{aligned}$	tbf tbf	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
$\mathrm{V}_{\text {ripple(p-p) }}$	ripple susceptibility of supply voltage (peak-to-peak value)	$\begin{aligned} & 4.75 \mathrm{~V}<\mathrm{V}_{\mathrm{P}}<5.25 \mathrm{~V} \text {; see Fig. } 7 \\ & \mathrm{f}_{\mathrm{osc}}=80 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{osc}}=210 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	-	\|-	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Φ_{N}	phase noise	measured at the IF output at 10 kHz offset; $\mathrm{V}_{0}=105 \mathrm{~dB} \mu \mathrm{~V}$	81	-	-	$\mathrm{dBc} / \mathrm{Hz}$

5 V VHF, hyperband and UHF mixers/oscillators for TV and VCR 3-band tuners

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Band B mixer (including IF amplifier)						
$\mathrm{f}_{\text {(}} \mathrm{RF}$)	RF input frequency	note 2	166	-	451	MHz
G_{v}	voltage gain	$\mathrm{f}_{\mathrm{RF}}=170 \mathrm{MHz}$; see Fig.8; note 3	31	34	37	dB
		$\mathrm{f}_{\mathrm{RF}}=450 \mathrm{MHz}$; see Fig.8; note 3	31	34	37	dB
NF	noise figure (not corrected for image)	$\mathrm{f}_{\mathrm{RF}}=170 \mathrm{MHz}$; see Fig. 9	-	8	10	dB
		$\mathrm{f}_{\mathrm{RF}}=450 \mathrm{MHz}$; see Fig. 9	-	8	10	dB
V 。	output voltage causing 1\% cross modulation in channel	$\mathrm{f}_{\mathrm{RF}}=170 \mathrm{MHz}$; see Fig. 10	114	117	-	$\mathrm{dB} \mu \mathrm{V}$
		$\mathrm{f}_{\mathrm{RF}}=450 \mathrm{MHz}$; see Fig. 10	112	115	-	$\mathrm{dB} \mu \mathrm{V}$
V_{i}	input voltage level causing 10 kHz pulling in channel	$\mathrm{f}_{\mathrm{RF}}=450 \mathrm{MHz}$; note 4	83	87	-	$\mathrm{dB} \mu \mathrm{V}$
R_{s}	real part of output impedance $\mathrm{Z}_{\mathrm{o}}\left(\mathrm{R}_{\mathrm{s}}+j \omega \mathrm{~L}_{\mathrm{s}}\right)$	$\mathrm{f}_{\mathrm{RF}}=170$ to 450 MHz ; see Fig. 12	-	23	-	Ω
L_{s}	imaginary part of output impedance $Z_{0}\left(R_{S}+j \omega L_{s}\right)$	$\mathrm{f}_{\mathrm{RF}}=170$ to 450 MHz ; see Fig. 12	-	9	-	nH

Band B oscillator

$\mathrm{f}_{\text {osc }}$	oscillator frequency	$0.45 \mathrm{~V}<\mathrm{V}_{\mathrm{t}}<28 \mathrm{~V}$; notes 1 and 5	205	-	490	MHz
$\mathrm{f}_{\text {shift }}$	frequency shift	$\Delta \mathrm{V}_{\mathrm{P}}=5 \%$; note 6	-	-	53	kHz
$\mathrm{f}_{\text {drift }}$	frequency drift	no compensation $\Delta \mathrm{T}=25^{\circ} \mathrm{C}$; NP0 capacitors; note 7 5 s to 15 minutes after switch on; NP0 capacitors; note 8	-	$\begin{array}{\|l} 2500 \\ 900 \end{array}$	tbf tbf	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
		with compensation; see Fig. 17 $\Delta \mathrm{T}=25^{\circ} \mathrm{C}$; notes 7 and 9 5 s to 15 minutes after switch on; notes 8 and 9	-	$\begin{aligned} & 400 \\ & 65 \end{aligned}$	tbf tbf	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
$\mathrm{V}_{\text {ripple(p-p) }}$	ripple susceptibility of supply voltage (peak-to-peak value)	$\begin{gathered} 4.75 \mathrm{~V}<\mathrm{V}_{\mathrm{P}}<5.25 \mathrm{~V} \text {; see Fig. } 7 \\ \mathrm{f}_{\mathrm{osc}}=250 \mathrm{MHz} \\ \mathrm{f}_{\mathrm{osc}}=490 \mathrm{MHz} \end{gathered}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	\|-	-	$\begin{array}{\|l\|} \hline \mathrm{mV} \\ \mathrm{mV} \\ \hline \end{array}$
Φ_{N}	phase noise	measured at the IF output at 10 kHz offset; $\mathrm{V}_{\mathrm{O}}=105 \mathrm{dBmV}$	81	-	-	$\mathrm{dBc} / \mathrm{Hz}$

Band C mixer (including IF amplifier)

$\mathrm{f}_{\text {(}} \mathrm{RF}$)	RF input frequency	note 2	446	-	861	MHz
G_{v}	voltage gain	$\mathrm{f}_{\mathrm{RF}}=450 \mathrm{MHz}$; see Fig.8; note 3	31	34	37	dB
		$\mathrm{f}_{\mathrm{RF}}=860 \mathrm{MHz}$; see Fig.8; note 3	31	34	37	dB
NF	noise figure (not corrected for image)	$\mathrm{f}_{\mathrm{RF}}=450 \mathrm{MHz}$; see Fig. 9	-	9	11	dB
		$\mathrm{f}_{\mathrm{RF}}=860 \mathrm{MHz}$; see Fig. 9	-	9	11	dB
V 。	output voltage causing 1% cross modulation in channel	$\mathrm{f}_{\mathrm{RF}}=450 \mathrm{MHz}$; see Fig. 10	112	115	-	$\mathrm{dB} \mu \mathrm{V}$
		$\mathrm{f}_{\mathrm{RF}}=860 \mathrm{MHz}$; see Fig. 10	112	115	-	$\mathrm{dB} \mu \mathrm{V}$
V_{i}	input voltage level causing 10 kHz pulling in channel	$\mathrm{f}_{\mathrm{RF}}=860 \mathrm{MHz}$; note 4	91	95	-	$\mathrm{dB} \mu \mathrm{V}$

5 V VHF, hyperband and UHF mixers/oscillators for TV and VCR 3-band tuners

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{R}_{\text {s }}$	real part of output impedance $Z_{o}\left(R_{s}+j \omega L_{s}\right)$	$\mathrm{f}_{\mathrm{RF}}=450$ to 860 MHz ; see Fig. 13	-	28	-	Ω
L_{s}	imaginary part of output impedance $Z_{o}\left(R_{s}+j \omega L_{s}\right)$	$\mathrm{f}_{\mathrm{RF}}=450$ to 860 MHz ; see Fig. 13	-	10	-	nH
Band C oscillator						
$\mathrm{f}_{\text {osc }}$	oscillator frequency	$0.45 \mathrm{~V}<\mathrm{V}_{\mathrm{t}}<28 \mathrm{~V}$; notes 1 and 5	485	-	900	MHz
$\mathrm{f}_{\text {shift }}$	frequency shift	$\Delta \mathrm{V}_{\mathrm{P}}=5 \%$; note 6	-	-	53	kHz
$\mathrm{f}_{\text {drift }}$	frequency drift	no compensation $\Delta \mathrm{T}=25^{\circ} \mathrm{C}$; NP0 capacitors; note 7 5 s to 15 minutes after switch on; NP0 capacitors; note 8	$\mid-$	$\begin{array}{\|l} 3100 \\ 650 \end{array}$	tbf tbf	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
		with compensation; see Fig. 17 $\Delta \mathrm{T}=25^{\circ} \mathrm{C}$; notes 7 and 9 5 s to 15 minutes after switch on; notes 8 and 9	-	$\begin{aligned} & 1200 \\ & 120 \end{aligned}$	tbf tbf	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
$\mathrm{V}_{\text {ripple(p-p) }}$	ripple susceptibility of supply voltage (peak-to-peak value)	$\begin{gathered} 4.75 \mathrm{~V}<\mathrm{V}_{\mathrm{P}}<5.25 \mathrm{~V} \text {; see Fig. } 7 \\ \mathrm{f}_{\mathrm{osc}}=485 \mathrm{MHz} \\ \mathrm{f}_{\mathrm{osc}}=900 \mathrm{MHz} \end{gathered}$	$\begin{array}{\|l} 20 \\ 18 \\ \hline \end{array}$	$1-$	\|-	$\begin{array}{\|l\|} \hline \mathrm{mV} \\ \mathrm{mV} \\ \hline \end{array}$
Φ_{N}	phase noise	measured at the IF output at 10 kHz offset; $\mathrm{V}_{0}=105 \mathrm{~dB} \mu \mathrm{~V}$	81	-	-	$\mathrm{dBc} / \mathrm{Hz}$
IF amplifier						
S_{22}	output reflection coefficient	magnitude; see Fig. 14	-	-16	-	dB
		phase; see Fig. 14	-	12	-	deg.
R_{s}	real part of output impedance $Z_{o}\left(R_{s}+j \omega L_{s}\right)$		-	67	-	Ω
L_{s}	imaginary part of output impedance $Z_{0}\left(R_{s}+j \omega L_{s}\right)$		-	20	-	nH
LO output						
Yo	output admittance ($\mathrm{Y}_{P}+j \omega \mathrm{C}_{P}$)	$\mathrm{f}_{\mathrm{RF}}=80 \mathrm{MHz}$; see Fig. 15	-	2.5	-	mS
		$\mathrm{f}_{\mathrm{RF}}=900 \mathrm{MHz}$; see Fig. 15	-	5	-	mS
C_{P}	imaginary part of output admittance $Y_{0}\left(Y_{P}+j \omega C_{P}\right)$	see Fig. 15	-	0.9	-	pF
V_{0}	output voltage	$\mathrm{R}_{\mathrm{L}}=50 \Omega ; 0<\mathrm{V}_{\mathrm{t}}<35 \mathrm{~V}$	80	91	100	$\mathrm{dB} \mu \mathrm{V}$
SRF	spurious signal on LO output with respect to LO output signal	$\mathrm{R}_{\mathrm{L}}=50 \Omega ; 0.2 \mathrm{~V}<\mathrm{V}_{\mathrm{t}}<35 \mathrm{~V} ;$ notes 1 and 10	-	-	-10	dB
HLO	LO signal harmonics with respect to LO signal	$\mathrm{R}_{\mathrm{L}}=50 \Omega ; 0<\mathrm{V}_{\mathrm{t}}<35 \mathrm{~V}$; note 1	-	-	-10	dB

Notes

1. $-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{amb}}<+80^{\circ} \mathrm{C} ; 4.5 \mathrm{~V}<\mathrm{V}_{\mathrm{P}}<5.5 \mathrm{~V}$.
2. The RF frequency range is defined by the oscillator frequency range and the intermediate frequency.

5 V VHF, hyperband and UHF mixers/oscillators for TV and VCR 3-band tuners

3. The gain is defined as the transducer gain (measured in Fig.16) plus the voltage transformation ratio of L7 to L8 ($10: 2$ and 15.4 dB including transformer loss).
4. The input level causing 10 kHz frequency detuning at the LO output. $\mathrm{f}_{\mathrm{osc}}=\mathrm{f}_{\mathrm{RF}}+33.4 \mathrm{MHz}$.
5. Limits are related to the tank circuits used in Fig.16. Frequency bands may be adjusted by the choice of external components.
6. The frequency shift is defined as the change in oscillator frequency when the supply voltage varies from $\mathrm{V}_{\mathrm{P}}=5$ to 4.75 V and from $\mathrm{V}_{\mathrm{P}}=5$ to 5.25 V .
7. The frequency drift is defined as the change in oscillator frequency when the ambient temperature varies from $\mathrm{T}_{\mathrm{amb}}=25$ to $0^{\circ} \mathrm{C}$ and from $\mathrm{T}_{\mathrm{amb}}=25$ to $50^{\circ} \mathrm{C}$.
8. Switch-on drift is defined as the change in oscillator frequency between 5 s and 15 minutes after switch on.
9. With thermal compensation, the capacitors of the tank circuits have the following temperature coefficients:
a) In band A: C1, C6 and C8 are N750
b) In band B : C4, C11, C12, C13 and C36 are N750
c) In band C: C5, C7, C9 and C10 are N750; C2 is N220 and C3 is NP0.
10. SRF: spurious signal on LO with respect to LO output signal:
a) RF level $=120 \mathrm{~dB} \mu \mathrm{~V}$ at $\mathrm{f}_{\mathrm{RF}}<180 \mathrm{MHz}$
b) RF level $=107.5 \mathrm{~dB} \mu \mathrm{~V}$ at $\mathrm{f}_{\mathrm{RF}}=180$ to 225 MHz
c) RF level $=97 \mathrm{~dB} \mu \mathrm{~V}$ at $\mathrm{f}_{\mathrm{RF}}=225$ to 860 MHz .

Fig. 3 Band A gain measurement.

5 V VHF, hyperband and UHF mixers/oscillators for TV and VCR 3-band tuners

(a)

(b) For $\mathrm{f}_{\mathrm{RF}}=150 \mathrm{MHz}$:
mixer A frequency response measured $=150.3 \mathrm{MHz}$; loss $=1.3 \mathrm{~dB}$ image suppression $=13 \mathrm{~dB}$.
$\mathrm{C} 3=5 \mathrm{pF}$
$\mathrm{C} 4=25 \mathrm{pF}$
I2 = semi rigid cable (RIM): 30 cm long
$13=$ semi rigid cable (RIM): 5 cm long (semi rigid cable (RIM); $33 \mathrm{~dB} / 100 \mathrm{~m}$; $50 \Omega ; 96 \mathrm{pF} / \mathrm{m})$.

Fig. 4 Input circuit for optimum noise figure in band A.

See Fig. 4 for input circuit.
$N F=N F_{\text {meas }}-$ loss (input circuit) $d B$.
Fig. 5 Noise figure measurement in band A.

5 V VHF, hyperband and UHF mixers/oscillators for TV and VCR 3-band tuners

V^{\prime} meas $=\mathrm{V}_{\mathrm{o}}-15.4 \mathrm{~dB}$ (transformer ratio $\mathrm{N} 1 / \mathrm{N} 2=5$ and transformer loss).
Wanted output signal at $\mathrm{f}_{\mathrm{RFW}}=50 \mathrm{MHz}(170 \mathrm{MHz}) ; \mathrm{V}_{\text {ow }}=80 \mathrm{~dB} \mu \mathrm{~V}$.
We measure the level of the unwanted signal $\mathrm{V}_{\text {ou }}$ causing $1 \% \mathrm{AM}$ modulation in the wanted output signal; $\mathrm{f}_{\mathrm{RFU}}=45.5 \mathrm{MHz}(165.5 \mathrm{MHz})$; $\mathrm{f}_{\text {osc }}=83.9 \mathrm{MHz}(203.9 \mathrm{MHz})$.
$\mathrm{V}_{\text {ou }}=\mathrm{V}_{\text {meas }}+15.4 \mathrm{~dB}$.
Filter characteristics: $\mathrm{f}_{\mathrm{c}}=33.9 \mathrm{MHz} ; \mathrm{f}_{-3 \mathrm{dBBW}}=1 \mathrm{MHz} ; \mathrm{f}_{-30 \mathrm{dBBW}}=2.3 \mathrm{MHz}$.
Fig. 6 Cross modulation measurement in band A.

The ripple susceptibility is defined as the level of a signal added to the supply voltage causing sidebands in the LO output at 53.5 dBc .
This signal has a frequency between 20 Hz and 500 kHz .
Fig. 7 Ripple susceptibility.

5 V VHF, hyperband and UHF

 mixers/oscillators for TV and VCR 3-band tuners
$\operatorname{loss}_{(\text {hybrid) }}=1 \mathrm{~dB}$.
$\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\text {meas }}-$ loss $_{\text {(hybrid) }}$.
$\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\text {meas }}^{\prime}+15.4 \mathrm{~dB}$ (transformer ratio $\mathrm{N} 1 / \mathrm{N} 2$ and transformer loss).
Voltage gain for band B and $C=20 \log \left(V_{0} / V_{i}\right)$.
Fig. 8 Gain measurement in bands B and C.

Loss of the hybrid: 1 dB .
$\mathrm{NF}=\mathrm{NF}_{\text {meas }}$ - loss of the hybrid.
Fig. 9 Noise figure measurement in bands B and C.

5 V VHF, hyperband and UHF mixers/oscillators for TV and VCR 3-band tuners

V^{\prime} meas $=\mathrm{V}_{\mathrm{o}}-15.4 \mathrm{~dB}$ (transformer ratio $\mathrm{N} 1 / \mathrm{N} 2=5$ and transformer loss).
Wanted output signal at $\mathrm{f}_{\mathrm{RFW}}=170$ or $450 \mathrm{MHz}(450$ or 860 MHz$) ; \mathrm{V}_{\text {ow }}=70 \mathrm{~dB} \mathrm{\mu V}$.
We measure the level of the unwanted signal $\mathrm{V}_{\text {ou }}$ causing $1 \% \mathrm{AM}$ modulation in the wanted output signal;
$\mathrm{f}_{\text {RFU }}=165.5$ or $445.5 \mathrm{MHz}\left(445.5\right.$ or 855.5 MHz); $\mathrm{f}_{\mathrm{OSC}}=203.9$ or 483.9 MHz (483.9 or 893.9 MHz).
$\mathrm{V}_{\text {ou }}=\mathrm{V}_{\text {meas }}+15.4 \mathrm{~dB}$.
Filter characteristics: $\mathrm{f}_{\mathrm{c}}=33.9 \mathrm{MHz} ; \mathrm{f}_{-3 \mathrm{dBBW}}=1 \mathrm{MHz} ; \mathrm{f}_{-30 \mathrm{dBBW}}=2.3 \mathrm{MHz}$.
Fig. 10 Cross modulation measurement in bands B and C .

Fig. 11 Input admittance $\left(s_{11}\right)$ of the band A mixer input (40 to 200 MHz); $\mathrm{Y}_{\mathrm{o}}=20 \mathrm{mS}$.

5 V VHF, hyperband and UHF mixers/oscillators for TV and VCR 3-band tuners

Fig. 12 Input impedance (s_{11}) of the band B mixer input (170 to 470 MHz); $\mathrm{Z}_{\mathrm{o}}=50 \Omega$.

Fig. 13 Input impedance (s_{11}) of the band C mixer input (460 to 860 MHz); $\mathrm{Z}_{\mathrm{O}}=50 \Omega$.

5 V VHF, hyperband and UHF mixers/oscillators for TV and VCR 3-band tuners

Fig. 14 Output impedance (s_{22}) of the IF amplifier (25 to 45 MHz); $\mathrm{Z}_{0}=100 \Omega$.

Fig. 15 Output admittance (s_{22}) of the LO amplifier (80 to 900 MHz); $\mathrm{Y}_{\mathrm{o}}=20 \mathrm{mS}$.

5 V VHF, hyperband and UHF mixers/oscillators for TV and VCR 3-band tuners

APPLICATION INFORMATION

L7, L8, C16, C17 and R8 are only necessary for measurements (these components are not used in a tuner).

Fig. 16 Measurement circuit.

5 V VHF, hyperband and UHF mixers/oscillators for TV and VCR 3-band tuners

Table 1 Capacitors of Fig. 16 (all SMD and NP0 except C34 and C35)

NUMBER	
C1	82 pF
C2	5.6 pF
C3	100 pF
C4	82 pF
C5	1 pF
C6	2 pF
C7	2 pF
C8	2 pF
C9	2 pF
C10	1 pF
C11	3.3 pF
C12	3.3 pF
C13	4.7 pF
C14	1 nF
C15	1 nF
C16	39 pF
C17	39 pF
C18	68 pF
C19	68 pF
C20	1 nF
C21	1 nF
C22	1 nF
C23	1 nF
C24	1 nF
C25	2.2 nF
C26	1 nF
C27	1 nF
C28	1 nF
C29	1 nF
C30	1 nF
C31	1 nF
C32	1 nF
C33	C34

Table 2 Resistors of Fig. 16 (all SMD)

NUMBER	VALUE
R1	$47 k \Omega$
R2	$22 k \Omega$
R3	$22 k \Omega$
R5	$27 k \Omega$
R6	$27 k \Omega$
R7	$10 k \Omega$
R8	50Ω
R9	4.7Ω
R10	100Ω
R11	$27 k \Omega$
R12	$15 k \Omega$

Table 3 Diodes, coils and transformers of Fig. 16

NUMBER	VALUE	
Diodes	BB132	
D1	BB134	
D2	BB133	
D3	7.5 turns $(\varnothing 3 \mathrm{~mm})$	
Coils; note 1	2.5 turns $(\varnothing 3.5 \mathrm{~mm})$	
L1	1.5 turns $(\varnothing 2.5 \mathrm{~mm})$	
L2	2.5 turns $(\varnothing 3 \mathrm{~mm})$	
L3	5.5 turns $(\varnothing 2.5 \mathrm{~mm})$	
L4	5.5 turns $(\varnothing 2.5 \mathrm{~mm})$	
L5	12.5 turns $(\varnothing 5 \mathrm{~mm})$	
L6	$2.2 \mu \mathrm{H}$ (choke coil)	
L9		
L10	2×5 turns	
Transformers; note 2	2 turns	
L7		
L8		

Notes

1. Wire size for L1 to L 6 is 0.4 mm .
2. Coil type: TOKO 7kL.

5 V VHF, hyperband and UHF mixers/oscillators for TV and VCR 3-band tuners

Fig. 17 Measurement circuit with thermal compensation.

5 V VHF, hyperband and UHF mixers/oscillators for TV and VCR 3-band tuners

Table 4 Capacitors of Fig. 17 (all SMD except C34)

NUMBER	VALUE
C1	62 pF
C2	6 pF
C3	100 pF
C4	68 pF
C5	1.2 pF
C6	2 pF
C7	1.2 pF
C8	2 pF
C9	1.5 pF
C10	1.5 pF
C11	3 pF
C12	3 pF
C13	4.3 pF
C14	1 nF
C15	1 nF
C16	39 pF
C17	39 pF
C18	68 pF
C19	68 pF
C20	1 nF
C21	1 nF
C22	1 nF
C23	1.7 nF
C24	0.5 pF
C25	1 nF
C26	1 nF
C27	2.2 nF
C28	1 nF
C29	1 nF
C30	1 nF
C31	1 nF
C32	1 nF
C33	1 nF
C34	C35

Table 5 Resistors of Fig. 17 (all SMD)

NUMBER	VALUE
R1	$47 \mathrm{k} \Omega$
R2	$22 k \Omega$
R3	$22 k \Omega$
R5	$27 \mathrm{k} \Omega$
R6	$27 \mathrm{k} \Omega$
R7	$10 \mathrm{k} \Omega$
R8	50Ω
R9	4.7Ω
R10	100Ω
R11	$27 \mathrm{k} \Omega$
R12	$15 \mathrm{k} \Omega$
R13	$4.7 \mathrm{k} \Omega$

Table 6 Diodes, coils and transformers of Fig. 17

NUMBER	VALUE	
Diodes	BB132	
D1	BB134	
D2	BB133	
D3	7.5 turns $(\varnothing 3 \mathrm{~mm})$	
Coils; note 1	2.5 turns $(\varnothing 2 \mathrm{~mm})$	
L1	2.5 turns $(\varnothing 2 \mathrm{~mm})$	
L2	2.5 turns $(\varnothing 2.5 \mathrm{~mm})$	
L3	5.5 turns $(\varnothing 2.5 \mathrm{~mm})$	
L4	5.5 turns $(\varnothing 2.5 \mathrm{~mm})$	
L5	12.5 turns $(\varnothing 5 \mathrm{~mm})$	
L6	$2.2 \mu \mathrm{H} ;$ choke coil	
L9		
L10	2×5 turns	
Transformers; note 2	2 turns	
L7		
L8		

Notes

1. The wire size for L1, L2, L5 and L6 is 0.4 mm ; the wire size for L3 and L4 is 0.5 mm .
2. Coil type: TOKO 7kL.

5 V VHF, hyperband and UHF mixers/oscillators for TV and VCR 3-band tuners

INTERNAL PIN CONFIGURATION

5 V VHF, hyperband and UHF
mixers/oscillators for TV and VCR 3-band tuners

SYMBOL	PIN	DESCRIPTION	AVERAGE DC VOLTAGE (V) ${ }^{(1)(2)}$		
			BAND A	BAND B	BAND C
IFOUT2	11		2.1	NR	NR
IFOUT1	12		2.1	NR	NR
BS	13		0.0	1.8	5.0
LOOUT2	14		4.2	NR	NR
LOOUT1	15	(15)	4.2	NR	NR
V_{P}	16	supply voltage	5.0	5.0	5.0
BIN2	17		NR	1.0	NR
BIN1	18		NR	1.0	NR
AIN	19	(19)	1.8	NR	NR

5 V VHF, hyperband and UHF mixers/oscillators for TV and VCR 3-band tuners

SYMBOL	PIN	DESCRIPTION	AVERAGE DC VOLTAGE (V) ${ }^{(1)(2)}$		
			BAND A	BAND B	BAND C
CIN2	20	(21)	NR	NR	1.0
CIN1	21		NR	NR	1.0
RFGND	22		0	0	0
IFIN2	23		3.6	3.6	3.6
IFIN1	24		3.6	3.6	3.6

Notes

1. $N R=$ not relevant.
2. Measured in circuit shown in Fig.16.

5 V VHF, hyperband and UHF

 mixers/oscillators for TV and VCR 3-band tuners
PACKAGE OUTLINE

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} $\mathbf{m a x}$.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(\mathbf{1})}$	$\mathbf{E}^{(\mathbf{1})}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(\mathbf{1})}$	$\boldsymbol{\theta}$
mm	2.0	0.21	1.80	0.25	0.38	0.20	8.4	5.4	0.65	7.9	1.25	1.03	0.9	0.2	0.13	0.1	0.8	8^{0}
		0.05	1.65	0.25	0.25	0.09	8.0	5.2	0.6	7.6		0.63	0.7	0.2	0.13	0°		

Note

1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT340-1		MO-150			$-95-02-04$	

5 V VHF, hyperband and UHF mixers/oscillators for TV and VCR 3-band tuners

SOLDERING

Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from
215 to $250^{\circ} \mathrm{C}$. The top-surface temperature of the packages should preferable be kept below $220^{\circ} \mathrm{C}$ for thick/large packages, and below $235^{\circ} \mathrm{C}$ for small/thin packages.

Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
- larger than or equal to 1.27 mm , the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
- smaller than 1.27 mm , the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

- For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$.
A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

5 V VHF, hyperband and UHF mixers/oscillators for TV and VCR 3-band tuners

Suitability of surface mount IC packages for wave and reflow soldering methods

PACKAGE	SOLDERING METHOD	
	WAVE	REFLOW ${ }^{(1)}$
BGA, LFBGA, SQFP, TFBGA	not suitable	suitable
HBCC, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, SMS	not suitable ${ }^{(2)}$	suitable
PLCC(3), SO, SOJ	suitable	suitable
LQFP, QFP, TQFP	not recommended	
SSOP, TSSOP, VSO	suitable	
not recommended	suitable	

Notes

1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm .
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm .

5 V VHF, hyperband and UHF mixers/oscillators for TV and VCR 3-band tuners

DATA SHEET STATUS

DATA SHEET STATUS	PRODUCT STATUS	DEFINITIONS ${ }^{(1)}$
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

Note

1. Please consult the most recently issued data sheet before initiating or completing a design.

DEFINITIONS

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

5 V VHF, hyperband and UHF mixers/oscillators for TV and VCR 3-band tuners

TDA5737A

NOTES

Philips Semiconductors - a worldwide company

Argentina: see South America
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140, Tel. +61 29704 8141, Fax. +61 297048139
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160101 1248, Fax. +431601011210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 17220 0733, Fax. +375 172200773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359268 9211, Fax. +3592689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800234 7381, Fax. +1 8009430087
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,
Tel. +453329 3333, Fax. +4533293905
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +3589615 800, Fax. +35896158 0920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex, Tel. +33 14099 6161, Fax. +33 140996427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 402353 60, Fax. +49 4023536300

Hungary: see Austria

India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22493 8541, Fax. +91 224930966
Indonesia: PT Philips Development Corporation, Semiconductors Division, Gedung Philips, J. Buncit Raya Kav.99-100, JAKARTA 12510,
Tel. +62 217940040 ext. 2501, Fax. +62 217940080
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 17640 000, Fax. +353 17640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3645 0444, Fax. +972 36491007
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23-20052 MONZA (MI),
Tel. +39 039203 6838, Fax +39 0392036800
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,
TOKYO 108-8507, Tel. +8133740 5130, Fax. +81 337405057
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2709 1412, Fax. +82 27091415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3750 5214, Fax. +60 37574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800234 7381, Fax +9-5 8009430087
Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 4027 82785, Fax. +31 402788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9849 4160, Fax. +64 98497811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +472274 8000, Fax. +47 22748341
Pakistan: see Singapore
Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2816 6380, Fax. +63 28173474
Poland: AI.Jerozolimskie 195 B, 02-222 WARSAW,
Tel. +48 225710 000, Fax. +48 225710001
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095755 6918, Fax. +7 0957556919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Tel. +65 350 2538, Fax. +65 2516500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,
Tel. +27 11471 5401, Fax. +27 114715398
South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP, Brazil,
Tel. +55 11821 2333, Fax. +55 118212382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 93301 6312, Fax. +34 933014107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 85985 2000, Fax. +46 859852745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +4114882741 Fax. +4114883263
Taiwan: Philips Semiconductors, 5F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 22134 2451, Fax. +886 221342874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
60/14 MOO 11, Bangna Trad Road KM. 3, Bagna, BANGKOK 10260, Tel. +66 2361 7910, Fax. +66 23983447
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 2881260 Umraniye, ISTANBUL, Tel. +90 216522 1500, Fax. +90 2165221813
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44264 2776, Fax. +380 442680461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 208730 5000, Fax. +44 2087548421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800234 7381, Fax. +18009430087
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 113341 299, Fax.+381 113342553

For all other countries apply to: Philips Semiconductors,
Internet: http://www.semiconductors.philips.com
Marketing Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN,
The Netherlands, Fax. +31 402724825

© Philips Electronics N.V. 2000

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

PHILIPS

