LH0080 Z80 CPU Central Processing Unit

Description

The LH0080 Z80 CPU (Z80 CPU for short below) is a general-purpose 8-bit microprocessor fabricated using an N-channel silicon-gate process.

The LH0080A Z80A, LH0080B Z80B, LH0080E Z80E CPU are the high speed version which can operate at the 4MHz, 6MHz and 8MHz system clock, respectively.

Features

- 1. 8-bit parallel processing microprocessor
- 2. N-channel silicon-gate process
- 3. 158 instructions (The instruction of the 8080A are included as a subset ; 8080A software compatibility is maintained)
- 4.22 registers
- 5. The capability of 3 modes maskable interrupt and non-maskable interrupt
- 6. On-chip dynamic memory refresh counter
- 7. Instruction fetch cycle : $1.6 \,\mu s(Z80)$, $1.0 \,\mu s$ (Z80A), 0.67 µs (Z80B), 0.5 µs (Z80E)
- 8. Single +5V power supply and single phase clock
- 9. All inputs and outputs fully TTL compatible
- 10. 40-pin DIP (DIP40-P-600)

INT 34

NMI 35

HALT 36

MREQ 37

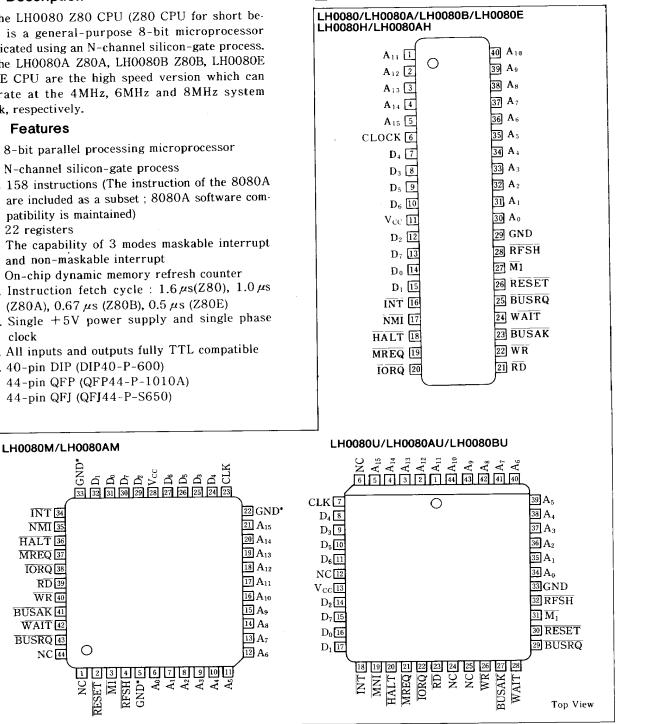
IORQ 38

RD 39

WR 40

NC 44

 \circ


BUSAK 41

BUSRQ 43

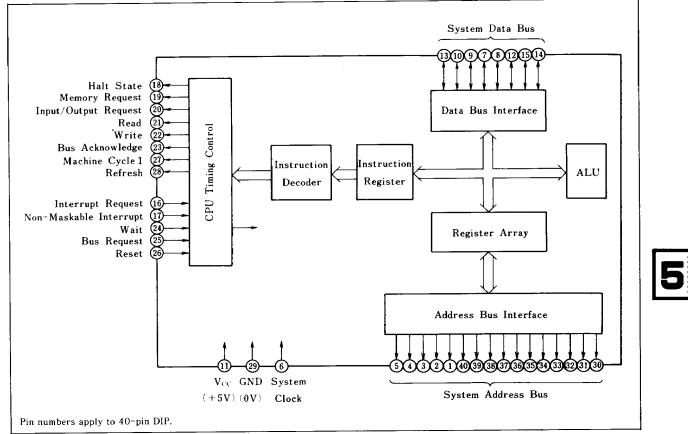
WAIT 42

44-pin QFP (QFP44-P-1010A) 44-pin QFJ (QFJ44-P-S650)

Pin Connections

* The GND pins must be connected to the GND level.

SHARP


Ordering Information

7

Product	Z80 CPU	Z80A CPU	Z80B CPU	Z80E CPU	Package	Operating
Clock frequency	2.5MHz	4MHz	6MHz	8MHz	Fackage	temperature
	LH0080	LH0080A	LH0080B	LH0080E	40-pin DIP	0℃ to +70℃
	LH0080H*	LH0080AH*			40-pm Dir	−20°C to +85°C
Model No.	LH0080M	LH0080AM			44-pin QFP	0°C to +60°C
	LH0080U	LH0080AU	LH0080BU		44 pin QFJ	0℃ to +70℃

* H suffix is a wide temperature spec, packaged in 40-pin DIP.

Block Diagram

285

SHARP

Pin Description

Signal	Pin name	1/0	Function
A ₀ -A ₁₅	Address bus	3-state O	System address bus
D ₀ -D ₇	Data bus	Bidirectional 3-state	System data bus
M1	Machine cycle one	0	Active "Low". Indicates that the current machine cycle is the OP code fetch cycle of an instruction execution.
MREQ	Memory request	3-state O	Active "Low". Indicates that the address bus holds a valid address for a memory read or memory write op eration.
ĪORQ	I/O request	3-state O	Active "Low". Indicates that the lower 8 bits of the address bus holds a valid 1/O address for an 1/O read or write operation. Also generated concurrently with M1 during an interrupt acknowledge cycle to indicate an interrupt response.
RD	Memory read	3-state O	Active "Low". Indicates that the CPU wants to read data from memory or an I/O device.
WR	Memory write	3-state O	Active "Low". Indicates that the CPU data bus hold: valid data to be stored at the addressed memory or 1/C location.
RFSH .	Refresh	0	Active "Low". Indicates that the lower 7 bits of the system address bus can be used as a refresh address to the system's dynamic memories. Together with MREQ a "Low".
HALT	Halt state	0	Active "Low". Indicates that a Halt instruction is bein executed. While halted, the CPU executes NOPs to mair tain memory refresh. The Halt state is cleared with $\overline{\text{RF}}$ SET, $\overline{\text{NMI}}$, or $\overline{\text{INT}}$ (when allowed).
WAIT	Wait	I	Active "Low". Indicates to the CPU that the addresse memory or I/O devices are not ready for a data transfer The CPU continues to enter a wait state as long as this signal is active.
ĪNT	Maskable interrupt request	I	Active "Low". Generated by I/O devices. The CPU hor ors a request at the end of the current instruction if th interrupt enable flip-flop is enabled.
NMI	Non-maskable interrupt request	I	Active "Low". Has a higher priority than INT. Alway recognized at the end of the current instruction, inde pendent of the status of the interrupt enable flip-flop Automatically forces the Z80 CPU to restart at locatio 0066H.
RESET	Reset	I	Active "Low". Resets the interrupt enable flip-flop, th program counter interrupt vector register and the men ory refresh register, and sets the interrupt status t Mode O, in order to initialize the CPU.
BUSRQ	Bus request	I	Active "Low". Has a higher priority than NMI. Alway recognized at the end of the current machine cycle. Act vated to allow a bus master other than the CPU to con trol the system bus.
BUSAK	Bus acknowledge	0	Active "Low". Indicates to the requesting device that the external circuitry can control the system bus.
CLOCK	System clock	I	Inputs+5V single-phase clock.

/

7.6

.

----SHARP ---

-

286

.

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit	Note
Input voltage	V _{IN}	-0.3 to $+7.0$	V	
Output voltage	VOUT	-0.3 to $+7.0$	V	
		0 to +70		1
Operating temperature	Topr	0 to +60	°C	2
		-20 to $+85$]	3
Storage temperature	Tstg	-65 to $+150$	°C	

Note 1: 40-pin DIP and 44-pin QFJ

Note 2: 44-pin QFP

Note 3: 40-pin DIP with wide temperature spec.

Standard Test Conditions

DC Characteristics

The characteristics below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND (OV). Positive current flows into the referenced pin. All ac parameters assume a load capacitance of 100 pF. Add 10 ns delay for each 50 pF increase in load up to a maximum of 200 pF for the data bus and 100 pF for address and control lines.

 $(V_{CC}=5V\pm5\%, Ta=0 \text{ to } +70^{\circ}C^{Note 1})$

							,
Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Clock input low voltage	V _{ILC}			-0.3		0.45	V
Clock input high voltage	V _{IHC}			$V_{CC} = 0.6$		$V_{cc} + 0.3$	V
Input low voltage	VIL			-0.3		0.8	V
Input high voltage	V _{IH}			2.0		V _{cc}	V
Output low voltage	V _{OL}	$I_{OL} = 1.8 \text{mA}$				0.4	V
Output high voltage	V _{OH}	$I_{OH} = -250 \mu A$		2.4			V
<u> </u>			LH0080			150	mA
~ .			LH0080A			200	mA
Current consumption	I _{CC}		LH0080B			200	mA
			LH0080E			200	mA
Input leakage current		$0 \leq V_{IN} \leq V_{CC}$	•••			10	μA
3-state output leakage current in float	ILEAK	$V_{OUT} = 0.4 V$ to V	/ _{cc}			10	μA

Note 1: Ta=0 to $+60^{\circ}C$ for 44-pin QFP

 $T_a = -20$ to $+85^{\circ}$ ° for 40-pin DIP with wide temperature spec.

Capacitance

 $(f=1 MHz, Ta=25^{\circ}C)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Clock capacitance	C _{CLOCK}	The second size we have a			35	pF
Input capacitance	C _{IN}	Unmeasured pins returned			5	pF
Output capacitance	C _{OUT}	to ground			10	pF

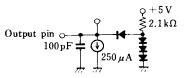
AC Characteristics

```
(V_{CC}=5V\pm5\%, Ta=0 \text{ to } +70^{\circ}C^{Note 1})
```

/	AC Characteristics		1.170	0.9.0	1.1100				LH00	80F *	
No.	Parameter	Symbol	LHO		LHOC MIN.	MAX.	LHOO MIN.	MAX.	MIN.	MAX.	Unit
			MIN. 400*	MAX.	250 *	MAA.	165^*		125*	<u>MAA.</u>	ns
1	Clock cycle time	TcC	400 180*		230 110*		65*		$\frac{125}{55*}$		ns
2	Clock pulse width (High)	TwCh		2000		2000		2000		2000	
3	Clock pulse width (Low)	TwCl	180	30	110	30	03	2000		10	ns
	Clock fall time	TfC		30		30		20		10	ns
5	Clock rise time	TrC		145		110		$\frac{20}{90}$		80	ns
6	Clock to address valid delay	TdCr (A)	125*		65*	110	35*		20*		ns
7	Addreess valid to MREQ I delay	TdA (MREQf)	125	100	05	85		70		60	ns
8		TdCf (MREQf)		100		85		70		60	ns
9		TdCr (MREQr)	170*		110*	- 00	65*	10	45*		ns ns
10	MREQ pulse width (High)	TwMREQh	$\frac{170}{360*}$		220*		135*		100*		ns
	MREQ pulse width (Low)	TwMREQ1	360	100	220	85	100	70	100	60	ns
12	Clock ↓ to MREQ ↑ delay	TdCf (MREQr)				95		80		70	ns
13	Clock I to RD I delay	TdCf (RDf)	_	130	-			70		60	ns
14	Clock † to RD † delay	TdCr (RDr)	<u> </u>	100	25	85	30	10	30		ns
15	Data setup time to clock 1	TsD (Cr)	0		35		<u>30</u> 0		0		ns
16	Data hold time from RD	ThD (RDr)	0	_	0				50		
_17	WAIT setup time to clock	TsWAIT (Cf)	70		70		60				ns
18	WAIT hold time after clock	ThWAIT (Cf)	0		0	100	0		0	70	ns
19	Clock † to M1 delay	TdCr (M1f)		130	<u> </u>	100		80		70	ns
20	Clock † to M1 † delay	TdCr (Mlr)		130		100		80	<u> </u>	70	ns
21	Clock † to RFSH ↓ delay	TdCr (RFSHf)		180	ļ	130		110		95	ns
22	Clock † to RFSH † delay	TdCr (RFSHr)		150	<u> </u>	120		100		85	ns
23	Clock↓ to RD↑ delay	TdCf (RDr)		110	ļ	85		70	ļ	60	ns
24	Clock † to RD ↓ delay	TdCr (RDf)		100		85		70		60	ns
25	Data Setup to clock \uparrow during M ₂ , M ₃ , M ₄ or M ₅ cycles	TsD (Cf)	60		50		40		30		ns
26	Address stable prior to $\overline{IORQ} \downarrow$	TdA (lORQf)	320*		180*		110*		75*		ns
27	Clock † IORQ ↓ delay	TdCr (IORQf)		90		75		65		55	ns
28	Clock I to IORQ † delay	TdCf (IORQr)		110		85		70		60	ns
$\frac{10}{29}$	Data stable prior to WR ↓	TdDm (WRf)	190*		80*		25*		5*		ns
30	$\frac{1}{10000000000000000000000000000000000$	TdCf (WRf)		90		80		70		60	ns
31	WR pulse width	TwWR	360*	¢	220*		135*		100*	¢	ns
32	$\frac{1}{1} \frac{1}{1} \frac{1}$	TdCr (WRr)		100		80		70		60	ns
33	Data stable prior to WR	TdDi (WRf)	20*	•	-10*	-	-55*	-	-55*	*	ns
34	$\frac{1}{10000000000000000000000000000000000$	TdCr (WRf)		80		65		60		55	ns
35	Data stable from WR 1	TdWRr (D)	120*	*	60*	•	30*	-	15	*	ns
36	Clock I to HALT † or I	TdCf (HALT)		300		300		260		225	ns
37	NMI pulse width	TwNMI	80		80		70		80		ns
38	BUSREQ setup time to clock 1	TsBUSRQ (Cr)	80		50		50		40		ns
39	BUSREQ hold time after clock 1	ThBUSRQ (Cr)			0		0		0		ns
40	Clock † to BUSACK ↓ delay	TdCr (BUSAKf)		120		100		90		80	ns
41	Clock to BUSACK † delay	TdCf (BUSAKr)		110		100		90		80	ns
42	Clock † to data float delay	TdCr (Dz)		90		90		80		70	ns
	Clock † to control output float					0.0		70		60	
43	delay ($\overline{\text{MREQ}}$, $\overline{\text{IORQ}}$, $\overline{\text{RD}}$, and $\overline{\text{WR}}$)	· · · · · · · · · · · · · · · · · · ·	 	110		80				60	ns
44	Clock † to address float delay	TdCr (Az)		110		90		80		70	ns
45	$\frac{\overline{MREQ}}{MREQ}$, \overline{IORQ} , \overline{RD} and \overline{WR} to address hold time	TdCTr (A)	160'	*	80'	*	35'	*	20	*	ns

SHARP

288


Powered by ICminer.com Electronic-Library Service CopyRight 2003

Z80 CPU Central Processing Unit

	_		LHO	LH0080		LH0080A		LH0080B		LH0080E*	
No.	Parameter	Symbol	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Unit
46	RESET to clock setup time	TsRESET (Cr)	90		60		60		45		ns
47	RESET from clock! † hold time	ThRESET (Cr)	0		0		0		0		ns
48	INT to clock † setup time	TsINTf (Cr)	80		80		70		55	_	ns
49	INT from clock † hold time	ThINTr (Cr)	0		0		0		0		ns
50	$\overline{M1} \downarrow to \overline{IORQ} \downarrow delay$	TdM1f (IORQf)	920*		565 *		365*		270*		ns
51	Clockk↓to IORQ↓delay	TdCf (lORQf)		110		85		70		60	ns
52	Clock † to IORQ † delay	TdCf (IORQr)		100		85		70		60	ns
53	Clock + to data valid delay	TdCf (D)		230		150		130		115	ns

All ac parameters assume a load capacitance of 100 pF. Add 10 μ s delay for each 50 pF increase in load up to a maximum of 200 pF for the data bus and 100 pF for address and control lines. *For clock periods other than the minimum shown in the table,

calculate parameters using the following expressions.

Footnotes to AC Characteristics

No.	Symbol	LH0080	LH0080A	LH0080B	LH0080E
1	TcC	TwCh+TwCl+TrC+TfC	TwCh + TwCl + TrC + TfC	TwCh+TwCl+TrC+TfC	TwCh+TwCl+TrC+TfC
2	TwCh	MAX. 200 µ s	MAX. 200 µs	MAX. 200 µs	MAX. 200 µs
7	TdA (MREQf)"	TwCh + TfC - 75	TwCh + TfC - 65	TwCh+TfC-50	TwCh+TfC-45
10	TwMREQh	TwCh + TfC - 30	TwCh+TfC-20	TwCh+TfC-20	TwCh + TfC - 20
11	TwMREQ1	$T_cC = 40$	TcC-30	TcC-30	TcC_25
26	TdA (IORQf)	TcC-80	TcC - 70	TcC-55	TcC-50
29	TdD (WRf)	$T_{e}C - 210$	TcC-170	TcC-140	TcC-120
31	TwWR	TcC = 40	TcC-30	$T_cC = 30$	TeC-25
33	TdD (WRf)	TwCl+TrC-180	TwCl+TrC-140	TwCl+TrC-140	TwCl+TrC-120
35	TdWRr(D)	TwCl+TrC-80	TwCl+TrC-70	TwCl+TrC-55	TwCl+TrC-50
45	<u>↓ ` ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ ´ </u>	TwCl+TrC-40	TwCl + TrC = 50	TwCl+TrC-50	TwCl+TrC-45
$\frac{43}{50}$	TdMlf (IORQf)	2Tch + TwCh + TfC - 80		2TcC+TwCh+TfC-50	2TcC+TwCh+TfC-45
0	Tumin (IONal)	Bien in on the oc			

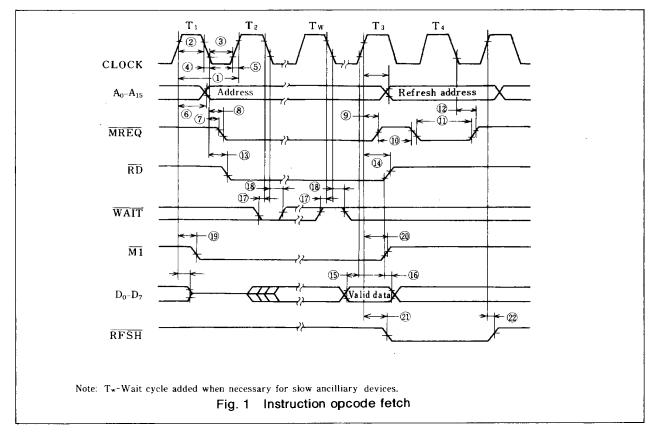
AC Test Conditions :

$V_{1H} = 2.0V$	$V_{1HC} = V_{CC} - 0.6V$	$V_{OH} = 2.0V$	$FLOAT = \pm 0.5$
$V_{\mu} = 0.8V$	$V_{\text{HLC}} = 0.45 V$	$V_{OL} = 0.8V$	

SHARP

CPU Timing

The Z80 CPU executes instructions by proceeding through a specific sequence of operations:


- Memory read or write
- I/O device read or write
- Interrupt acknowledge

The basic clock period is referred to as a T time or cycle, and three or more T cycles make up a machine cycle (M1, M2 or M3 for instance). Machine cycles can be extended either by the CPU automatically inserting one or more Wait states or by the insertion of one or more Wait states by the user.

(1) Instruction Opcode Fetch

The CPU places the contents of the Program Counter (PC) on the address bus at the start of the cycle (Fig. 1). Approximately one-half clock cycle later, MREQ goes active. When active, RD indicates that the memory data can be enabled onto the CPU data bus.

The CPU samples the WAIT input with the falling edge of clock state T₂. During clock states T₃ and T₁ of an $\overline{M1}$ cycle dynamic RAM refresh can occur while the CPU starts decoding and executing the instruction. When the Refresh Control signal becomes active, refreshing of dynamic memory can take place.

SHARF

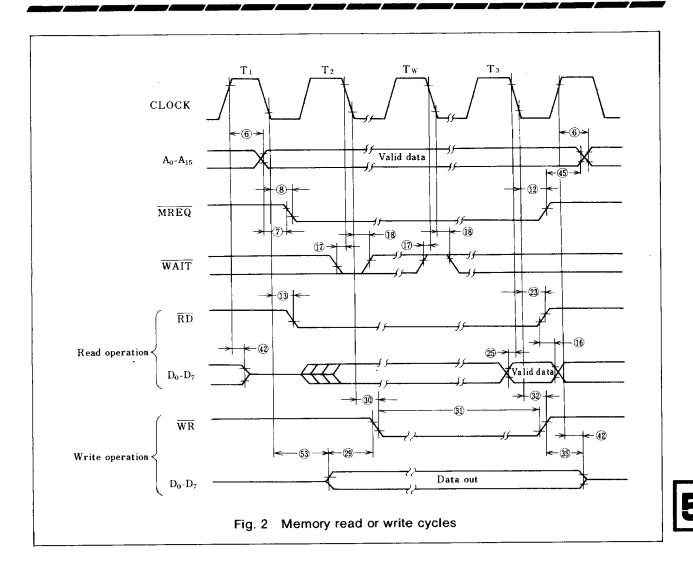

(2) Memory Read or Write Cycles

Fig. 2 shows the timing of memory read or write cycles other than an opcode fetch ($\overline{M1}$) cycle. The MREQ and RD signals function exactly as in the fetch cycle. In a memory write cycle, MREQ also becomes active when the address bus is stable. The WR line is active when the data bus is stable, so that it can be used directly as an R/W pulse to most semiconductor memories.

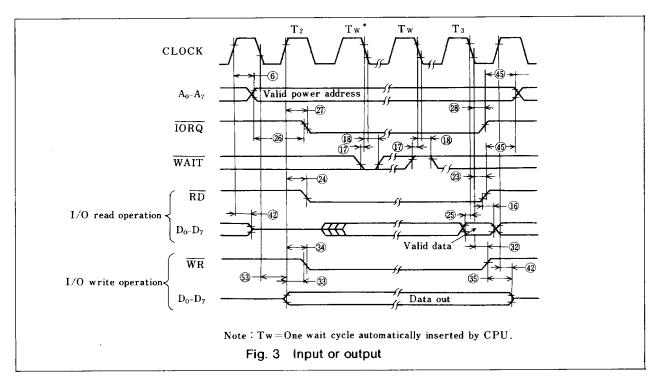
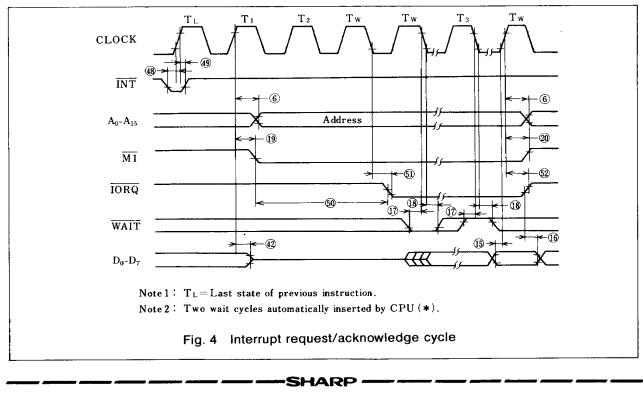

(3) Input or Output Cycles

Fig. 3 shows the timing for an I/O read or I/O write operation.

During I/O operations, the CPU automatically inserts a single wait state (T_*). This extra wait state allows sufficient time for an I/O port to decode the address from the port address lines.



(4) Interrupt request/acknowledge cycle

The CPU samples the interrupt signal with the rising edge of the last clock at the end of any instruction (Fig. 4). When an interrupt is accepted, a special $\overline{M1}$ cycle is generated. During this $\overline{M1}$ cy-

cle, IORQ becomes active (instead of MREQ) to indicate that the interrupting device can place an 8-bit vector on the data bus. The CPU automatically adds two wait states to this cycle.

(5) Non-maskable interrupt request cycle

 $\overline{\text{NMI}}$ is sampled at the same time as the maskable interrupt $\overline{\text{INT}}$ but has higher priority and cannot be disabled under software control.

The subsequent timing is similar to that of a nor-

- Last Mcycle Last T time T1 T 4 T_2 Тз Τs CLOCK NMI -6 6-->-Refresh address Address $A_0 - A_{15}$ ->-19+ M1 MREQ RD -21) RFSH *Although NMI is an asynchronous input, to guarantee its being recognized on the following machine cycle, NMI's falling edge must occur no later than rising edge of the clock cycle preceding TLAST. Fig. 5 Non-maskable interrupt request operation

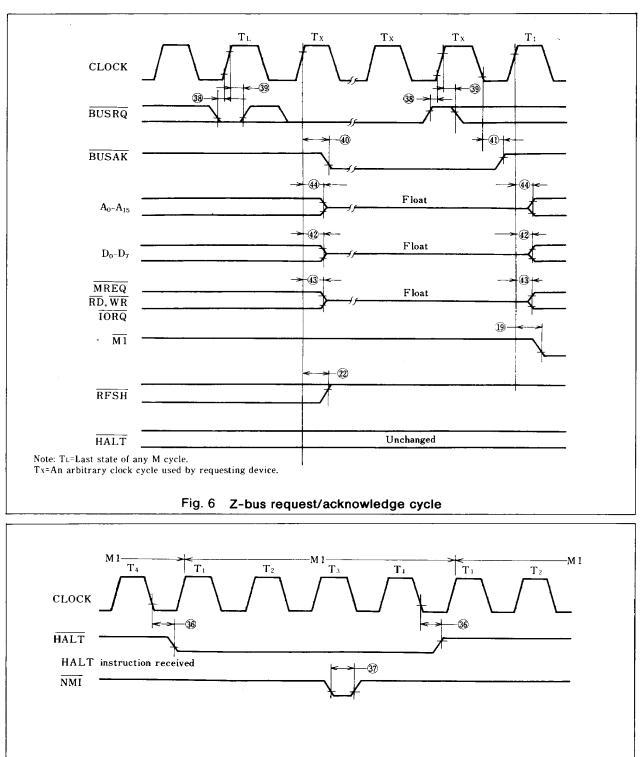
(Fig. 5).

(6) Bus request/acknowledge cycle

The CPU samples BUSREQ with the rising edge of the last clock period of any machine cycle (Fig. 6). If BUSREQ is active, the CPU sets its address, data, and MREQ, IORQ, RD, and WR lines to a high-impedance state with the rising edge of the next clock pulse. At that time, any external device can take control of these lines, usually to transfer data between memory and I/O devices.

(7) Reset cycle

RESET must be active for at least three clock cycles for the CPU to properly accept it. As long as **RESET** remains active, the address and data buses float, and the control outputs are inactive. Once **RESET** goes inactive, three internal T cycles are consumed before the CPU resumes normal processing operation. **RESET** clears the PC register, so the first opcode fetch will be location 0000 (Fig. 8).

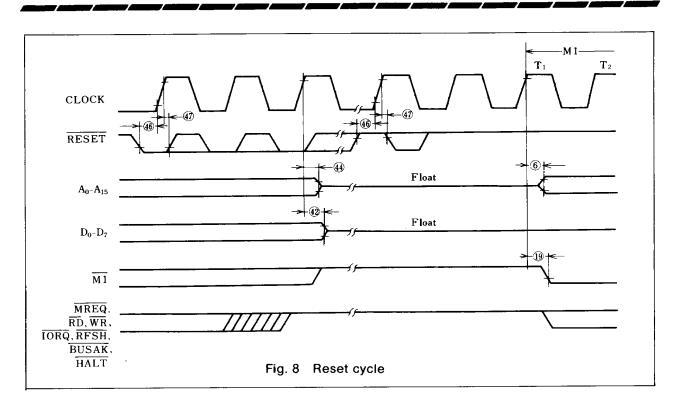

mal instruction fetch except that data put on the

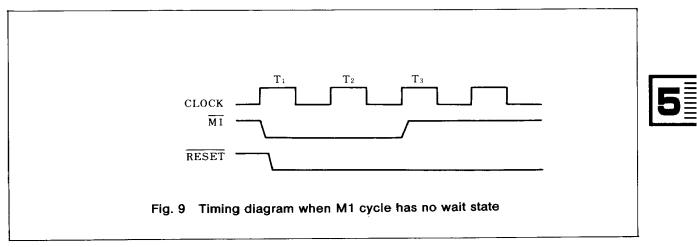
bus by the memory is ignored. The CPU instead executes a restart (RST) operation and jumps to the

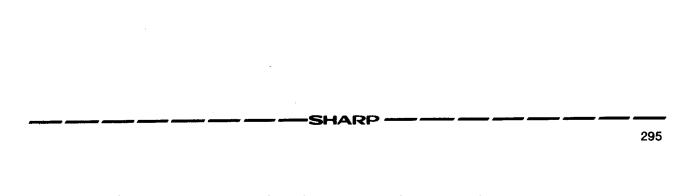
NMI service routine located at address 0066H

SHARP

_


Note: \overline{INT} will also force a Halt exit.


Fig. 7 Halt acknowledge cycle

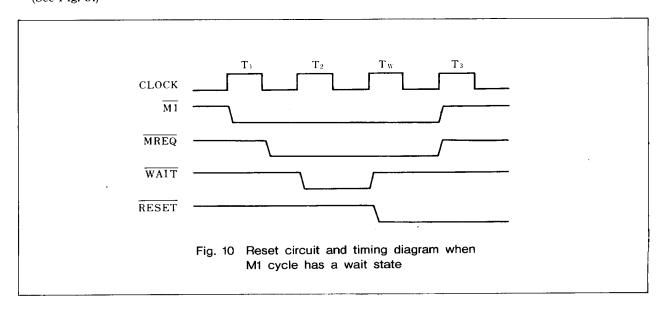

-SHARP -

Powered by ICminer.com Electronic-Library Service CopyRight 2003

7.4

<Reference>

-


The RAM contents may be adversely affected by resetting the CPU while it is in operation.

To prevent this, a **RESET** signal should be input in the following timings.

(1) No walt state in the M1 cycle

Input a RESET signal to start sampling this signal at the clock rising in the M1 cycle's T_2 state. (See Fig. 9.) (2) A walt state in the M1 cycle

Input a RESET signal to start sampling this signal at the clock rising in the M1 cycle's T_3 state. (See Fig. 10.)

SHARP

CPU Registers

A Accumulator	F Flag Register	A' Accumulator	F' Flag Register
B General Purpose	C General Purpose	B' General Purpose	C' General Purpose
D General Purpose	E General Purpose	D' General Purpose	E' General Purpose
H General Purpose	L General Purpose	H' General Purpose	L' General Purpose

	-8 bits \rightarrow	
I Inte	rrupt Vector	R Memory Refresh
IX	Index Register	
IY	Index Register	
SP	Stack pointer	
PC	Program Counter	
	16 bits_	

Architecture

(1) CPU Registers

(i) **Program Counter (PC)** The program counter holds the 16 bits memory address of a current instruction. The CPU fetches the contents from memory address specified by the PC.

The PC feeds the data to the address line, automatically setting the PC value to +1. When a program jump takes place, a new value is directly set to the PC.

(ii) **Stack Pointer (SP)** The stack pointer holds the top 16-bit address of the stack with an external RAM. An external file is based on LIFO (Last-In, First-Out).

The data are transferred between a CPU-specified register and the stack by a PUSH or POP instruction. The last-pushed data are first popped from the stack.

(iii) Index Register (IX & IY) For index mode addressing, there are independent index registers IX and IY, each of which holds 16-bit reference address.

In the index mode, the index registers are used to designate the memory area for data input/output.

With an INDEX ADDRESSING instruction, an effective address comes by adding a one-byte displacement to the register content. This displacement is an integral signed two's complement number

(iv) Interrupt Register (I) The Z80 CPU has indirect subroutine call mode for any memory area according to an interrupt. For this purpose, this register stores the upper 8 bits of memory address for vectored interrupt processing and the lower 8 bits for the interrupting device. (v) **Refresh Register (R)** The built-in refresh register provides user-transparent dynamic memory refresh. Its lower 7 bits are automatically incremented during each instruction fetch cycle.

While the CPU records a fetched instruction and executes the instruction, the refresh register data are placed on the address bus by a REFRESH control signal.

(vi) Accumulator and Flag Register (A & F)

The CPU has also two independent 8-bit accumulators in combination with two 8-bit flag registers.

5

The accumulators store an operand or the results of an 8-bit operation. The flag registers, on the other hand, deal with the results of an 8-bit or 16-bit operation; for example, seeing if the result is equal to 0 or not.

(vii) General-Purpose Registers There are several pairs of general-purpose registers. In each pair, they can be used separately or as a 16-bit paired register. The paired registers are BC, DE, HL, as well as BC' DE' HL'. Either of these sets can work by an "Exchange" instruction at any time on a program.

(2) Arithmetic/Logical Unit (ALU)

An 8-bit arithmetic/logical operation instruction is executed by the ALU inside the CPU. The ALU connects to each register through the internal bus for data transfer between them.

(3) Instruction Register, CPU Control

Each instruction is read out of the memory, held in the instruction register, and decoded. The con-

SHARP

trol unit controls this action and gives control signals necessary to read and write data from and to the registers.

The control unit also makes ALU control signal and other external control signals.

 \langle Interrupts : General Operation \rangle The Z80 CPU accepts two interrupt input signals: $\overline{\text{NMI}}$ and $\overline{\text{INT}}$. The $\overline{\text{NMI}}$ is a non-maskable interrupt and has the highest priority. $\overline{\text{INT}}$ is a lower priority interrupt and it requires that interrupts be enabled in software in order to operate.

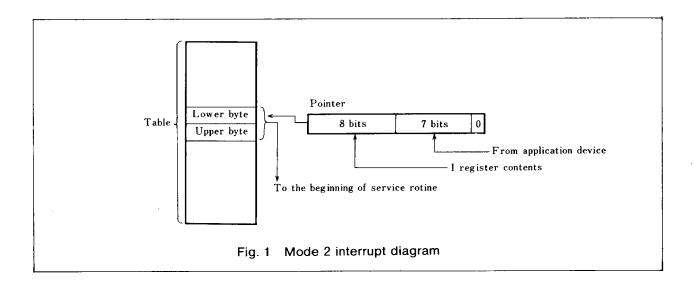
(1) Non-Maskable Interrupt (NMI)

The non-maskable interrupt will be accepted at all times by the CPU.

After recognition of the $\overline{\text{NMI}}$ signal, the CPU jumps to restart location 0066H.

(2) Maskable Interrupt (INT)

The maskable interrupt, INT, has three programmable response modes available.


(i) **Mode 0 Interrupt Operation**. This mode is similar to the 8080A microprocessor interrupt service procedures. The interrupting de-

vice places an instruction on the data bus. This is a Restart instruction or a Call instruction.

(ii) Mode 1 Interrupt Operation. Mode 1 operation is very similar to that for the $\overline{\text{NMI}}$. The principal difference is that the Mode 1 interrupt has a restart location of 0038H only.

(iii) Mode 2 Interrupt Operation. This interrupt mode has been designed to utilize most effectively the capabilities of the Z80 microprocessor and its associated peripheral family. The interrupting peripheral device selects the starting address (16 bits) of the interrupt service routine. It does this by placing an 8-bit vector on the data bus during the interrupt acknowledge cycle. The CPU forms a pointer using this byte as the lower 8-bits and the contents of the I register as the upper 8-bits. This points to an entry in a table of addresses for interrupt service routines. The CPU then jumps to the routine at that address.

All the Z80 peripheral devices have the interrupt priority circuit with a daisy-chain configuration. During an interrupt acknowledge cycle, vectors are automatically fed. For more details, refer to the Z80 PIO description.

Instruction Set

Table 1 8-bit load group

Mnemonic	Symbolic	OP code	HEX code			Fla	-			No. of		No. of	Comn	ients
	operation	76 543 210	(Basic)	С	Z	P/V	S	N	Н	Bytes	M Cycles			
LD r, r'	r⊷r′	01 r r'	40+	٠	•	•	•	•	٠	1	1	4		
LD r, n	r⊷n	00 r 110	06+	•	•		٠	•	٠	2	2	7		D
		← n →									L -		<u>r,r</u>	Reg
LD r, (HL)	r← (HL)	01 r 110	46+	٠	٠	•	•	•	٠	1	2	7	000	B
LD r, $(IX+d)$	$\mathbf{r} \leftarrow (\mathbf{IX} + \mathbf{d})$	11 011 101	DD	•	•	•	•		•	3	5	19	001	C
		01 r 110	46+										010	D
		← d →		_		1							011	E
LD r, $(IY+d)$	$\mathbf{r} \leftarrow (\mathbf{I}\mathbf{Y} + \mathbf{d})$	11 111 101	FD	•	٠		٠	•	•	3	5	19	100	H
]		01 r 110	46										101	L
		← d →								ļ			111	A
LD (HL), r	(HL)←r	01 110 r	70+	٠	•	•	•	•	•	1	2	7		
LD $(IX + d)$, r	(IX+d)←r	11 011 101	DD	٠	•	•	٠	•	•	3	5	19		
		01 110 r	70+											
		\leftarrow d \rightarrow						<u> </u>			l			
LD (IY+d), r	$(IY+d) \leftarrow r$	11 111 101	FD	٠	•	•	•		•	3	5	19		
		01 110 r	70+											
	•	← d →			ļ									
LD (HL), n	(HL)←n	00 110 110	36	•	•	•	•	•	•	2	3	10		
		← n →									L			
LD (IX + d), n	$(IX+d) \leftarrow n$	11 011 101	DD	•	•	•	•	•	•	4	5	19		
		00 110 110	36						1					
		← d →												
		← n →		İ										÷
LD (IY+d), n	$(IY + d) \leftarrow n$	11 111 101	FD	•	•	•	•	•	•	4	5	19		
		00 110 110	36					1	1					
		← d →		1										
		← n →												
LD A, (BC)	A ← (BC)	00 001 010	0A	•	•	•	۲	٠	•	1	2	7		
LD A, (DE)	$A \leftarrow (DE)$	00 011 010	1 A	•	•	•	•	•	•	1	2	7		
LD A, (nn)	A 🔶 (nn)	00 111 010	3A	•	•	•	•	•	•	3	4	13		
		$ \leftarrow n \rightarrow$			Ì									
		← n →						i .		+ : 				
LD (BC), A	(BC) - A	00 000 010	02	•	•	•	•	•	٠	1	2	7		
LD (DE), A	(DE) - A	00 010 010	12	•	•	•	•	٠	٠	1	2	7		
LD (nn), A	(nn) ← A	00 110 010	32	•	•	•	•	٠	•	3	4	13		
, ,		\leftarrow n \rightarrow												
		← n →												
LD A, I	A ← I	11 101 101	ED	•	1	IFF	†	0	0	2	2	9		
<i>,</i> '		01 010 111	57											
LD A, R	A ← R	11 101 101	ED	•	\$	IFF	\$	0	0	2	2	9		
,		01 011 111	5F											
LD I, A	I ← A	11 101 101	ED	•	٠	•	•	•	٠	2	2	9		
, -		01 000 111	47											
LD R, A	R ← A	11 101 101	ED	•	•	•	•	•	٠	2	2	9		
,		01 001 111	4F				1							

Notes : r, r' means any of the registers A, B, C, D, E, H, L, IFF the content of the interrupt enable flip-flop, (IFF) is copied into the P/V flag. Flags : C (carry), Z (zero), S (sign), P/V (parity/overflow), H (half carry), N (add/substract). : • = unchanged, 0=reset, 1=set, X = undefined.

: ‡ set or reset according to the result of the operation.

SHARP '

Mnemonic	Symbolic		code	HEX code			1	ags			No. of	No. of	No. of	Com	ments
	operation		3 210		C	Z	P/V	S	N	Н	Bytes	M Cycles			
LD dd, nn	dd ← nn		0 001	01+	•	•	•	•	•	•	3	3	10		
			$n \rightarrow n \rightarrow$											dd	Reg.
LD IX, nn	IX ← nn		1 101	DD	٠	•	•	٠	•	•	4	4	14	00	BC
,			0 001	21										01	DE
			n → n →											10	HL
LD IY, nn	IY ← nn		1 101	FD	•	•	•	•	•	•	4	4	14	11	SP
·			0 001	21											
			$n \rightarrow n \rightarrow$												
LD HL, (nn)	$H \leftarrow (nn+1)$	00 10		2A	•	•	•	•	•	•	3	5	16	nn : 2-by	te numbei
,,,,,	L ← (nn)	←	n →											Lower by	
			$n \rightarrow 1$	ED	•				•	•	4	6	20	after opco Upper by	
LD dd, (nn)	$ \frac{dd_{H} \leftarrow (nn+1)}{dd_{L} \leftarrow (nn)} $	11 10 01 dd	$ \begin{array}{ccc} 1 & 101 \\ 1 & 011 \end{array} $	ED 4B+	•			-			4	0	20	next.	te comes
	,	←	n. →												
			$n \rightarrow \frac{1}{1}$		-						-	6			
LD IX, (nn)	$\begin{array}{l} IX_{H} \leftarrow (nn+1) \\ IX_{L} \leftarrow (nn) \end{array}$	$11 01 \\ 00 10$	$ 1 101 \\ 1 010 $	DD 2A	•	•	•	•	•	. ●	4	6	20		
	,	.	n →												
· · · · · · · · · · · · · · · · · · ·	·		n →		-					-					
LD IY, (nn)	$IY_{H} \leftarrow (nn+1)$ $IY_{L} \leftarrow (nn)$		$\begin{array}{ccc} 1 & 101 \\ 01 & 010 \end{array}$	FD 2A	•	•	•	•	•	•	4	6	20		
	iii (iiii)		n →												
LD (nn), HL	(nn+1) ← H	00 10		22	٠	•	•	٠	٠	•	3	5	16		
	(nn) ← L		n → n →												
LD (nn), dd	(nn+1) ← dd#		1 101	ED	•	•	•	•	•	•	4	6	20		
<i>DD</i> (<i>iiii)</i> , uu	$(nn) \leftarrow dd_L$	01 dd		$\frac{1}{43}$ +		Ì									
			n → n →												
LD (nn), IX	(nn+1)←IX _H		1 101	DD	•	•	•	•	•	•	4	6	20		
	$(nn) \leftarrow IX_L$	00 10		22		-	-		-		-				
			n → n →												
LD (nn), IY	(nn+1)←IYH		1 101	FD	•	•	•	•	•	•	4	6	20		
55 (iiii), 11	$(nn) \leftarrow IY_L$	00 10		22					-		1				
			n → n →												
LD SP, HL	SP ← HL		1 001	F 9	•	•	•	•	•	•	1	1	6		
LD SP, IX	$SP \leftarrow IX$		1 101	DD	•	•	•	•	•	•	2	2	10		
			1 001	F9								L			
LD SP, IY	SP ← IY		1 101	FD	•	•	•	•	•	•	2	2	10		
DUCH	(CD 0) (1 001	F9							1		11		
PUSH qq	(SP−2)←qqı (SP−1)←qqн	II qo	0 101	C5+	•		•	•	•	•	1	3		qq	Reg.
PUSH IX	(SP−2)←IXL	11 01	1 101	DD	٠	٠	•	•	٠	٠	2	4	15	00	BC
	(SP−1)←IX _H		0 101	E5						L	L			01	DE
PUSH IY	(SP-2)⊷IY⊥ (SP-1)⊷IYн		1 101 0 101	FD E5	•	•	•	•	•	•	2	4	15	10	HL
POP qq	$(SP-1) \leftarrow (SP+1)$			$\frac{L_0}{C1+}$	•	•	•	•	•	•	1	3	10	11	AF
i Vi YY	qq₁ ← (SP + 1) qq₁ ← (SP)	II QU	0.001												
POP IX	IX _H ←(SP+1)		1 101	DD	•	•	•	•	٠	•	2	4	14		
	$IX_L \leftarrow (SP)$		0 001	E1	<u> </u>		-	-	-	-					
POP IY	$IY_{H} \leftarrow (SP+1)$ $IY_{L} \leftarrow (SP)$	11 11	1 101 0 001	FD			•		•		2	4	14		

Tahle	2	16-bit	load	group
laule	۷		iuau	gioup

Notes: dd is any of the register pairs BC, DE, HL, SP. qq is any of the register pairs AF, BC, DE, HL. (PAIR)H, (PAIR)L refer to high order and low order eight bits of the register pair respectively, e.g., BCL=C, AFH=A. Flags: ●=unchanged, 0=reset, 1=set, X=undefined, \$\$\$ = set or reset according to the result of the operation

- ---- SHARP -

7.6

7

.

	Symbolic	OP code	HEX code			Fla	ags			No. of	No. of	No. of	Comments
Mnemonic	operation	76 543 210	(Basic)	С	Ζ	P/V	S	N	Η	Bytes	M Cycles	T States	
EX DE, HL	$DE \leftrightarrow HL$	11 101 011	EB	•	۲	•	•	•	•	1	1	4	
EX AF, AF'	$AF \leftrightarrow AF'$	00 001 000	08	•	۲	•	•	\bullet	٠	1	1	4	
EXX	$ \begin{array}{c} BC \\ DE \\ HL \end{array} \leftrightarrow \begin{array}{c} BC' \\ DE' \\ HL' \end{array} $	11 011 001	D9	•	•	•	•	•	•	1	1.	4	Register bank and auxiliary register bank exchange
EX (SP), HL	$H \leftrightarrow (SP+1)$ $L \leftrightarrow (SP)$	11 100 011	E3	•	•	•	•	•	•	1	5	19	
EX (SP), IX	$1X_{H} \leftrightarrow (SP+1)$ $1X_{L} \leftrightarrow (SP)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DD E3	•	•	•	•	•	•	2	6	23	
EX (SP), IY	$IY_{H} \leftrightarrow (SP+1)$ $IY_{L} \leftrightarrow (SP)$	11 111 101 11 100 011	FD E3	•	•	•	•	•	•	2	6	23	
LDI	$(DE) \leftarrow (HL)$ $DE \leftarrow DE+1$ $HL \leftarrow HL+1$ $BC \leftarrow BC-1$	11 101 101 10 100 000	ED A0	•	•	‡ ①	•	0	0	2	4	16	Load (HL) into (DE), increment the poin- ters and decrement the byte counter (BC)
LDIR	$(DE) \leftarrow (HL)$ $DE \leftarrow DE+1$ $HL \leftarrow HL+1$ $BC \leftarrow BC-1$	11 101 101 10 110 000	ED BO	•	•	0	•	0	0	2	5	21	If BC≠0
	If $BC = 0$ end	4								2	4	16	If $BC = 0$
LDD	$(DE) \leftarrow (HL)$ $DE \leftarrow DE-1$ $HL \leftarrow HL-1$ $BC \leftarrow BC-1$	11 101 101 10 101 000	ED A8	•	•	‡	•	0	0	2	4	16	
LDDR	$\begin{array}{c} BC \leftarrow BC - 1\\ (DE) \leftarrow (HL)\\ DE \leftarrow DE - 1\\ HL \leftarrow HL - 1\\ BC \leftarrow BC - 1 \end{array}$	11 101 101 10 111 000	ED B8	•	•	0	•	0	0	2	5	21	If BC≠0
	If $BC = 0$ end									2	4	16	If $BC = 0$
СРІ	$\begin{array}{c} H \ D \ C \ C \ H \ L \\ A - (HL) \\ HL \leftarrow HL + 1 \\ BC \leftarrow BC - 1 \end{array}$	11 101 101 1 10 100 001	ED A1	•	‡ ②		\$	1	+	2	4	16	
CPIR	$A - (HL)$ $HL \leftarrow HL + 1$ $BC \leftarrow BC - 1$	11 101 101 1 10 110 001	ED B1	•	‡ ②	_	+	1	\$	2	5	21	If $BC \neq 0$ and $A \neq (HL)$
	$\frac{BC}{BC = 0 \text{ end}}$									2	4	16	If BC=0 or A = (HL)
CPD	$A - (HL)$ $HL \leftarrow HL -$ $BC \leftarrow BC - 2$		ED A9	•	‡ ②			1	\$	2	4	16	
CPDR	$\begin{array}{c c} BC \leftarrow BC \\ \hline A - (HL) \\ HL \leftarrow HL - \\ BC \leftarrow BC - \end{array}$	11 101 101 1 10 111 001		•	t 2			1	t	2	5	21	If $BC \neq 0$ and $A \neq (HL)$
	$BC \leftarrow BC -$ If A = (HL) or BC = 0 end	-								2	4	16	If $BC=0$ or $A = (HL)$

Table 3 Exchange, block transfer, block search groups

Note: (DP/V flag is 0 if the result of BC=0, otherwise P/V=1

(2)Z flag is 1 if A = (HL), otherwise Z = 0

Flags : \bullet = unchanged

 $0 = \text{set}, \quad 1 = \text{reset}$

 \ddagger = set or reset according to the result of the operation

-SHARP

₩1: depends on s. ₩2: depends on m.

Mananaia	Symbolic	OP code	HEX code			Fla	igs			No. of	No. of	No. of	Comm	ente
Mnemonic	operation	76 543 210	(Basic)	C	Ζ	P/V	S	N	Н	Bytes	M Cycles	T States		
ADD A, r	$A \leftarrow A + r$	10 k r	80+	‡	\$	V	\$	0	t	1	1	4	r	Reg.
ADD A, n	$A \leftarrow A + n$	11 k 110	C6+	‡	‡	V	\$	0	ţ.	2	2	7	000	B
		← n →											001	C
ADD A, (HL)	$A \leftarrow A + (HL)$	10 k 110	86+	‡	‡	<u>v</u>	\$	0	1	1	2	7	010	D
ADD A, $(IX + d)$	$A \leftarrow A + (IX + d)$	11 011 101	DD	\$	‡	V	\$	0	†	3	5	19	011	Е
		10 k 110	86+										100	н
		← d →											101	L
ADD A, $(IY + d)$	$A \leftarrow A + (IY + d)$	11 111 101	FD	‡	\$	V	‡	0	1	3	5	19	111	А
		10 k 110	86+										1	1
		← d →						<u> </u>	<u> </u>				Mnemonic	
ADC A, s	$A \leftarrow A + s + C$	4 types		‡	\$	V	\$	0	t				ADD	000
SUB s	$A \leftarrow A - s$	available		\$	\$	V	\$	1	1				ADC	001
SBC A, s	$A \leftarrow A - s - C$	based on		1	\$	V	\$	1	\$	1*1	1*1	4*1	SUB	010
AND s	$A \leftarrow A \land s$	the above ADD		0	‡	P	‡	0	1	2	2	7	SBC	011
OR s	$A \leftarrow A \lor s$	instruction		0	\$	Р	†	0	0	1	2	7	AND	100
XOR s	A ← A⊕s	(see Comments)		0	\$	P	\$	0	0	3	5	19	OR	110
CP s	A-s	(see Continents)		‡	\$	V	\$	1_	\$				XOR	101
INC r	$r \leftarrow r+1$	00 r <i>l</i>	00 +	٠	\$	V	‡	0	1	1	1	4	СР	111
INC (HL)	(HL) ← (HL)+1	00 110 <i>l</i>	30+	٠	\$	V	‡	0	‡	1	3	11	S=r, n, (H	[L),
INC $(IX + d)$	(IX + d) ←	11 011 101	DD	•	‡	V	‡	0	1	3	6	23	(IX + d),	(IY + d)
	(IX + d) + 1	00 110 <i>l</i>	30+							Ì				
		← d →												
INC $(IY+d)$	$(IY+d) \leftarrow$	11 111 101	FD	•	‡	V	‡	0	\$	3	6	23	Mnemonic	
	(IY + d) + 1	00 110 <i>l</i>	30+										INC	100
		← d →											DEC	101
DEC m	m ← m-1	4 types		٠	†	V	\$	1	‡	1*2	1*2	4*2		
		available									3	11	m≕r, (HL	.,
		based on								3	6	23	(IX+d),	(IY + d)
		the above INC								3	6	23		
		instruction												

Table 4 8-bit arithmetic and logical group

Note: V and P mean overflow and parity, respectively.

 $Flags: \quad \bullet = unchanged$

0=reset

1 = set

X = undefined

 \ddagger =set or reset according to the result of the operation

302

Powered by ICminer.com Electronic-Library Service CopyRight 2003

-SHARP

	Symbolic	OP code	HEX code			Fla	ags			No. of	No. of	No. of	Comments
Mnemonic	operation	76 543 210	(Basic)	С	Ζ	P/V	S	N	H	Bytes	M Cycles	T States	
DAA	Decimal	00 100 111	27	‡	\$	Р	‡	٠	\$	1	1	4	Decimal adjust
	adjustment		1			ļ					1		accumulator.
	(add/subtract)					L						ļ	
CPL	$A \leftarrow \overline{A}$	00 101 111	2F	•	•	•	٠	1	1	1	1	4	Complement
													accumulator
													(one's complement).
NEG	$A \leftarrow 0 - A$	11 101 101	ED	\$	‡	V	‡	1	1	2	2	8	Negate acc.
		01 000 100	44										(two's complement).
CCF	$C \leftarrow \overline{C}$	00 111 111	3F	‡	•	•	٠	0	X	1	1	4	Complement carry flag.
SCF	C ← 1	00 110 111	37	1	۰	•	٠	0	0	1	1	4	Set carry flag.
NOP	No operation	00 000 000	00	٠	•	•	•	٠	•	1	1	4	
HALT	CPU halted	01 110 110	76	•	۰	•	•	•	•	1	1	4	
DI	IFF $\leftarrow 0$	11 110 011	F3	•	•	•	۲	•	•	1	1	4	Interrupt not enable
EI	IFF ← 1	11 111 011	FB	•	٠	•	•	•	•	1	1	4	Interrupt enable
IM 0	Set interrupt	11 101 101	ED	•	•	•	•	•	•	2	2	8	Set interrupt mode.
	mode 0	01 000 110	46										
IM 1	Set interrupt	11 101 101	ED	•	•	•	٠	•	•	2	2	8	
	mode 1	01 010 110	56										
IM 2	Set interrupt	11 101 101	ED	•	•	•	•	٠	•	2	2	8	
	mode 2	01 011 110	5E								<u> </u>	<u> </u>	

Table 5 General purpose arithmetic and CPU control groups

Note : IFF indicates the interrupt enable flip-flop, CY indicates the carry flip-flop. Flags : \bullet = unchanged, 0=reset, 1=set, X=undefined, \ddagger = set or reset according to the result of the operation

	Symbolic	OP code	HEX code			Fla	igs			No. of	No. of	No. of	Com	ments
Mnemonic	operation	76 543 210	(Basic)	С	Ζ	P/V	S	Ν	н	Bytes	M Cycles	T States		
ADD HL, ss	HL ← HL	00 ss1 001	09+	‡	•	•	٠	0	X	1	3	11	ļ	<u>.</u>
	+ss												SS	Reg.
ADC HL, ss	HL ← HL	11 101 101	ED	‡	‡	V	†	0	Х	2	4	15	00	BC
	+ss+C	01 ssl 010	4A+										01	DE
SBC HL, ss	HL ← HL	11 101 101	ED	‡	\$	V	‡	1	X	2	4	15	10	HL
,	-ss-C	01 ss0 010	42+										11	SP
ADD IX, pp	$IX \leftarrow IX + pp$	11 011 101	DD	ţ	٠	•	٠	0	X	2	4	15		
,		00 pp1 001	09+			1							рр	Reg.
ADD IY, rr	$IY \leftarrow IY + rr$	11 111 101	FD	\$	٠	•	•	0	X	2	4	15	00	BC
,		00 rr1 001	09+										01	DE
INC ss	$ss \leftarrow ss + 1$	00 ss0 011	03+	•	٠	•	•	•	•	1	1	6	10	IX
INC IX	$IX \leftarrow IX + 1$	11 011 101	DD	•	٠	•	•	•	•	2	2	10	11	SP
		00 100 011	23	1	1			}	ļ				1	
INC IY	$IY \leftarrow IY + 1$	11 111 101	FD	٠	٠	•	•	٠	٠	2	2	10		
		00 100 011	23										rr	Reg.
DEC ss	$ss \leftarrow ss - 1$	00 ss1 011	0B+	•	•	•	•	•	•	1	1	6	00	BC
DEC IX	$IX \leftarrow IX - 1$	11 011 101	DD	•	•	٠	٠	•	•	2	2	10	01	DE
		00 101 011	2B					1					10	IY
DEC IY	$IY \leftarrow IY - 1$	11 111 101	FD	•	•	•	•	٠	•	2	2	10	11	SP
		00 101 011	2B	{									1	

Table 6 16-bit arithmetic group

Note: ss is any of the register pairs BC, DE, HL, SP.

Note: ss is any of the register pairs bC, DE, IE, SF.
pp is any of the register pairs BC, DE, IX, SP.
rr is any of the register pairs BC, DE, IY, SP.
Flags: ●=unchanged, 0=reset, 1=set, X=undefinede, \$\$\$\$\$\$\$\$\$=set or reset according to the result of the operation

SHARP -

Млетоліс	Symbolic	OP code	HEX code		T _		ags	1	1	No. of	No. of	No. of	Comments
	operation	76 543 210	(Basic)	C	Z	P/V	S	N	H	Bytes	M Cycles	T States	
RLCA		00 000 111	07	\$	•	•	•	0	0	1	1	4	Rotate left circular accumulator.
RLA		00 010 111	17	\$	•	•	•	0	0	1	1	4	Rotate left accumulator.
RRCA		00 001 111	0F	\$	•	•	•	0	0	1	1	4	Rotate right circular accumulator.
RRA		00 011 111	1F	\$	•	•	•	0	0	1	1	4	Rotate right accumulator.
RLCr		11 001 011 00 k r	CB 00+	\$	\$	Р	\$	0	0	2	2	8	Rotate left circular register r.
RLC (HL)	Ì	11 001 011 00 k 110	CB 06+	\$	\$	Р	\$	0	0	2	4	15	r Reg.
RLC (IX+d)	C = 7 = 0 = r, (HL), (IX+d), (IY+d)	$\begin{array}{cccc} 11 & 011 & 101 \\ 11 & 001 & 011 \\ \leftarrow & d & \rightarrow \\ 00 & k & 110 \end{array}$	DD CB 06+	t	\$	Р	‡	0	0	4	6	23	000 B 001 C 010 D 011 E
RLC (IY+d)	(11+0)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	FD CB 06+	\$	ŧ	Р	\$	0	0	4	6	23	100 H 101 L 111 A
RL m				\$	\$	Р	t	0	0				Mnemonic k
RRC m	- <u>7</u> C m			\$	ŧ	Р	t	0	0				RLC 000 RRC 001 RL 010
RR m				\$	\$	Р	t	0	0	2* 2 4	2^{*}	8* 15	RR 011 SLA 100 SRA 101
SLA m	C			ţ	\$	Р	t	0	0	4	6 6	23 23	SRA 101 SRL 111
SRA m				ŧ	\$	Р	‡	0	0				m = r, (HL), (IX+d), (IY+d)
SRL m	+ <u>7 → 0</u> +C			\$	\$	Р	‡ .	0	0				*depends on m.
RLD	A 7 1/3 0 7 1/3 0	11 101 101 01 101 111	ED 6F	•	\$	Р	t	0	0	2	5	18	Rotate digit left and right between the accumulator and location (HL).
RRD	AT 0130 T 4130 4 (HL)	11 101 101 01 100 111	ED 67	•	\$	Р	t	0	0	2	5	18	The content of the upper half of the accumulator is un- affected.

Table 7 Rotate and shift groups

 $Flags: \bullet = unchanged$

0 = reset1 = set

x = undefined
t = set or reset according to the result of the operation

-SHARP -

7

.

	Symbolic	()P co	ode	HEX code			Fla	igs			No. of	No. of	No. of	Com	ments
Mnemonic	operation	76	543	210	(Basic)	C	Z	P/V	S	N	Н	Bytes	M Cycles	T States		
BIT b, r	Z ← r̃ь	11	001	011	СВ	•	\$	X	Х	0	1	2	2	8	r	Reg.
		01	b	r	40+										000	<u>B</u>
BIT b, (HL)	Z ← (HL) _b	11	001	011	CB	•	1	X	Х	0	1	2	3	12	001	C
		01	b	110	46+						L				010	D
BIT b, $(IX+d)$	$Z \leftarrow (\overline{IX+d})_b$	11	011	101	DD	•	‡	X	Х	0	1	4	5	20	011	E
		11	001	011	CB										100	Н
			d	-											101	L
		01	b	110	46+	ļ					ļ				111	А
BIT b, $(IY+d)$	$Z \leftarrow (\overline{IY+d})_{b}$	11	111	101	FD	•	‡	X	X	0	1	4	5	20	1	
		11	001	011	CB										b	Bit Tested
		+	d	→											000	0
		01	b	110	46+		-		_	ļ	ļ	ļ			001	1
SET b, r	r⊳ ← 1	11	001	011	СВ	•	•	•	•	•	•	2	2	8	010	2
		a	b	r						ļ	<u> </u>	ļ			011	. 3
SET b, (HL)	(HL)₀ ← 1	11	001	011	CB	•	•	•	•	•	•	2	4	15	100	4
		a	b	110	06+			L			ļ				101	5
SET b, $(IX+d)$	(IX+d)ь ← 1	1		101	DD	•	•	•	•		•	4	6	23	110	6
		11		011	CB								ļ		111 [.]	7
		-	d	+												
		a	b	110	06+				<u> </u>							1
SET b, $(IY+d)$	$(IY+d)_{b} \leftarrow 1$			101	FD	•	•	•		•	•	4	6	23	Mnemoni	
		11		011	CB		ļ								SET	11
			d												RES	10
		a	b	110	06+		ļ			<u> </u>	<u> </u>					
									ļ			2*	2*	8*		T \
RES b. m	m₀ ← 0											2	4	15	m=r, (H)	
100 0, m												4	6	23	(IX+d), (• •
							1					4	6	23	depen	ds on m

Table 8	Bit	set,	reset	and	test	group
---------	-----	------	-------	-----	------	-------

Note : The notation m_b indicates bit b (0 to 7) or location m.

 $Flags: \bullet = unchanged$

0 = reset1 = set

X = undefined

 \ddagger =set or reset according to the result of the operation

-SHARP -

7

Mnemonic	Symbolic	OP co	de	HEX code			Fla	igs			No. of	No. of	No, of	C-	mante
Mnemonic	operation	76 543	210	(Basic)	C	Z	P/V	S	N	Η	Bytes	M Cycles	T States	Con	nments
JP nn	PC ← nn	11 000 ← n ← n	011 → →	C3	•	•	•	•	•	•	3	3	10	<u></u>	Condition NZ
JP cc, nn	If condition cc is true PC ← nn,		010 	C2+	•	•	•	٠	•	•	3	3	10	001 010	Z NC
	otherwise con- tinue	← n	→								3	3	10	011 100	C PO
JR e	$PC \leftarrow PC + e$	00 011 ← e-2	000 →	18	•	•	•	٠	•	•	2	3	12	101 110	PE P
JR C, e	If $C=1$ PC \leftarrow PC+e	00 111 ← e-2	000 →	38	٠	•	•	•	•	•	2	3	12	111 NZ : non	M
	If C=0 continue										2	2	7	Z : zer C : car	0
JR NC, e	If $C=0$ PC \leftarrow PC+e	00 110 ← e-2	000 →	30	٠	•	•	٠	•	•	2	3	12	PO : par PE : par	ity odd
	If C=1 continue										2	2	7	Ŭ	n positive n negative
JR Z, e	. If $Z=1$ PC \leftarrow PC+e	00 101 ← e-2	000 →	28	•	•	•	•	•	•	2	3	12	J	U U
	If $Z=0$ continue										2	2	7		
JR NZ, e	If $Z=0$ PC \leftarrow PC+e	00 100 ← e-2	000 →	20	٠	•	•	٠	•	٠	2	3	12		
	If Z=1 continue										2	2	7		
JP (HL)	PC ← HL	11 101	001	E9	۲	٠	•	۲	٠	٠	1	1	4		
JP (IX)	PC ← IX	11 011 11 101		DD E9	٠	•	•	•	•	•	2	2	8		
JP (IY)	PC ← IY	11 111 11 101		FD E9	•	•	•	٠	•	•	2	2	8		
DJNZ, e	If $B \leftarrow B-1$ $B \neq 0$ $PC \leftarrow PC+1$	00 010 ← e-2		10	•	•	•	•	•	•	2	3	13		
	If B=0 continue									-	2	2	8		

		~						
Fabl	0	g	ъ.	ı im	n	n٢	nır	١

Note : e represents the extension in the relative addressing mode. e is a signed two's complement number in the range $\langle -126, 129 \rangle$ e -2 in the opcode provides an effective address of pc+e as PC is incremented by 2 prior to the addition of e. e itself is obtained from opcode position.

SHARP -

 $Flags: \bullet = unchanged$

0 = reset

1 = setX = undefined

 \ddagger = set or reset according to the result of the operation

7

7

7.4

M	Symbolic	0	P co	de	HEX code			Fla	ags			No. of	No. of	No. of	Comn	ients
Mnemonic	operation	76	543	210	(Basic)	С	Ζ	P/V	S	Ν	H	Bytes	M Cycles	T States		
CALL nn	(SP-1) ← PC _H	11	001	101	CD	٠	۲	•	٠	٠	•	3	5	17	cc	Condition
	(SP-2) ← PCL	-	n	→											000	NZ
	PC ← nn	-	n	→											001	Z
CALL cc, nn	If condition cc is	11	cc	100	C4+	٠	٠	•	•	•	•	3	5	17	010	NC
	false continue,	-	n	→									ļ		011	C
	otherwise same	•	n	→								3	3	10	100	PO
	as CALL nn												ļ		101	PE
RET	PCL ← (SP)	11	001	001	C9	٠	•	•	•	•	•	1	3	10	110	Р
	$PC_{H} \leftarrow (SP+1)$							I)			111	M
RET cc	If condition cc is	11	cc	000	C0+	•	•	•	٠	•	•	1	3	11		
	false continue,											L				
	otherwise same]		1	1	5	r	p
	as RET											L			000	00н
RETI	Return from	11	101	101	ED	•	•	•	•	٠	•	2	4	14	001	08н
	interrupt	01	001	101	4D										010	10н
RETN	Return from	11	101	101	ED		•	•	•	•	•	2	4	14	011	18н
	non-maskable	01	000	101	45]							100	20н
	interrupt														101	28н
RST p	(SP-1) ← PC _H	11	t	111	C7+	•	•	•	•	٠	•	1	3	11	110	30н
	$(SP-2) \leftarrow PCL$														111	38н
	РСн ← 0															
	PCL ← p															

Table 10 Call and return group

 $Fiags: \bullet = unchanged$

0 = reset

1 = set

X = undefined $\ddagger =$ set or reset according to the result of the operation

SHARP ·

-

Maamania Symbolic		OP code		HEX code Flags				No. of	No. of No. of Comments		ments					
Mnemonic	operation	76	543	210	(Basic)	С	Z	P/V	S	Ν	H	Bytes	M Cycles	T States		
IN A, (n)	A ← (n)	11	011	011	DB	•		•	۲	•	•	2	3	11	$n \rightarrow A_0^{-1}$	A ₇
		+	n	→											$Acc \rightarrow A$	_B -A ₁₅
IN r, (C)	r ← (C)	11	101	101	ED	•	\$	P	‡	0	‡	2	3	12		
		01	r	000	40+											
INI	(HL) ← (C)	11	101	101	ED	X	\$	X	Х	1	X	2	4	16	$C \rightarrow A_0$ -	
	B ← B-1	10	100	010	A2		1				1				$B \rightarrow A_8^-$	A_{15}
	HL ← HL+1															
INIR	(HL) ← (C)	11	101	101	ED	Х	1	X	Х	1	X	- 2	5	21	r	Reg.
	B ← B-1	10	110	010	B2		2						(If B≠0)		000	B
	$HL \leftarrow HL+1$							1				2	4	16	001	c
	Repeat until				1								(If B=0)		010	D
	B=0														011	E
IND	(HL) ← (C)	11	101	101	ED	X	\$	X	X	1	X	2	4	16	100	Н
	$B \leftarrow B - 1$	10	101	010	AA		1								101	L
	$HL \leftarrow HL - 1$											L		ļ	111	Ā
INDR	(HL) ← (C)	11	101	101	ED	X	1	X	X	1	X	2	5	21		1
	$B \leftarrow B-1$	10	111	010	BA								(If B≠0)			
	- HL ← HL-1						2					2	4	16	1	
	Repeat until												(If B=0)			
	B=0												L			
OUT (n), A	(n) ← A	11	010	011	D3	•	٠	•	•	•	•	2	3	11	$n \rightarrow (A \cdot E)$	8US) ₀₋₇
		+	n	→					L					ļ	$Acc \rightarrow (A$	-BUS)8-15
OUT (C), r	(C) ← r	11	101	101	ED	•	•	•	•	•	•	2	3	12		
		01	r	001	41+			ļ				L				
OUTI	(C) ← (HL)	11	101	101	ED	X	‡	X	X	1	X	2	4	16	$C \rightarrow A_0$	A ₇
	$B \leftarrow B-1$	10	100	011	A3		1									
	$HL \leftarrow HL + 1$												ļ		_	
OTIR	(C) ← (HL)		101		ED	X	1	X	X	1	X	2	5	21	$B \rightarrow A_{8}$	A ₁₅
	B ← B-1	10	110	011	B3								$(If B \neq 0)$)	,	
	HL ← HL+1						2					2	4	16		
	Repeat until										Ì		(If B=0))		
	B=0									L						
OUTD	(C) ← (HL)	11	101	101	ED	X	\$	X	X	1	X	2	4	16		
	B ← B-1	10	101	011	AB		1									
	$HL \leftarrow HL - 1$											ļ		ļ	4	
OTDR	(C) ← (HL)	11	101	101	ED	X	1	X	X	1	X	2	5	21		
	B ← B−1	10	111	011	BB]			(If B≠0)			
	HL ← HL - 1						2					2	4	16		
	Repeat until												(If B=0)	H		
	B=0											1				···

Table 11 Input and output group	Table	11	Input	and	output	group
---------------------------------	--------------	----	-------	-----	--------	-------

7

Note: (1) If the result of B-1 is zero the Z flag is set, otherwise it is reset. (2) Z flag is set upon instruction completion only.

Flags : • = unchanged 0 = reset

1 = set

X = undefined

 \ddagger = set or reset according to the result of the operation

-SHARP -