

Description

The HSDL-3007 is a new generation ultra-low profile enhanced infrared (IR) transceiver module that provides the capability of (1) interface between logic and IR signals for through-air, serial, half-duplex IR data link, and (2) IR remote control transmission for universal remote control applications. The HSDL-3007 can be used for IrDA as well as remote control application without the need of any additional external components for multiplexing.

The HSDL-3007 is fully compliant to IrDA[®] Physical Layer specification version 1.4 low power from 9.6 kbit/s to 115.2 kbit/s (SIR) and IEC825 Class 1 eye safety standards.

Agilent HSDL-3007 IrDA[®] Data Compliant Low Power 115.2 Kbit/s with Remote Control Infrared Transceiver Preliminary Data Sheet

IrDA[®] Features

- Fully Compliant to IrDA 1.4 Physical Layer Low Power Specifications from 9.6 kbit/s to 115.2 kbit/s
- Link distance up to 50cm typically
- Complete shutdown for TxD_IrDA, RxD_IrDA and PIN diode
- Low Power Consumption
- Low shutdown current
- **Remote Control Features**
- Wide angle and high radiant intensity
- Spectrally suited to remote control transmission function
- Typical link distance up to 7 meter

Applications

- Mobile data communication and universal remote control
 - Mobile Phones
 - PDAs
 - Webpads

Features

General Features

- Guaranteed temperature
 performance
 Critical parameters are guaranteed
 over temperature and supply
 voltage
- Vcc Supply 2.4 to 3.6 Volts
- Miniature Package - Height : 1.60 mm - Width : 7.00 mm - Depth : 2.80 mm
- Integrated remote control LED driver
- Input/Output Interface Voltage of 1.8 V
- Excellent EMI performance without shield
- LED Stuck-High Protection
- Designed to Accommodate Light Loss with Cosmetic Windows
- IEC 825-Class 1 Eye Safe
- LED stuck high protection
- Interface to Various Super I/O and Controller Devices
- Lead Free package

This preliminary data is provided to assist you in the evaluation of product(s) currently under development. Until Agilent Technologies releases this product for general sales, Agilent Technologies reserves the right to alter prices, specifications, features, capabilities, functions, release dates, and remove availability of the product(s) at anytime.

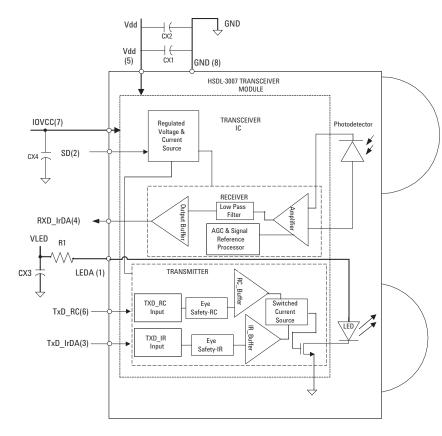


Figure 1. Functional Block Diagram of HSDL-3007

I/O Pins Configuration Table

The HSDL-3007 can be shutdown completely to achieve very low power consumption. In the shutdown mode, the PIN diode will be inactive and thus producing very little photocurrent even under very bright ambient light. It is also designed to interface to input/ output logic circuits as low as 1.8V. These features are ideal for battery operated mobile devices such as PDAs and mobile phones that require low power consumption

Application Support Information

The Application Engineering Group is available to assist you with the application design associated with HSDL-3007 infrared transceiver module. You can contact them through your local sales representatives for additional details.

	\square		\square	\square			Π
8	7	6	5	4	3	2	1

Figure 2. Rear View Pinout

Pin	Symbol	Description	I/O Type	Notes
1	LEDA	LED Anode		1
2	SD	Shutdown	Input Active High	2
3	TxD_IR	IrDA transmitter data input.	Input Active High	3
4	RxD	IrDA receive data	Output Active Low	4
7	Vcc	Supply Voltage		5
6	TxD_RC	RC transmitter data input.	Input Active High	6
7	IOVcc	Input/Output ASIC voltage		7
8	GND	Ground		8

Notes:

1. At IrDA mode, it is a contant current source. At RC mode, the current can be controlled by external resistor, R1, which is tied to VIed. Refer to the table below for recommended series resistor value.

2. Complete shutdown of IC and PIN diode. Do NOT float this pin.

3. This pin is used to transmit serial data when SD pin is low. If held high for longer than 50 µs, the LED is turned off. Do NOT float this pin.

4. This pin is capable of driving a standard CMOS or TTL load. No external pull-up or pull-down resistor is required. The pin is in tri-state when the transceiver is in shutdown mode.

5. Regulated, 2.4V to 3.6V

- 6. Logic high turns on the RC LED. If held high longer than 50 µs, the RC LED is turned off. Do NOT float the pin.
- 7. Connect to ASIC logic controller supply voltage or Vcc. The voltage at this pin should be equal to or less than Vcc.

8. Connect to system ground.

CAUTION: The BiCMOS inherent to the design of this component increases the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD

Recommended Application Circuit Components

Component	Recommended Value	Notes
R1	1 ohm ± 5%, 0.0625W for 2.4V \leq Vled \leq 3V 3.9 ohm ± 5%, 0.25W for 3V \leq Vled \leq 3.6V 5.6 ohm ± 5%, 0.25W for 3V \leq Vled \leq 4.2V	
CX1, CX4	100 nF, ± 20%, X7R Ceramic	1
CX2,CX3	4.7μF, ± 20%, Tantalum	1

Notes:

1. CX1, CX2 must be placed within 0.7cm of HSDL-3007 to obtain optimum noise immunity

Transceiver I/O Truth Table

TXD_IrDA	TXD_RC	LED	Remarks
0	0	OFF	IR Rx enabled. Idle mode
0	1	ON	Remote control operation
1	0	ON	IrDA Tx operation
1	1	ON	Not recommended
0	0	OFF	Shutdown mode*
	TXD_IrDA 0 1 1 0	TXD_IrDA TXD_RC 0 0 1 0 1 0 1 0 0 0	0 0 0FF 0 1 0N 1 0 0N 1 1 0N

* The shutdown condition will set the transceiver to the default mode (IrDA).

Absolute Maximum Ratings

For implementations where case to ambient thermal resistance is \leq 50°C/W.

Parameter	Symbol	Min.	Max.	Units	Conditions	Notes
Storage Temperature	Ts	-40	+100	°C		
Operating Temperature	T _A	-25	+85	°C		
LED Anode Voltage	V _{LEDA}	0	6.5	V	Vleda should be less than $V_{\mbox{\tiny CC}}$ +4V	
Supply Voltage	V _{cc}	0	6.5	V		
IO Vcc	$10 V_{cc}$	0	Vcc	V		
Input Voltage : TXD	V _{TXD}	0	I0Vcc	V		
Input Voltage : SD/Mode	V _{SD}	0	Vcc	V		
Output Voltage : RXD	Vo	0	I0Vcc	V		
DC LED Transmit Current	I _{LED} (DC)		32	mA		
Peak Transmit Current (RC)	I _{led} (PK)_RC		400	mA	≤ 8% duty cycle, ≤ 90 μs pulse width	1
Peak Transmit Current (IrDA)	I _{led} (PK)_IR		60	mA	$\leq 20\%$ duty cycle, \leq 90 μ s pulse width	2

Notes:

1. This peak current is specified for RC mode.

2. This peak current is specified for IrDA mode

Parameter		Symbol	Min.	Тур.	Max.	Units	Conditions
Operating Temperature		T _A	-25		+85	°C	
Supply Voltage		V _{cc}	2.4		3.6	V	
Input/Output Voltag	е	$10V_{cc}$	1.8		3.6	V	
LED Anode Voltage		Vleda			5.5	V	Vleda should be less than V_{cc} +4V
Logic Input Voltage	Logic High	V _{IH-IR}	IOV _{cc} -0.5		I0Vcc	V	
for TXD IR	Logic Low	V _{IL-IR}	0		0.4	V	
Logic Inout Voltage	Logic High	V _{IH-RC}	$10V_{cc}-0.4$		I0Vcc	V	
for TXD RC	Logic Low	$V_{\text{IL-RC}}$	0		0.4	V	
Logic Inout Voltage	Logic High	$V_{\text{IH-SD}}$	1.5		I0Vcc	V	
for SD	Logic Low	V _{IL-SD}	0		0.4	V	
Receiver Input	Logic High	El _H	0.0090		500	mW/cm ²	For in-band signals \leq 115.2kbit/s ^[1]
Irradiance	Logic Low	EIL			0.3	μW/cm²	For in-band signals [1]
LED (Logic High) Cu Amplitude (IR)	rrent Pulse	I _{LEDA}		40		mA	
LED (Logic High) Current Pulse Amplitude (RC)		I _{LEDA}		300		mA	
Receiver Data Rate			9.6		115.2	kbit/s	
Ambient Light							See IrDA Serial Infrared Physical Layer Link Specification, Appendix A for ambient levels

Recommended Operating Conditions

Note:

1. An in-band optical signal is a pulse/sequence where the peak wavelength, λp, is defined as 850 ≤ λp ≤ 900 nm, and the pulse characteristics are compliant with the IrDA Serial Infrared Physical Layer Link Specification v1.4.

Electrical and Optical Specifications - Receiver

Specifications (Min. & Max. values) hold over the recommended operating conditions unless otherwise noted. Unspecified test conditions may be anywhere in their operating range. All typical values (Typ.) are at 25°C, Vcc set to 3.0V and IOVcc set to 1.8V unless otherwise noted.

	Symbol	Min.	Тур.	Max.	Units	Conditions
	$2\theta_{1/2}$	30			0	
velength	λ_{P}		875		nm	
Logic High	V _{OH}	IOVcc - 0.5		$\rm IOV_{cc}$	V	I_{OH} = -200 $\mu\text{A},\text{EI} \leq 0.3~\mu\text{W/cm}^2$
Logic Low	V _{OL}	0		0.4	V	
th (SIR) [1]	t _{rpw} (SIR)	1		4	μs	$\theta_{1/2} \leq 15^{\circ}$, CL=9pF
RxD_IrDA Rise & Fall Times			60		ns	C _L =9pF
Receiver Latency Time [2] t				200	μs	$EI = 4.0 \ \mu W/cm^2$
ime ^[3]	t _{RW}			200	μs	$EI = 10 \text{ mW/cm}^2$
	Logic High Logic Low th (SIR) ^[1] I Times ne ^[2]	$\begin{array}{c} 2\theta_{1/2} \\ \hline \\ $	$\begin{array}{c c} & 2\theta_{1/2} & 30 \\ \hline \\ $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

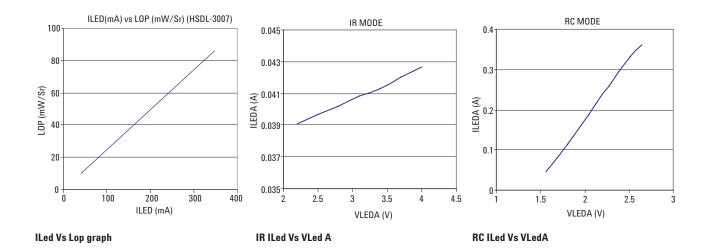
Notes:

1. For in-band signals 9.6 kbit/s to 115.2 kbit/s where 3.6 μ W/cm² \leq El \leq 500 mW/cm².

2. Latency is defined as the time from the last TxD_IrDA light output pulse until the receiver has recovered full sensitivity.

3. Receiver Wake Up Time is measured from Vcc power ON to valid RxD_IrDA output.

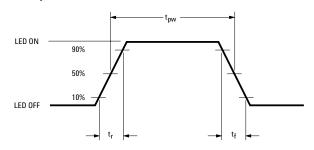
Electrical and Optical Specifications - Transmitter

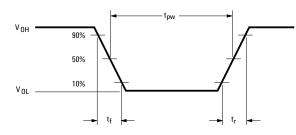

Specifications (Min. & Max. values) hold over the recommended operating conditions unless otherwise noted. Unspecified test conditions may be anywhere in their operating range. All typical values (Typ.) are at 25°C, Vcc set to 3.0V and IOVcc set to 1.8V unless otherwise noted.

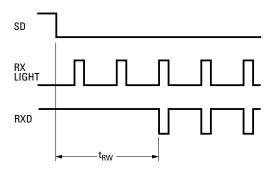
Parameter		Symbol	Min.	Тур.	Max.	Units	Conditions
Transmitter (IrD/	A Mode)						
IR Radiant Intensity		I _{EH}	4	9.6		mW/sr	$\label{eq:ledal_ledal} \begin{split} I_{\text{LEDA}} = & 40 \text{mA}, \ \theta_{1/2} \leq 15^\circ\text{,} \\ TxD_IR \geq V_{\text{IH}}, \ T_A = 25^\circ\text{C} \end{split}$
IR Viewing Angle		2 $\theta_{1/2}$	30		60	0	
IR Peak Wavelen	gth	λ_{P}		885		nm	
TxD_IrDA Logic	High	$V_{\text{IH-IR}}$	10Vcc-0.5		IOV _{cc}	V	
Levels	Low	$V_{\text{IL-IR}}$	0		0.5	V	
TxD_IrDA Input	High	I _{H-IR}		4	10	μΑ	$V_{I} \geq V_{IL\text{-}SD}$
Current	Low	I _{L-IR}		1	10	μΑ	$0 \leq V_{I} \leq V_{IL}$
LED Current	Shutdown	I _{vled}		0.01	10	μΑ	$V_{\text{SD}} \geq V_{\text{IH-SD}}$
Wake Up Time ^[1]		t _{TW}		0.2	10	μs	
Maximum Optical	I Pulse Width [2]	t _{PW(Max)}		60	120	μs	
TXD Pulse Width	(SIR)	t _{PW} (SIR)		1.6		μs	t _{PW} (TXD_IR)=1.6μs at 115.2 kbit/s
TxD Rise & Fall T	ïmes (Optical)	tr, tf			600	ns	t _{PW} (TXD_IR)=1.6μs at 115.2 kbit/s
LED Anode On-St	ate Voltage	$V_{\text{ON (LEDA)}}$		2.8		V	I_{LEDA} =40mA, $V_{I}(TxD) \ge V_{IH}$
Transmitter (Ren	note Control Mod	le)					
RC Radiant Intens	sity	I _{EH}		72		mW/sr	$\begin{array}{l} I_{\text{LEDA}} = 300 \text{mA}, \theta_{1/2} \leq 15^\circ, \text{Tx}D_\text{RC} \\ \geq V_{\text{IH}}, \text{T}_\text{A} = 25 ^\circ\text{C} \end{array}$
RC Viewing Angle	e	$2\theta_{1/2}$	30		60	0	
RC Peak Waveler	ıgth	λ_{P}		885		nm	
TxD_RC Logic	High	V_{IH}	IOVcc-0.4		IOV _{cc}	V	
Levels	Low	VIL	0		0.5	V	
TxD_RC Input	High	I _H			10	μA	$VI \ge VIH$
Current	Low	I _L			10	μA	$0 \le VI \le VIL$
Maximum Optical Pulse Width [2]		t _{PW(Max)}		60		μs	
LED Anode On-State Voltage		V _{ON (LEDA)}		2.5		V	$I_{LEDA} = 300 \text{mA}, V_I(\text{TxD}) \ge \text{VIH}$
Logic Input Voltage for SD	Logic High	VIH-SD	1.5		I0Vcc	V	
	Logic Low	VIL-SD	0		0.4	V	
Supply Current	Shutdown	I _{CC1}		0.01	10	μΑ	$Vsd \ge 1.5V$
	Idle (Standby)	I _{CC2}		0.1		mA	$V_{I(TxD)} \leq V_{IL}$, EI=0
	Active	I _{CC3}		178		μA	$V_{I(TxD)} \leq V_{IL}$, EI=10mW/cm2

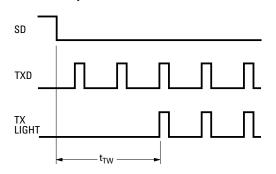

Notes:

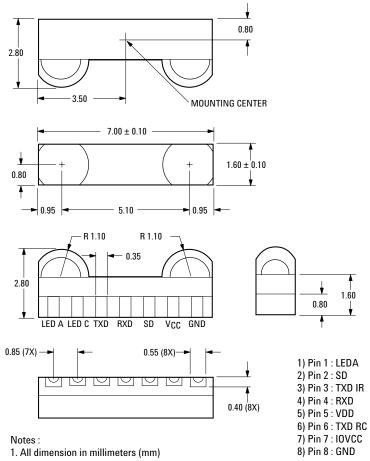
1. Transmitter Wake Up Time is measured from Vcc power ON to valid light output in response to a TxD_IrDA pulse.


2. The Optical PW is defined as the maximum time which the LED will turn on. This is to prevent the long turn on time for the LED.

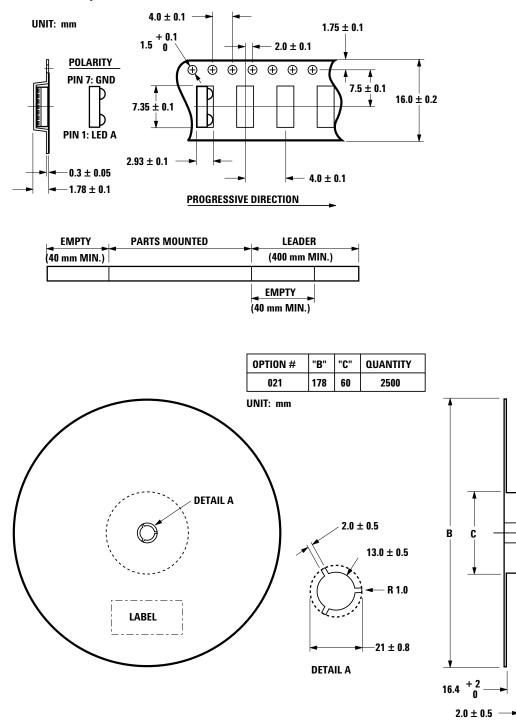



LED Optical Waveform


RXD Output Waveform


Receiver wakeup time waveform.

TXD wakeup time waveform.



HSDL-3007 Package Dimensions

2. Dimension tolerance is 0.2 mm unless otherwise specified

HSDL-3007 Tape and Reel Dimensions

8

HSDL-3007 Moisture Proof Packaging

All HSDL-3007 options are shipped in moisture proof package. Once opened, moisture absorption begins.

This part is compliant to JEDEC Level 4.

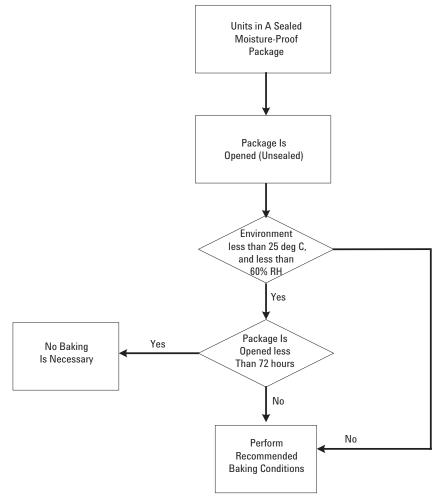


Figure 4. Baking Conditions Chart

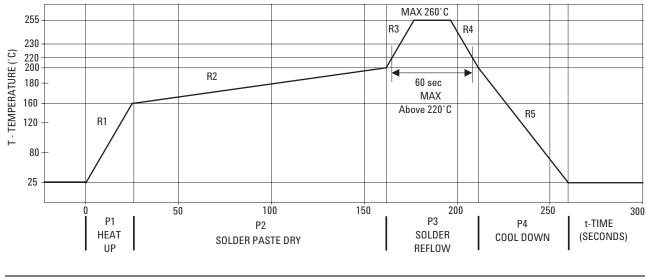
Baking Conditions

If the parts are not stored in dry conditions, they must be baked before reflow to prevent damage to the parts.

Package	Temp	Time
In reels	60 °C	\geq 48 hours
In bulk	100 °C	≥4 hours
	125 °C	\geq 2 hours
	150 °C	\geq 1 hour

Baking should only be done once.

9


Recommended Storage Conditions

Storage Temperature	10°C to 30°C
Relative Humidity	below 60% RH

Time from unsealing to soldering

After removal from the bag, the parts should be soldered within three days if stored at the recommended storage conditions. If times longer than three days are needed, the parts must be stored in a dry box.

Recommended Reflow Profile

Symbol	ΔΤ	Maximum $\Delta T / \Delta time$
P1, R1	25°C to 160°C	4°C/s
P2, R2	160°C to 200°C	0.5°C/s
P3, R3 P3, R4	200°C to 255°C (260°C at 10 second max) 255°C to 200°C	4°C/s-6°C/s
P4, R5	200°C to 25°C	-6°C/s
	P1, R1 P2, R2 P3, R3 P3, R4	P1, R1 25°C to 160°C P2, R2 160°C to 200°C P3, R3 200°C to 255°C (260°C at 10 second max) P3, R4 255°C to 200°C

The reflow profile is a straight-line representation of a nominal temperature profile for a convective reflow solder process. The temperature profile is divided into four process zones, each with different $\Delta T/\Delta time$ temperature change rates. The $\Delta T/\Delta time$ rates are detailed in the above table. The temperatures are measured at the component to printed circuit board connections.

In process zone P1, the PC board and HSDL-3007 castellation pins are heated to a temperature of 160°C to activate the flux in the solder paste. The temperature ramp up rate, R1, is limited to 4°C per second to allow for even heating of both the PC board and HSDL-3007 castellations. Process zone P2 should be of sufficient time duration (60 to 120 seconds) to dry the solder paste. The temperature is raised to a level just below the liquidus point of the solder, usually 200°C (392°F).

Process zone P3 is the solder reflow zone. In zone P3, the temperature is quickly raised above the liquidus point of solder to 255°C (491°F) for optimum results. The dwell time above the liquidus point of solder should be between 20 and 60 seconds. It usually takes about 20 seconds to assure proper coalescing of the solder balls into liquid solder and the formation of good solder connections. Beyond a dwell time of 60 seconds, the intermetallic growth within the

solder connections becomes excessive, resulting in the formation of weak and unreliable connections. The temperature is then rapidly reduced to a point below the solidus temperature of the solder, usually 200°C (392°F), to allow the solder within the connections to freeze solid.

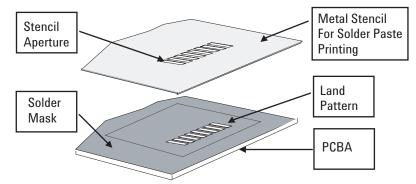
Process zone P4 is the cool down after solder freeze. The cool down rate, R5, from the liquidus point of the solder to 25°C (77°F) should not exceed 6°C per second maximum. This limitation is necessary to allow the PC board and HSDL-3007 castellations to change dimensions evenly, putting minimal stresses on the HSDL-3007 transceiver.

Appendix A: HSDL-3007 SMT Assembly Application Note

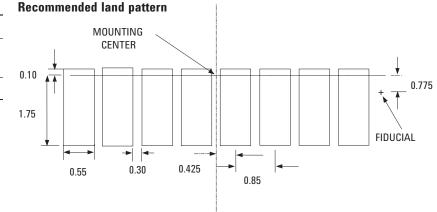
Recommended Metal solder Stencil Aperture

It is recommended that only a 0.127 mm (0.005 inch) thick stencil be used for solder paste printing. This is to ensure adequate printed solder paste volume and no shorting. See the Table 1 below the drawing for combinations of metal stencil aperture and metal stencil thickness that should be used.

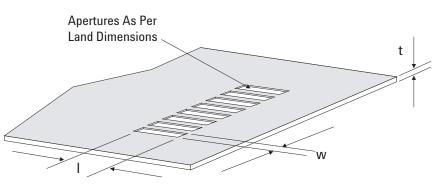
Table 1


Stencil	Aperture size(mm)					
thickness, t(mm)	Length, I	Width, w				
0.127mm	1.75±0.05	0.55±0.05				

Adjacent Land Keepout and Solder Mask Areas


Adjacent land keepout is the maximum space occupied by the unit relative to the land pattern. There should be no other SMD components within this area. The minimum solder resist strip width required to avoid solder bridging adjacent pads is 0.2mm. It is recommended that two fiducially crosses be placed at mid length of the pads for unit alignment.

Note: Wet/Liquid Photoimaginable solder resist/mask is recommended


Solder Pad, Mask and Metal Stencil

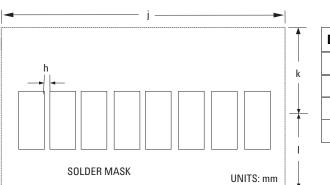
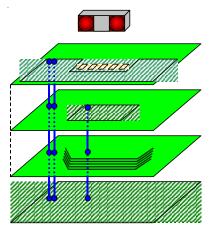

Figure 1. Stencil and PCBA

Figure 2. Land Pattern

Figure 3. Solder stencil aperture

Dimension	mm
h	0.2
I	3.0
k	2.6
j	7.2


Figure 4. Adjacent Land Keepout and Solder Mask Area

Appendix B: PCB Layout Suggestion

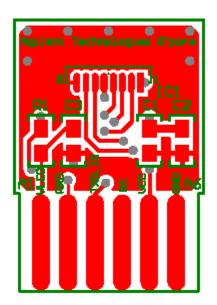
The HSDL-3007 is a shieldless part and hence does not contain a shield trace unlike the other transceivers. The effects of EMI and power supply noise can potentially reduce the sensitivity of the receiver, resulting in reduced link distance. The following PCB layout guidelines should be followed to obtain a good PSRR and EM immunity resulting in good electrical performance. Things to note:

- 1. The ground plane should be continuous under the part.
- 2. VLED and Vcc can be connected to either unfiltered or unregulated power supply. If VLED and Vcc share the same power supply, CX3 need not be used. The connections for CX1 and CX2 should be connected before the current limiting resistor R1.
- 3. CX1 is generally a ceramic capacitor of low inductance providing a wide frequency response while CX2 and CX3 are tantalum capacitor of big volume and fast frequency response. The use of a tantalum capacitor is more critical on the VLED line, which carries a high current. CX4 is an optional ceramic capacitor, similar to CX1, for the IOVcc line.
- 4. Preferably a multi-layered board should be used to provide sufficient ground plane. Use the layer underneath and near the transceiver module as Vcc, and sandwich that layer between ground connected board layers. The diagrams below demonstrate an example of a 4-layer board :

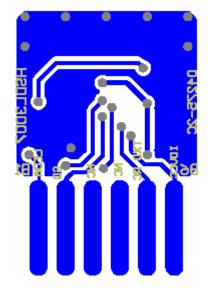
The area underneath the module at the second layer, and 3cm in all direction around the module is defined as the critical ground plane zone. The ground plane should be maximized in this zone. Refer to application note AN1114 or the Agilent IrDA Data Link Design Guide for details. The layout below is based on a 2-layer PCB.

Top layer

Connect the module ground pin to bottom ground layer


Layer 2

Critical ground plane zone. Do not connect directly to the module ground pin


Layer 3

Keep data bus away from critical ground plane zone

Bottom layer (GND)

Top Layer

Bottom Layer

Appendix C: General Application Guide for the HSDL-3007 Infrared IrDA® Compliant 115.2kb/s Transceiver

Description

The HSDL-3007, a widevoltage operating range infrared transceiver, is a lowcost and ultra small form factor device that is designed to address the mobile computing market such as PDAs, as well as small embedded mobile products such as digital cameras and cellular phones. It is spectrally suited to universal remote control transmission function. It is fully compliant to IrDA 1.4 low power specification from 9.6kb/s to 115.2kb/s, and support most remote control codes. The design of HSDL-3007 also includes the following unique features:

- Spectrally suited to universal remote control transmission function;
- Low passive component count;
- Shutdown mode for low power consumption requirement;
- Direct interface with I/O logic circuit.

Selection of Resistor R1

Resistor R1 should be selected to provide the appropriate peak pulse LED current at different ranges of Vcc as shown on page 3 under "Recommended Application circuit components".

Interface to the Recommended I/O chip

The HSDL3007's TXD data input is buffered to allow for CMOS drive levels. No peaking circuit or capacitor is required. Data rate from 9.6kb/s up to 115.2kb/s is available at RXD pin. The TXD_RC, pin6, is used to select the remote control transmit mode. Alternatively, the TXD_IR, pin3, is used for infrared transmit selection.

Figures 5 and 6 show how HSDL-3007 fits into a mobile phone and PDA platform respectively. The link distance testing was done using typical HSDL-3007 units with SMC's FDC37C669 and FDC37N769 Super I/O controllers. An IR link distance of up to 50 cm was demonstrated.

Remote Control Operation

The HSDL-3007 is spectrally suited to universal remote control transmission function. Remote control applications are not governed by any standards, owing to which there are numerous remote codes in market. Each of those standards results in receiver modules with different sensitivities, depending on the carries frequencies and responsively to the incident light wavelength.

Agilent's HSDL-3007 can acheive a typical RC link distance of 7m to 8m.

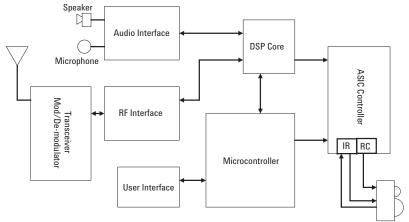


Figure 5. Mobile Application Platform

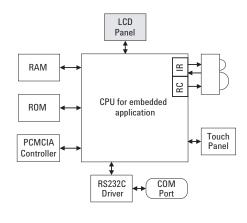


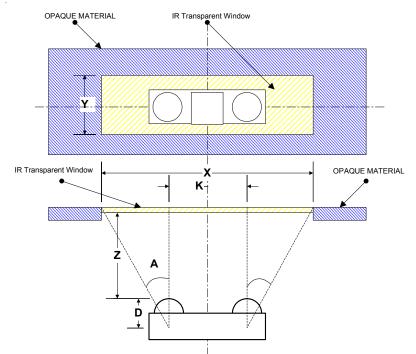
Figure 6. PDA Platform

Appendix E: Window Design for HSDL-3007

To ensure IrDA compliance, some constraints on the height and width of the window exist. The minimum dimensions ensure that the IrDA cones angles are met without vignetting. The maximum dimensions minimize the effects of stray light. The minimum size corresponds to a cone angle of 30° and the maximum size corresponds to a cone angle of 60°.

In figure 7, X is the width of the window, Y is the height of the window and Z is the distance from the HSDL-3007 to the back of the window. The distance from the center of the LED lens to the center of the photodiode lens, K, is 5.1mm. The equations for computing the window dimensions are as follows:

$\mathbf{X} = \mathbf{K} + 2^* (\mathbf{Z} + \mathbf{D})^* \mathrm{tan} \mathbf{A}$


$$Y = 2^{*}(Z+D)^{*}tanA$$

The above equations assume that the thickness of the window is negligible compared to the distance of the module from the back of the window (Z). If they are comparable, Z' replaces Z in the above equation. Z' is defined as

Z'=Z+t/n

where 't' is the thickness of the window and 'n' is the refractive index of the window material.

The depth of the LED image inside the HSDL-3007, D, is 3.17mm. 'A' is the required half angle for viewing. For IrDA compliance, the minimum is 15^0 and the maximum is 30^0 . Assuming the thickness of the window to be negligible, the equations result in the following table and figures:

Module Depth (z) mm	m Aperture Width (x, mm)		Aperture height (y, mm)	
	Max	min	Max	Min
0	8.76	6.80	3.66	1.70
1	9.92	7.33	4.82	2.33
2	11.07	7.87	5.97	2.77
3	12.22	8.41	7.12	3.31
4	13.38	8.94	8.28	3.84
5	14.53	9.48	9.43	4.38
6	15.69	10.01	10.59	4.91
7	16.84	10.55	11.74	5.45
8	18.00	11.09	12.90	5.99
9	19.15	11.62	14.05	6.52

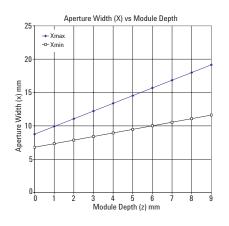
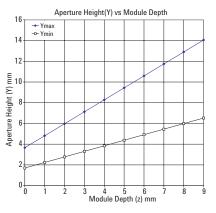
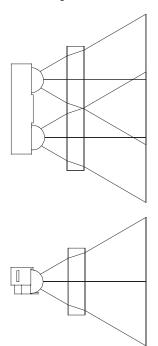
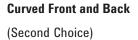


Figure 8. Aperture Height (x) vs. Module Depth (z)




Figure 9. Aperture Height (y) vs. Module Depth (z)

Window Material


Almost any plastic material will work as a window material. Polycarbonate is recommended. The surface finish of the plastic should be smooth, without any texture. An IR filter dye may be used in the window to make it look black to the eye, but the total optical loss of the window should be 10% or less for best optical performance. Light loss should be measured at 885 nm. The recommended plastic materials for use as a cosmetic window are available from General Electric Plastics.

Shape of the Window

From an optics standpoint, the window should be flat. This ensures that the window will not alter either the radiation pattern of the LED, or the receive pattern of the

Flat Window (First Choice)

Curved Front, Flat Back (Do not use)

Recommended Plastic Materials:

Material #	Light Transmission	Haze	Refractive Index
Lexan 141	88%	1%	1.586
Lexan 920A	85%	1%	1.586
Lexan 940A	85%	1%	1.586

Note: 920A and 940A are more flame retardant than 141.

Recommended Dye: Violet #21051 (IR transmissant above 625mm)

photodiode. If the window must be curved for mechanical or industrial design reasons, place the same curve on the backside of the window that has an identical radius as the front side. While this will not completely eliminate the lens effect of the front curved surface, it will significantly reduce the effects. The amount of change in the radiation pattern is dependent upon the material chosen for the window, the radius of the front and back curves, and the

distance from the back surface to the transceiver. Once these items are known, a lens design can be made which will eliminate the effect of the front surface curve. The following drawings show the effects of a curved window on the radiation pattern. In all cases, the center thickness of the window is 1.5 mm, the window is made of polycarbonate plastic, and the distance from the transceiver to the back surface of the window is 3 mm.

Order Information

Marking Information

Part Number	HSDL-3007-021	− The – on
Packaging Type	Tape and Reel	- Y =
Package	Front Option	- 1 -
Quantity	2500	- w =

e unit is marked with 2YWL the shield year = Work week L = lot number

www.agilent.com/ semiconductors

For product information and a complete list of distributors, please go to our web site.

For technical assistance call:

Americas/Canada: +1 (800) 235-0312 or (408) 654-8675

Europe: +49 (0) 6441 92460

China: 10800 650 0017

Hong Kong: (+65) 6756 2394

India, Australia, New Zealand: (+65) 6755 1939

Japan: (+81 3) 3335-8152(Domestic/International), or 0120-61-1280(Domestic Only)

Korea: (+65) 6755 1989

Singapore, Malaysia, Vietnam, Thailand, Philippines, Indonesia: (+65) 6755 2044

Taiwan: (+65) 6755 1843

Data subject to change. Copyright © 2005 Agilent Technologies, Inc. March 18, 2005

