

Z86127 Low-Cost Digital Television Controller (LDTC)

GENERAL DESCRIPTION

The Z86127 Low-Cost Digital Television Controller (LDTC) introduces a new level of sophistication to single-chip architecture. The Z86127 is a member of the Z8[®] single-chip microcontroller family with 8 Kbytes of ROM and 236 bytes of RAM. The device is housed in a 64-pin DIP package, in which only 52 are active, and are CMOS compatible. The LDTC offers mask programmed ROM which enables the Z8 microcontroller to be used in a high volume production application device embedded with a custom program (customer supplied program).

Zilog's LDTC offers fast execution, efficient use of memory, sophisticated interrupts, input/output bit manipulation capabilities, and easy hardware/software system expansion along with low cost and low power consumption. The device provides an ideal performance and reliability solution for consumer and industrial television applications.

The Z86127 architecture is characterized by utilizing Zilog's advanced Superintegration[™] design methodology. The device has an 8-bit internal data path controlled by a Z8 microcontroller and On Screen Display (OSD) logic circuits/ Pulse Width Modulators (PWM). On-chip peripherals include two register mapped I/O ports (Ports 2 and Port 3), interrupt control logic (one software, two external and three internal interrupts) and a standby mode recovery input port (Port 3, pin P30).

The OSD control circuits support 8 rows by 20 columns of characters. The character color is specified by row. One of the eight rows is assigned to show two kinds of colors for bar type displays such as volume control. The OSD is capable of displaying either low resolution (5x7 dot pattern) or high resolution (11x15 dot pattern) characters. The Z86C97 currently supports high resolution characters only.

A 14-bit PWM port provides enough voltage resolution for a voltage synthesizer tuning system. Three 6-bit PWM ports are used for controlling audio signal levels. Five 8-bit PWM ports are used to vary picture levels.

The LDTC applications demand powerful I/O capabilities. The Z86127 fulfills this with 27 I/O pins dedicated to input and output. These lines are grouped into four ports, and are configurable under software control to provide timing, status signals, parallel I/O and an address/data bus for interfacing to external memory.

There are three basic address spaces available to support this wide range of configurations: Program Memory, Video RAM, and Register File. The Register File is composed of 236 bytes of general purpose registers, two I/O Port registers, 15 control and status registers and three reserved registers.

To unburden the program from coping with the real-time problems such as counting/timing and data communication, the LDTC offers two on-chip counter/timers with a large number of user selectable modes (Functional Block Diagram).

Notes:

All Signals with a preceding front slash, "/", are active Low, e.g.: B//W (WORD is active Low); /B/W (BYTE is active Low, only).

Power connections follow conventional descriptions below:

Connection	Circuit	Device
Power	V _{cc}	V _{DD}
Ground	GND	V _{SS}

GENERAL DESCRIPTION (Continued)

Functional Block Diagram

PIN CONFIGURATION

N/C	1	\bigcirc	64	PWM6
N/C	2		63	PWM7
N/C	3		62	PWM8
N/C	4		61	PWM9
PWM1	5		60	PWM10
P35	6		59	PWM11
P36	7		58	PWM12
P34	8		57	PWM13
P31	9		56	P27
P30	10		55	P26
XTAL1	11		54	P25
XTAL2	12		53	P24
/RESET	13		52	P23
P60	14		51	GND
GND	15	786127	50	P22
P61	16		49	P21
P62	17	(LDTC)	48	VCC
VCC	18		47	P20
P63	19		46	N/C
P64	20		45	N/C
P65	21		44	N/C
AFCIN	22		43	N/C
P50	23		42	N/C
P51	24		41	N/C
P52	25		40	N/C
P53	26		39	N/C
P54	27		38	VBLANK
P55	28		37	VBLUE
P56	29		36	VGREEN
P57	30		35	VRED
OSCIN	31		34	VSYNC
OSCOUT	32		33	HSYNC

64-Pin Mask-ROM Plastic DIP

ABSOLUTE MAXIMUM RATINGS

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Symbol	Parameters	Min	Max	Units	Notes
$\begin{matrix} V_{CC} \\ V_{I} \\ V_{I} \\ V_{O} \\ I_{OH} \end{matrix}$	Power Supply Voltage* Input Voltage Input Voltage Output Voltage Output Current High	-0.3 -0.3 -0.3 -0.3	+7 V _{cc} +0.3 V _{cc} +0.3 V _{cc} +8.0 -10	V V V V mA	[1] [2] 1 pin
$\begin{array}{c} I_{OH} \\ I_{OL} \\ I_{OL} \\ I_{OL} \\ T_{A} \\ T_{STG} \end{array}$	Output Current High Output Current Low Output Current Low Output Current Low Operating Temperature Storage Temperature	† -65	-100 20 40 200 +150	mA mA mA C	All total 1 pin [3] (1 pin) All total

Notes:

[1] Port 2 open drain

[2] PWM open-drain outputs

[3] Port 5

* Voltage on all pins with respect to GND.

† See Ordering Information

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (Test Load Diagram).

Test Load Diagram

CAPACITANCE

 $T_A=25^{\circ}C$; $V_{CC}=GND=0V$; Freq=1.0 MHz; unmeasured pins to GND.

Parameter	Max	Units
Input capacitance	10	pF
Output capacitance	20	pF
I/O capacitance	25	рF
AFC _{IN} input capacitance	10	pF

DC CHARACTERISTICS T_A =0°C to +70°C; V_{cc}=+4.5V to +5.5V; F_{osc}=4 MHz

Sym	Parameter	T _A =0°C Min	to +70°C Max	Typical @ 25°C	Units	Conditions
V.,	Input Voltage Low	0	0.2 V	1.48	V	
V	Input XTAL/Osc In Low		0.07 V	0.98	V	External Clock Generator Driven
V	Input Voltage XTAL/Osc In High	$0.7 \ \mathrm{V_{cc}}$	V _{cc}	3.2	V	External Clock Generator Driven
VILLO	Input XTAL/Osc in High	0.8 V _{cc}	V _{cc}	3.0	V	External Clock Generator Driven
V	Schmitt Hysteresis	0.1 V _{cc}	00	0.8	V	
V _{PU}	Maximum Pull-up Voltage	00	12		V	[2]
V	Output Voltage Low		0.4	0.16	V	I ₀₁ =1.00mA
OL			0.4	0.19	V	I ₀₁ =3.2mA, [1]
			0.4	0.19	V	I ₀₁ =0.75mA [2]
			1.5	1.00	V	I _{oL} =10mA [1]
V ₀₀₋₀₁	AFC Level 01 In		0.45 V _{cc}	1.9	V	
V ₀₁₋₁₁	AFC Level 11 In	0.5 V _{cc}	0.75 V _{cc}	3.12	V	
V _{OH}	Output Voltage High	V _{cc} -0.4	00	4.75	V	I _{он} =-0.75mA
I _{IR}	Reset Input Current		-80	-46	μA	V _{BI} =0V
I,	Input Leakage	-3.0	3.0	0.01	μA	OV,V _{CC}
I _{OL}	Tri-State Leakage	-3.0	3.0	0.02	μA	OV, V _{CC}
I _{cc}	Supply Current		20	13.2	mA	All inputs at rail
I _{CC1}			6	3.2	mΑ	All inputs at rail
I _{CC2}			10	0	μΑ	All inputs at rail

Notes:

[1] Port 5[2] PWM open drain

AC CHARACTERISTICS Timing Diagrams

External Clock

Counter Timer

Interrupt Request

Power On Reset

On Screen Display

AC CHARACTERISTICS $T_A=0^{\circ}$ C to +70° C; $V_{cc}=+4.5$ V to +5.5V; $F_{osc}=4$ MHz,

No	Symbol	Parameter	Min	Max	Unit
1	ТрС	Input Clock Period	250	1000	ns
2	TrC,TfC	Clock Input Rise and Fall		15	ns
3	TwC	Input Clock Width	70		ns
4	TwTinL	Timer Input Low Width	70		ns
5	TwTinH	Timer Input High Width	ЗТрС		
6	TpTin	Timer Input Period	8TpC		
7	TrTin,TfTin	Timer Input Rise and Fall		100	ns
8a	Twill	Int Req Input Low	70		ns
8b	TwIL		ЗТрС		
9	TwIH	Int Request Input High	3TpC		
10	TdPOR	Power On Reset Delay	25	100	ms
11	TdLVIRES	Low Voltage Detect to	200		ns
		Internal RESET Condition			
12	TwRES	Reset Minimum Width	5TpC		
13	TdHsOI	H _{supp} Start to V _{asc} Stop	2TpV	3TpV	
14	TdHsOh	H End to V Start		1TpV	
15	TdWDT	WDT Refresh Time		12	ms

Note:

Refer to DC Characteristics for details on switching levels.

© 1991 by Zilog, Inc. All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Zilog, Inc. The information in this document is subject to change without notice. Devices sold by Zilog, Inc. are covered by warranty and patent indemnification provisions appearing in Zilog, Inc. Terms and Conditions of Sale only. Zilog, Inc. makes no warranty, express, statutory, implied or by description, regarding the information set forth herein or regarding the freedom of the described devices from intellectual property infringement. Zilog, Inc. makes no warranty of mer-

chantability or fitness for any purpose. Zilog, Inc. shall not be responsible for any errors that may appear in this document. Zilog, Inc. makes no commitment to update or keep current the information contained in this document.

Zilog, Inc. 210 East Hacienda Ave. Campbell, CA 95008-6600 Telephone (408) 370-8000 Telex 171-980 A/B ZILOG CPTO FAX 408 370-8056/8027