

Structure	Silicon monolithic integrated circuit
-----------	---------------------------------------

Product Name Camera image processor for home electronics and security devices

Type BU6568GV

Feature

Built-in JPEG codec, SXGA camera module interface, and QCIF+ LCD controller interface

Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Rating	Unit
Supply voltage 1(IO)	VDDIO1	-0.3~+4.2	V
Supply voltage 2 (IO)	VDDIO2	-0.3~+4.2	V
Supply voltage 3 (CORE)	VDD	-0.3~+2.1	V
Power dissipation	PD	430*1, 970*2	mW
Input voltage 1	VIN1	-0.3~VDDIO1+0.3	V
Input voltage 2	VIN2	-0.3~VDDIO2+0.3	V
Storage temperature range	Tstg	-40~+150	°C

*1 IC only. If exceeding 25°C, 4.3mW should be reduced at the rating 1 °C.

*2 When packaging a glass epoxy board of 70*70*1.6mm. If exceeding 25°C, 9.7 mW should be reduced at the rating 1°C.

- * Anti radiation design is not provided.
- * Operation is not guaranteed.

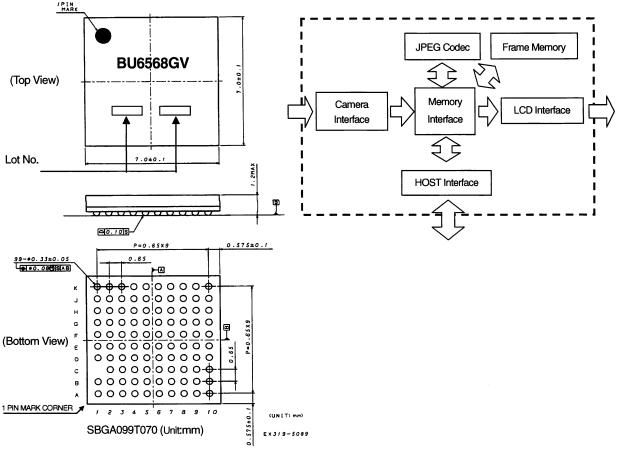
Parameter	Symbol	MIN	TYP	MAX	Unit
Supply voltage 1(IO)	VDDIO1	1.70	1.80	3.15	V
Supply voltage 2 (IO)	VDDIO2	2.70	2.85	3.15	V
Supply voltage 3 (CORE)	VDD	1.425	1.50	1.575	V
Input "H" voltage 1	VIH1	0.8*VDDIO	-	VDDIO+0.3	V
Input "L" voltage 1	VIL1	-0.3	-	0.2*VDDIO	V
Input "H" voltage 2	VIH2	0.85*VDDIO	-	VDDIO+0.3	V
Input "L" voltage 2	VIL2	-0.3	-	0.15*VDDIO	V
Input voltage range	VIN-VDDIO1,2	-0.3	-	VDDIO+0.3	V

• Operating conditions (Ta=-30°C~+85°C)

* Supply power in the order of VDD \rightarrow VDDIO1 \rightarrow VDDIO2.

Status of this document

The English version of this document is the formal specification. A customer may use this translation version only for a reference to help reading the formal version. If there are any differences in translation version of this document, formal version takes priority.


ROHM

• Electric Characteristics (Unless otherwise specified, VDD=1.50V, VDDIO=2.85V, GND=0.0V, Ta=25°C, FPIN=13.0MHz, FSYS=52.0MHz.(Using PLL))

Parameter		Specification		Unit	Conditions	
Farameter	Symbol	MIN	TYP	MAX	Unit	
Input frequency 1	F _{IN} 1	-	-	30.0	MHz	XIN (Duty 50±5%), at PLL OFF
Input frequency 2	F _{IN} 2	-	-	48.0	MHz	XIN (Duty 50±2%), at PLL OFF
Input frequency 3	F _{IN} 3	-	-	52.0	MHz	XIN (Duty 50%), at PLL OFF
Input frequency 4	F _{IN} 4	-	-	30.0	MHz	XIN (Duty 50±30%), at PLL ON
Internal action frequency	F _{SYS}	-	-	52.0	MHz	Internal SCLK frequency
Internal PLL input frequency	F _{PIN}	10.0	-	30.0	MHz	Internal PLL-block input frequency
Action consumption current	IDD	-	15	-	mA	At camera ON, LCD display ON, At viewer operating
Static consumption current	IDDst	-	-	100	μA	At suspend mode setting
Input "H" current 1	IIH1	-10	-	10	μA	VIH=VDDIO1
Input "H" current 2	IIH2	25	50	100	μA	Pull-down terminal, VIH=VDDIO1
Input "H" current 3	IIH3	-10	-	10	μA	Pull-up terminal, VIH=VDDIO1
Input "L" current 1	IIL1	-10	-	10	μA	VIL=GND
Input "L" current 2	IIL2	-10	-	10	μA	Pull-down terminal, VIL=GND
Input "L" current 3	IIL3	-160	-80	-25	μA	Pull-up terminal, VIL=GND
Input "H" voltage1	VIH1	VDDIO*0.8	-	VDDIO+0.3	V	Normal input (including input mode of I/O terminal)
Input "L" voltage 1	VIL1	-0.3	-	VDDIO*0.2	V	Normal input (including input mode of I/O terminal)
Input "H" voltage 2	VIH2	VDDIO*0.85	-	VDDIO+0.3	V	Hysteresis input
Input "L" voltage 2	VIL2	-0.3	-	VDDIO*0.15	V	Hysteresis input
Hysteresis voltage width	Vhys	-	0.9	-	V	Hysteresis input
Output "H" voitage 1	VOH1	VDDIO-0.4	-	VDDIO	V	IOH1=-1.0mA(DC), using x1.0 driver (Including output mode of I/O terminal)
Output "L" voltage 1	VOL1	0.0	-	0.4	v	IOL1=1.0mA(DC), using x1.0 driver (Including output mode of I/O terminal)
Output "H" voltage 2	VOH2	VDDIO-0.8	-	VDDIO	v	IOH2=-1.0mA(DC), using x0.5 driver (Including output mode of I/O terminal)
Output "L" voltage 2	VOL2	0.0	-	0.8	v	IOL2=1.0mA(DC), using x0.5 driver (Including output mode of I/O terminal)
Output "H" voltage 3	VOH3	VDDIO-0.4	-	VDDIO	V	IOH3=-1.0mA(DC), XOUT terminal

External Dimensional Drawing and Mark Drawing

Block Diagram

ROHM

Land No. and Pin Name

Land No	Din Nome	Function
Land No.	Pin Name	Function
<u>К2</u> J1	A1	HOST address
	A2	
K8	CAMCKI	-
K9		4
H5	CAMDO	4
G5	CAMD1	4
F6	CAMD2	4
G6	CAMD3	Camera I/F
J6	CAMD4	4
K6	CAMD5	4
K7	CAMD6	4
J7	CAMD7	-
J5	CAMHS	
K5	CAMVS	
J3	CSB	HOST chip select
<u>H1</u>	D0	4
G3	D1	
G2	D2	
G1	D3	
F1	D4	
F2	D5	
F3	D6	
F4	D7	HOST data bus
E3	D8/EXGIO0	
E2	D9/EXGIO1]
E1	D10/EXGIO2	
D1	D11/EXGIO3	
D2	D12/EXGIO4	
D3	D13/EXGIO5	
C2	D14/EXGIO6	1
B1	D15/EXGIO7	1
H6	GIO2/KEY2	GPIO
K4	INT	Interrupt
F7	KEY0	
D5	KEY1	Key I/F
E8	LCDA0	
F9	LCDCS1B	1
F8	LCDCS2B	1
E10	LCDD0	1
D10	LCDD1	1
D9	LCDD2	
C10	LCDD3	1
C9	LCDD4	LCD I/F
A9	LCDD5	1 ".
B8	LCDD6/SCL	1
A8	LCDD7/SI	1
A7	LCDD8	1
A/ A6	LCDD8	1
A0 B6	LCDD9	
<u>D0</u>	LCDD10	4

Land No.	Pin Name	Function		
D6	LCDD12			
C5	LCDD13			
B5	LCDD14	LCD I/F		
A5	LCDD15			
E7	LCDRDB			
E6	LCDWRB			
H10	LEDCNT/GIO1	LED control		
B4	PWM0/GIO0			
G8	PWM1/GIO3	PWM output		
G9	PWM2/GIO4			
G10	PWM3/GIO5			
H4	RDB	HOST read		
A4	RESETB	Reset		
J10	SDA	- Serial I/F		
H9	SDC			
C7	TEST	Test		
F10	VD/GIO6	VD out		
K3	WRB	HOST write		
B7	X16_8	Bus type select		
A2	XIN	Oscillator		
B3	XOUT	Oscillator		
B9				
F5	VDD	Core VDD		
J9				
B2				
C4	VDDIO1	IO1 VDD		
J2				
E9				
H7	VDDIO2	IO2 VDD		
D4				
D7		GND		
E4	GND			
G4				
G7				
A1				
A10				
A3				
B10				
C1				
C3				
C8		Non Connection		
D8				
E5	N.C.			
H2				
H3				
H8				
J8				
K1				
K10				

· Cautions on use

(1) Absolute Maximum Ratings

An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety measures including the use of fuses, etc.

(2) Operating conditions

These conditions represent a range within which characteristics can be provided approximately as expected. The electrical characteristics are guaranteed under the conditions of each parameter.

(3) Reverse connection of power supply connector

The reverse connection of power supply connector can break down ICs. Take protective measures against the breakdown due to the reverse connection, such as mounting an external diode between the power supply and the IC's power supply terminal.

(4) Power supply line

Design PCB pattern to provide low impedance for the wiring between the power supply and the GND lines.

In this regard, for the digital block power supply and the analog block power supply, even though these power supplies has the same level of potential, separate the power supply pattern for the digital block from that for the analog block, thus suppressing the diffraction of digital noises to the analog block power supply resulting from impedance common to the wiring patterns. For the GND line, give consideration to design the patterns in a similar manner.

Furthermore, for all power supply terminals to ICs, mount a capacitor between the power supply and the GND terminal. At the same time, in order to use an electrolytic capacitor, thoroughly check to be sure the characteristics of the capacitor to be used present no problem including the occurrence of capacity dropout at a low temperature, thus determining the constant.

(5) GND voltage

Make setting of the potential of the GND terminal so that it will be maintained at the minimum in any operating state. Furthermore, check to be sure no terminals are at a potential lower than the GND voltage including an actual electric transient.

(6) Short circuit between terminals and erroneous mounting

In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between terminals or between the terminal and the power supply or the GND terminal, the ICs can break down.

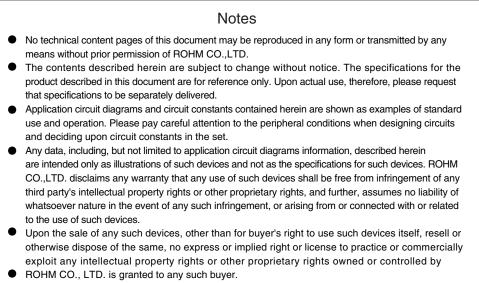
(7) Operation in strong electromagnetic field

Be noted that using ICs in the strong electromagnetic field can malfunction them.

(8) Inspection with set PCB

On the inspection with the set PCB, if a capacitor is connected to a low-impedance IC terminal, the IC can suffer stress. Therefore, be sure to discharge from the set PCB by each process. Furthermore, in order to mount or dismount the set PCB to/from the jig for the inspection process, be sure to turn OFF the power supply and then mount the set PCB to the jig. After the completion of the inspection, be sure to turn OFF the power supply and then dismount it from the jig. In addition, for protection against static electricity, establish a ground for the assembly process and pay thorough attention to the transportation and the storage of the set PCB.

(9) Input terminals


In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the input terminal. Therefore, pay thorough attention not to handle the input terminals, such as to apply to the input terminals a voltage lower than the GND respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to the input terminals when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is applied, apply to the input terminals a voltage lower than the power supply voltage or within the guaranteed value of electrical characteristics.

(10) Ground wiring pattern

If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND pattern from the small-signal GND pattern and establish a single ground at the reference point of the set PCB so that resistance to the wiring pattern and voltage fluctuations due to a large current will cause no fluctuations in voltages of the small-signal GND. Pay attention not to cause fluctuations in the GND wiring pattern of external parts as well.

(11) External capacitor

In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc.

• Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM cannot be held responsible for any damages arising from the use of the products under conditions out of the range of the specifications or due to non-compliance with the NOTES specified in this catalog.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact your nearest sales office.

ROHM Customer Support System

THE AMERICAS / EUPOPE / ASIA / JAPAN

www.rohm.com

Contact us : webmaster@rohm.co.jp

Copyright © 2007 ROHM CO., LTD. ROHM CO., LTD. 21, Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan TEL:+81-75-311-2121 FAX:+81-75-315-0172

ROHM

Appendix1-Rev2.0