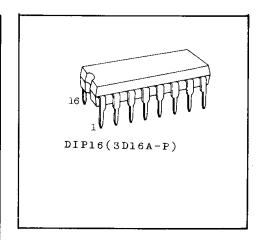
TC5036AP, TC5048AP

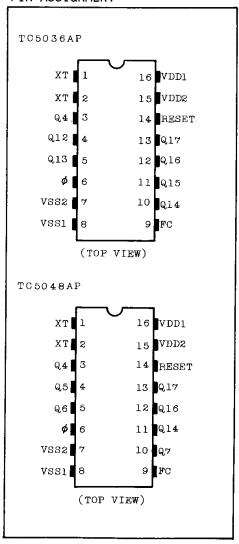

TC5036AP TC5048AP 17-STAGE HIGH SPEED FREQUENCY DIVIDER

TC5036AP and TC5048AP are 17-stage ripple carry binary counters equipped with inverters for crystal oscillators.

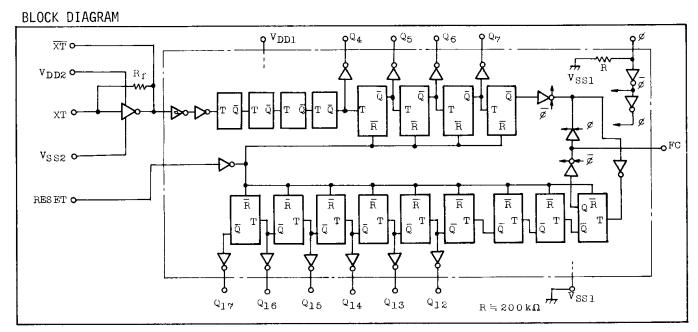
If φ input is opened ($\varphi=$ "L"), the inverted output of 9th stage appears on FC terminal. If φ input is set to "H", 9 stages from 9th stage through 17th stage can be also independently used having FC terminal as the clock input.

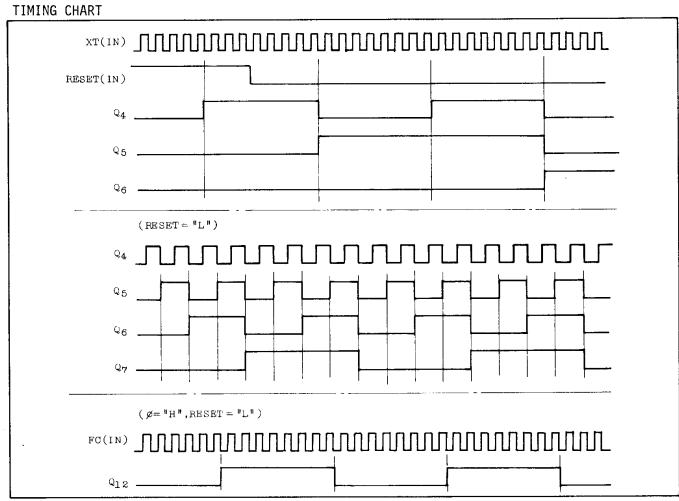
Outputs can be derived arbitrarily from stages 4, 12, 13, 14, 15, 16 and 17 of TC5036AP and stages 4, 5, 6, 7, 14, 16 and 17 of TC5048AP.

Both devicies are improved to have 50% duty Q4 output as same as others by changing the divider stage of TC5036P and TC5048P to static type counter.


ABSOLUTE MAXIMUM RATINGS

CHRACTERIS	TIC	SYMBOL	RATING	UNIT	
DC Supply Voltage		v_{DD1}	V_{SS1} -0.5 $\sim V_{SS1}$ +10		
		v _{DD2}	$V_{SS1}-0.5 \sim V_{DD1}+0.5$	V	
Input Voltage	XT	VIN	$V_{SS1}-0.5 \sim V_{DD2}+0.5$		
	φ, FC	VIN	v_{SS1} -0.5 $\sim v_{DD1}$ +0.5	V	
Output Voltage		VOUT	$V_{SS1}-0.5 \sim V_{DD1}+0.5$	v	
DC Input Curre	nt	IIN	±10	mA	
Power Dissipat	ion	PD	300	mW	
Storage Temper Range	ature	T _{stg}	-65 ~ 150	°C	
Lead Temp./Tim	e	T _{sol}	260°C • 10 sec	<u> </u>	


TRUTH TABLE


	INPU	JTS		FUNCTION				
RESET	XT	ф	FC	(See Timing Chart)				
Н	J	OPEN H	H *	$f_{Q4}=f_{XT}/2^4$ Q5 \sim Q17="L" LEVEL				
L	Π	OPEN	Q9	$f_{Qn}=f_{XT}/2^n$ n; $5 \sim 17$				
L	几	Н	Τ	$f_{Qn}=f_{XT}/2n$ n; 5 \(\sigma\)7 $f_{Qm}=f_{FC}/2$ (m-8) n; 12 \(\sigma\)17				

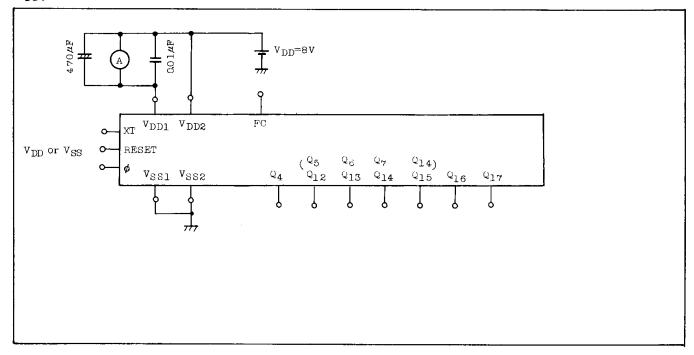
PIN ASSIGNMENT

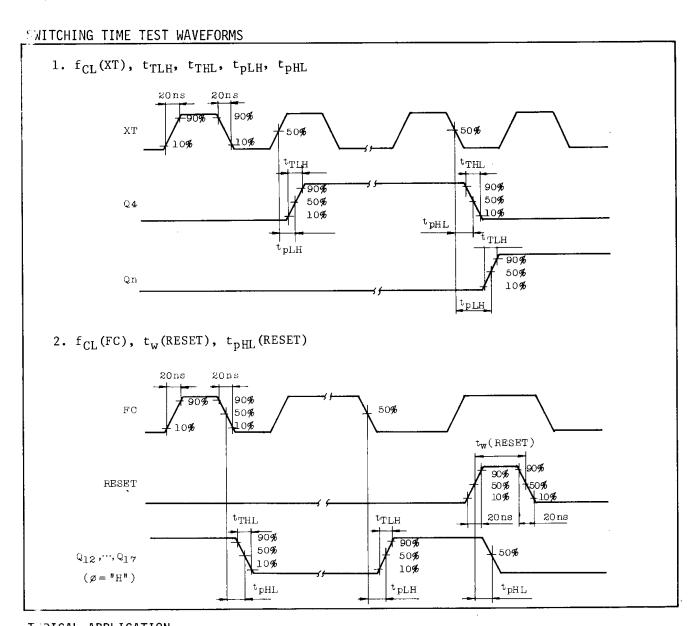
* Don't Care

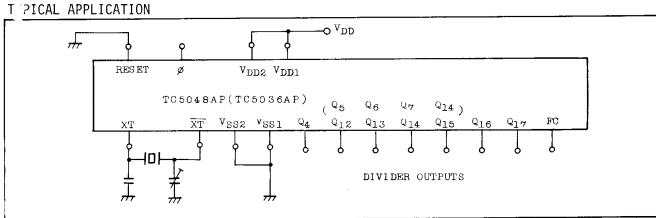
RECOMMENDED OPERATING CONDITIONS ($V_{SS1}=V_{SS2}=0V$)

CHARACTERISTIC	SYMBOL		MIN.	TYP.	MAX.	UNIT	
Supply Voltage	v _{DD1}		3	_	8		
	v_{DD2}		3	_	v_{DD1}	V	
Input Voltage	v _{IN}	Except XT	0	_	v_{DD1}		
Operating Temp.	Topr		-40	_	85	°C	

ELECTRICAL CHARACTERISTICS ($v_{SS1}=v_{SS2}=0v$, $v_{DD1}=v_{DD2}$)


CHARACTERISTIC SYMBO		CVMDOT	THE CONDITION	v_{DD}	-40	-40°C		25°C			85°C		
		SIMBOL	TEST CONDITION	(A)		MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT	
High Level Output Voltage		VOH	I _{OUT} <1μA V _{IN} =V _{DD} , V _{SS}	5	4.95	_	4.95	5.00	_	4.95	***	v	
Low Level Output Voltage		V _{OL}	I _{OUT} <1μA V _{IN} =V _{DD} , V _{SS}	5	_	0.05	-	0.00	0.05	_	0.05	V	
High Level	Q Output	Т	$V_{OH}=4.6V$ $V_{IN}=V_{DD}$, V_{SS}	5	-0.61	-	-0.51	-1.0	_	-0.42	-		
Current	FC.	TOH	$V_{OH}=4.6V$ $V_{IN}=V_{DD}$, V_{SS}	5	0.025	-	-0.02	-0.06	_	-0.015	_		
Output	Q OUTPUT	T	V _{OL} =0.4V V _{IN} =V _{DD} , V _{SS}	5	0.61	_	0.51	1.5	_	0.42	_	mA	
	FC,	IOL	V _{OL} =0.4V V _{IN} =V _{DD} , V _{SS}	5	0.10	-	0.08	0.25	-	0.06	-		
High Level Input Voltage		V _{IH}	V _{OUT} =0.5V, 4.5V I _{OUT} < 1μA	5	3.5		3.5	2.75	-	3.5	_	77	
Low Level Input Voltage		VIL	V _{OUT} =0.5V, 4.5V I _{OUT} <1μA	5	-	1.5	-	2.25	1.5	-	1.5	V	
High Level Current (except XT,	-	I _{IH}	V _{IH} =8V	8	_	0.2	-	10-5	0.2	-	1.0		
Low Level Input Current (except XT, ϕ)		IIL	V _{IL} =0V	8	_	-0.2	-	-10 ⁻⁵	-0.2	-	-1.0	μА	
Quiescent Device Current		I _{DD1}	v _{IN} =v _{DD} , v _{SS} *	8	_	5	-	0.005	5	-	150		


^{*} All valid input combinations.


SWITCHING CHARACTERISTICS (VDD1=VDD2, VSS1=VSS2=OV, Ta=25°C, CL=50pF)

					,		
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Rise Time (Q OUTPUT)	t _{TLH}		5		70	200	
Output Fall Time (Q OUTPUT)	t _{THL}		,	_	/0	200	ns
Input Amp Vias Resistance	Rf		8	0.6	1.6	3.0	MΩ
Propagation Delay Time (XT-Q4)	tpLH,tpHL		5	-	200	400	ns
Propagation Delay Time (XT-Q17)	t _{pLH} ,t _{pHL}		5	-	0.78	1.6	μs
Propagation Delay Time (FC-Q12)	t _{pLH} ,t _{pHL}		5	-	240	480	ns
Propagation Delay Time (FC-Q17)	tpLH,tpHL		5	_	420	900	ns
Propagation Delay Time (RESET-Q)	t _{pHL} (RESET)		5	_	100	200	ns
Min. Pulse Width	tw(RESET)		5	_	35	70	ns
Max. Clock Frequency	f _{CL} (XT)		5	10	20	-	MHz
Max. Clock Frequency	f _{CL} (FC)		5	8	16	-	Mnz
Max. Clock Rise Time	trCL	(vm)	5	No Limit			
Max. Clock Fall Time	tfCL	(XT)) MO PIMIT			
Max. Clock Rise Time	trCL	(700)	5	20	_	_	μS
Max. Clock Fall Time	tfCL	(FC)					
Input Capacitance	CIN	except FC	•	-	5	7.5	pF

I_{DD1} TEST CIRCUIT

