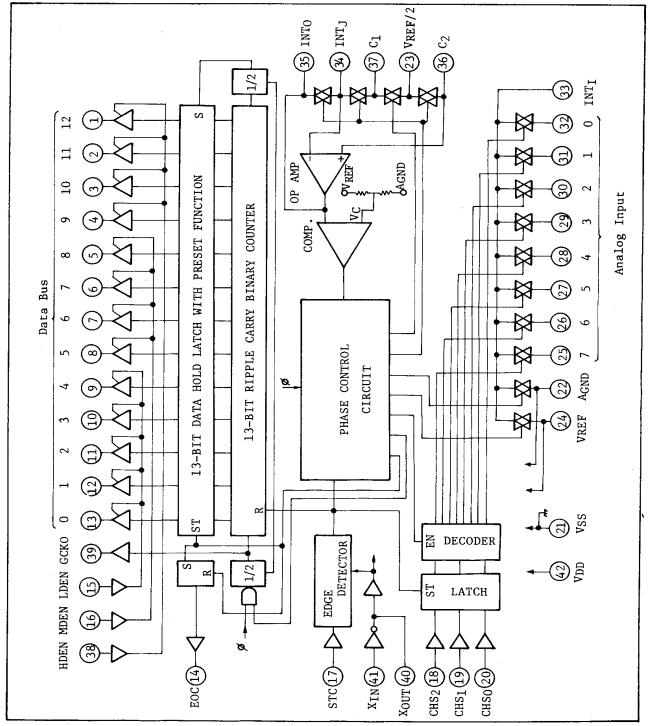

TC5092AP C2MOS 13-BIT A/D CONVERTER

603

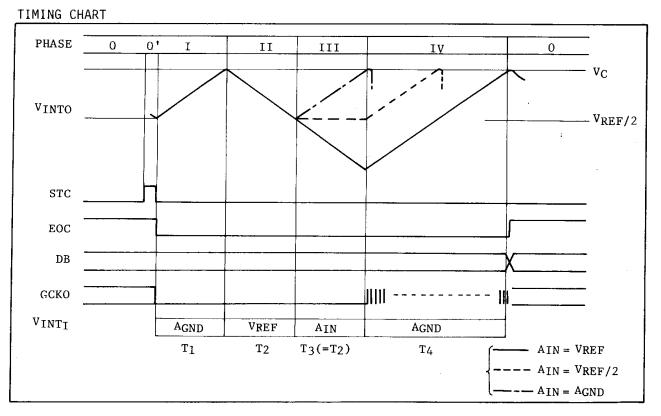
V _{DD}	$V_{SS}-0.5 \sim V_{SS}+7$	v
VIN	$v_{SS}-0.5 \sim v_{DD}+0.5$	v
VREF	$V_{AGND} \sim V_{DD} + 0.5$	v
VAGND	v_{SS} -0.5~ v_{REF}	v
VOUT	V _{SS} -0.5~V _{DD} +0.5	v
IIN	±10	mA
PD	300	m₩
Topr	-40~85	°C
Tstg	-65~150	°C
	VIN VREF VAGND VOUT IIN PD Topr	V_{IN} $V_{SS}-0.5 \sim V_{DD}+0.5$ V_{REF} $V_{AGND} \sim V_{DD}+0.5$ V_{AGND} $V_{SS}-0.5 \sim V_{REF}$ V_{OUT} $V_{SS}-0.5 \sim V_{DD}+0.5$ I_{IN} ± 10 PD 300 T_{opr} $-40 \sim 85$

FUNCTION OF EACH PIN

PIN NO.	Symbol	NAME & FUNCTION	PIN NO.	Symbol	NAME & FUNCTION						
1 2 3	DB12 DB11 DB10		23	V _{REF} /2	Reference voltage supply terminal, which supplies the voltage of $\frac{V_{REF} - A_{GND}}{2}$						
4	DB 9 DB 8	3-State Parallel	24	VREF	Reference voltage supply terminal						
6	DB 7	Data Outputs	25	AIN7	Analog input terminal Input voltage range:						
7	DB 6 DB 5	DB12 : MSB DB 0 : LSB	26	A _{IN6}	AGND \sim VREF Arbitrary input can be se-						
9 10	DB 4 DB 3		27	A _{IN5}	lected by CHS input. CHS ₀ CHS ₁ CHS ₂ A _{IN}						
11	DB 2		28	AIN4	L L L AINO						
12	DB 1				H L L AIN1						
13	DB O		29	AIN3	L H L AIN2						
		End of Conversion	30	A _{IN2}	H H L AIN3						
14	EOC	EOC goes to "L" level at the fall of STC signal, and re-	31		L L H AIN4						
		turns to "H" level at the end of conversion.		AIN1	H L H AIN5						
		Low Data Enable	32	AINO	L H H AIN6 H H H AIN7						
15	LDEN	$DB_0 \sim DB_4$ are read by "H" level input.			Integrator Input						
16	MDEN	Medium Data Enable $DB_5 \sim DB_8$ are read by "H" level input.	33	INT1	Integrator Junction Integrator Output The integrator consists of these three terminals.						
17	STC	Start Conversion Conversion starts at the fall time, if pulse input at "H" level is provided. "L" level should be kept during con- version.	34	INTJ	R _I C _I						
18	CHS ₂	Channel Select Inputs These pins are address inputs			RI and CI should satisfy the following formula and be set as small a value as possible						
19	CHS1	for selecting eight analog inputs of AINO \sim AIN7, and	35	INTO	$R_{I} \cdot C_{I} > \frac{13000}{f_{OSC}} [S]$						
20	CHS0	are taken into the internal latch		Ŭ	However, R of 1 \sim 2M Ω should be used.						
21	VSS	Digital Ground			Capacitors connection terminals						
22	AGND	Analog Ground	36	C ₂	for offset calibration.						


604

FUNCTION OF EACH PIN


PIN NO.	Symbol	NAME & FUNCTION
37	c ₁	$0.1\mu F$ is connected between C2 and C1, and 0.01 μF C1 and VSS, respectively.
38	HDEN	High Data Enable DB9 $^{\circ}$ DB12 are read by "H" level input.
39	GCKO	Gated Clock Output Pulses of number equivalent to conversion data are out- put during conversion.
40	X _{OUT}	Terminals for system clock oscillation. Crystal oscillators are con-
41	XIN	nected to both the ends of terminals.
42	V _{DD}	Supply Voltage 5V±0.5V

605

SYSTEM DIAGRAM

606

(1) Conversion cycle

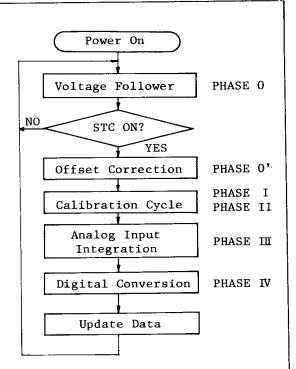
In the state of PHASE 0', the operation of L3I is at a stop and the integrating amplifier performs as voltage follower. Under this condition the external capactor (0.1 μ F across C₁ and C₂)

When STC is given, the offset voltage charged into external capacitors is applied to non-inversion of the integrator, thus cancelling the offset volage equivalently. In PHASE I, the integrator continues to integrate AGND until its output reaches VC.

In PHASE III the integrator integrates the analog input for the same period of time as T_2 after it has integrated V_{REF} for a fixed period of time (T₂) in PHASE II.

Finally, in PHASE IV the integrator continues to integrate $A_{\rm GND}$ until its output reaches $V_{\rm C}.$

607


Let the time in PHASE IV be T₄. Then the following equation is made (formed) by omitting error factors such as offset drift.

$$V_{AIN} = \frac{T_4}{2T_2} V_{REF} \quad (AGND=0V) \quad \dots \quad (1)$$

In case of this LSI, T₂ is designed by 4096 x 2.TOSC (TOSC denotes reference clock synchronization). Therefore, the above formula letting 2.TOSC be T is changed as follows:

$$\frac{V_{AIN}}{VREF} = \frac{T_4}{8192T} \qquad (2)$$

That is, 13-bit resolution A/D conversion of FS (full scale) = 8192 can be made by

counting the period of T4 by use of a clock having T frequency.

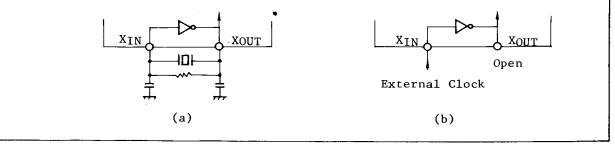
However, it is recommended that R_{I} and C_{I} composing the integrator be set to the values close to 13000/fosc as possible after having satisfied the following formula.

```
R_{I}C_{I} > 13000 / f_{OSC}, R_{I} = 1 \sim 2M_{\Omega} \text{ is used}. (3)
```

(2) Output data format

13-bit output data are output to 13 independent 3-state data buses $DB_0 \sim DB_{12}$. Since 13-bit outputs can be independently placed on 3-state every group of High, Medium and Low of 4 bits/4 bits/5 bits from the higher order, it is easy to connect the microcomputer to buses of 4, 8, 12 bits.

608


			TRUTH TA	BLE												
LDEN	MDEN	HDEN	Analas Territ				DAT	CA (OUT	PUT	S	(DB)	• • • •		
LDEN	MDEN	HDEN	Analog Input	0	1	2	3	4	5	6	7	8	9	10	11	1
L	L	L			•	Z	•					L		I	4	
Н	L	L		D	D	D	D	D	D Z						Z	
L	H	L				Z		••	D	D	D	D	1		2	
Н	Н	L	Don't Care	D	D	D	D	D	D	D	D	D	Ì		•	
L	L	Н			I	Z		L	Z			D	D	D	I	
Н	L	Н		D	D	D	D	D			2		D	D	D	I
L	Н	Н				Z	.		D	D	D	D	D	D	D	I
			<1/2LSB	L	L	L	L	L	L	L	L	L	L	L	L	1
			$1/2$ LSB $\sim 3/2$ LSB	Н	L	L	L	L	L	L	L	L	L	L	L	1
н	Н	Н	•••••				S	tra	igh	nt I	Bina	iry	L		L	L
			"FS"-5/2LSB ∿ "FS"-3/2LSB	L	Н	н	H	H	H	Н	Н	H	н	H	Н	ŀ
			"FS"-3/2 LSB <	Н	Н	Н	Н	н	н	Н	Н	Н	Н	н	Н	ŀ

Note : FS ····· Full Scale, 1 LSB = (VREF-AGND)/8192, Z ··· High Impedance D ··· "H" or "L" Level

(3) Basic clock

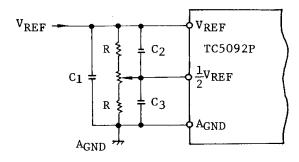
Since this LSI operates on the basis of the frequency given to $X_{\rm IN}$ input, a stable clock ($\Delta f < 0.005\%$) must be used for the clock to be given to $X_{\rm IN}$.

Therefore, it is proper that the oscillation circuit is configured as shown in the following figure (a) by the use of externally mounted crystal becuase the LSI has a built-in inverter for crystal oscillation.

609

.

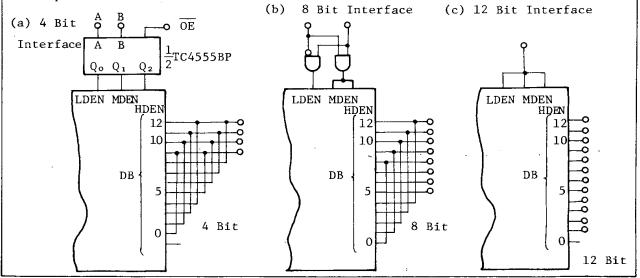
FUNCTIONAL DESCRIPTION


.

	How to give STC input, Conversion time, and Sampling cycle
	STC input is taken in with the reference clock of LSI, but the positive pulse having the pulse width for at least two cycles is required for internal starting.
	The conversion time of from the fall of STC input to the rise of EOC output. Letting this time be Tc MAX(Maximum conversion time), then the following equation is obtained.
	$TcMAX = 41000 \times T_{OSC}$ [S]
	For example, when f _{CP} =5MHz, TcMAX=8.2ms. For one-time sampling, an accurate output can be obtained from the falling edge of STC input after the lapse of TcMAX.
	For consecutive sampling, however, STC input must be given after the lapse of a given period of time (6ms) from the rise of EOC. This period (6ms) is the time required for the recovery of LSI to normal state.
	Therefore, the minimum sampling cycle TsMIN is as follows: $TsMIN = 41000 \times T_{OSC} + 0.006 + t_w(STC)$ [S](5)
	Note: When power is set ON, following start-up procedure is required due to indefinite state of internal circuitry.
	 Applying clock, STC is to be set high over 10ms. Complete at least one cycle as a dummy conversion cycle.
	T smapling
	STC
	EOC
	T conversion 6ms
(5)	Reference voltage
	This LSI has three reference input voltage terminals of A_{GND} , $rac{1}{2}$ V $_{ m REF}$, and 'V $_{ m REF}$.
	Since analog input signal is quantized to 1/8192 in the range of $A_{\mbox{GND}} \sim A_{\mbox{REF}}$ for
I	digitization, stable voltages must be supplied to $\frac{1}{2}$ V _{REF} and V _{REF} .

610

*


Espacially the value of $\frac{1}{2}$ VREF voltage has direct effects upon conversion accuracy; therefore, it is recommonded that adjustment be made so as to agree output data with analog input by actually making A/D convert by use of input voltage at FS (full scale) or 1/2FS level.

The left figure shows an example of reference voltage supplying circuit. $C_1 \sim C_3$ are filter capacitors for preventing reference voltage variations to be caused by ripple or induction noise. Generally the value of capacitor is about $0.01 \sim 0.1 \mu$ F, though it varies with the system.

(6) BUS Interface

For connecting a microcomputer to BUS line, three independent enable terminals are used. These three enable terminals permit the processing in the unit of 4 bits (5 bits for the low order digit only). The microcomputer can be directly connected to the BUS of $4 \sim 12$ bits easily by allocating proper address of micro-computer to the TC5092AP.

611

RECOMMENDED OPERATING CONDITION

ITEM	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	VDD	 4.5	5.0	5.5	v
Digital Input Voltage	VIN	0	-	V _{DD}	v
Analog Input Voltage	VAIN	AGND	-	VREF	-
Reference Supply Voltage	VREF	4.0		VDD	v
Analog Ground Voltage	V _{AGND}	 0	0	0.5	v

ELECTRICAL CHARACTERISTICS (VDD = 5V \pm 10%, VSS = 0V, Ta = -40 \sim 85°C)

ITEM	SYMBOL	TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output High Voltage	VOH	IOH=-1µA,Digital output	5	4.9	5.0	_	v
Output Low Voltage	Vol	IOL=1µA, Digital output	: 5	-	0.0	0.1	
		Digital Input except XII	1 5	2.4		-	
Input High Voltage	VIH	XIN	5	4.5	-	-	 •
		Digital Input except XII	N 5	-	-	0.8	V
Input Low Voltage	VIL	X _{IN}	5	-	-	0.5	
Output High Current	IOH	VOH = 2.4V Digital output except XOUI	4.75	-1.0	-	_	mA
Output Low Current	I _{OL}	VOL = 0.4V Digital output except XOU	e 4.75	1.6	-	-	∙mA
	IDH	v_{OH} = 5.5V, DB ₀ \sim DB ₁₂	5.5	_	10-3	5	
Output Disable Current	IDL	$V_{OL} = 0.0V$, $DB_0 \sim DB_{12}$	5.5	-	-10-3	-5	μA
	IIH	VIN=5.5V,Digital input	5.5	-	10-5	1.0	μΑ
Input Current	IIL	V _{IL} =0.0V,Digital input	5.5	-	-10-5	-1.0	
Analog Switch Off-Leak	IOFF	Analog input/output	5.5	_	±10-4	-	μΑ
Analog Switch On Resistor	RON	$R_{L} = 10k\Omega$	5	-		_	Ω
Operating Consump-		VREF = VDD Digital output	5	-	2	_	- mA
tion Current	I _{DD}	Digital opên input GND f _{CP} =1MHz	5	-	1	_	

ITEM	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Rise Time	t _{TLH}	Digital output	-	50	150	
Output Fall Time	t _{THL}	Digital output	-	40	150	ns
Output Enable Time	tZL tZH	LDEN	_	80	250	ns
Output Disable Time	t _{LZ} t _{HZ}	MDEN -DB Output HDEN	_	280	500	115
Max. Clock Frequency	f _{MAX¢}	XIN Duty 40~60%	5.0		_	
Min. Clock Frequency	fminø	XIN Duty 40~60%	-	-	-	MHz
.	CIN	Digital input	-	5	_	
Input Capacity	CIN	Analog input	-	-	-	pF
3-State Output Capacity	C _{OUT}	DB Output	-	8	_	

SWITCHING CHARACTERISTICS ($V_{DD} = 5V \pm 10\%$, $V_{SS} = 0V$, $Ta = 25^{\circ}C$, CL = 50pF)

SYSTEM CHARACTERISTICS ($v_{DD} = 5V \pm 10\%$, $v_{SS} = 0V$, $Ta = 25^{\circ}C$)

ITEM	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Resolution	n		-	13	-	Bit
		$f_{CP} = 5 MHz$	-	_	8.2	
Conversion Time	Tc	$f_{CP} = 1 MHz$	~	-	41	шs
Sampling Cycle		$f_{CP} = 5 MHz$	14.2	_	-	
	TSPL	$f_{CP} = 1 MHz$	47	-	-	ms
Nonlinearity	-		_	± 1		
Zero Scale Error	EZP		-	±2		LSB
Full Scale Error	EFS	$V_{DD} = V_{REF}$	-	±1		
STC Min. Pulse Width	tw		-		2/fosc	S