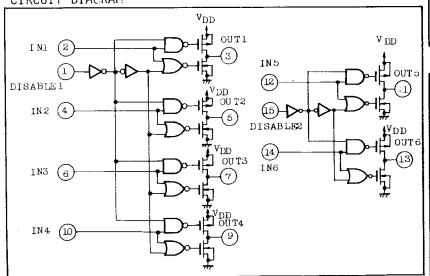

TC5012BP/BF

TC5012BP/TC5012BF HEX NON-INVERTING 3-STATE BUFFER

TC5012BP/BF contains six circuits of noninverting buffers having three state output.
Since DISABLE inputs to disable the outputs are
provided separately, one common for four circuits and
another common for other two circuits, this is suitable for controlling four bit data lines.
Large output current enables to directly control
one TTL input.



ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	v_{DD}	$V_{SS-0.5} \sim V_{SS+20}$	v
Input Voltage	VIN	$V_{SS} = 0.5 \sim V_{DD} + 0.5$	v
Output Voltage	V _{OUT}	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	v
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300(DIP)/180(MFP)	mW
Operating Temperature Range	TA	-40 ∼ 85	°C
Storage Temperature Range	T _{stg}	- 65 ∿ 150	°c
Lead Temp./Time	T _{sol}	260°C • 10 sec	

DISABLE1 1 V_{DD} 15 DISABLE 2 IN1 2 OUT1 3 14 IN6 1N2 4 L3 OUT6 OUT2 5 L2 IN5 IN3 6 OUT5 OUT3 10 IN4 OUT4 VSS 8 (TOP VIEW)

CIRCUIT DIAGRAM

TRUTH TABLE

PIN ASSIGNMENT

DISABLE INPUT	INPUT	OUTPUT
L	ь	L
L	Н	Н
Н	*	HZ

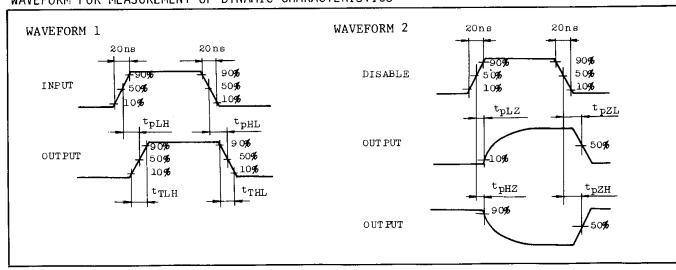
* : DON'T CARE

HZ: HIGH IMPEDANCE

RECOMMENDED OPERATING CONDITIONS ($v_{SS}=0v$)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNITS
DC Supply Voltage	v_{DD}	3	_	18	V
Input Voltage	V _{IN}	0	_	v_{DD}	v

STATIC ELECTRICAL CHARACTERISTICS (Vec=0V)


STATIL E	LECTRICA	AL CHARA	ACTERISTICS (V _{SS}	=0V)			г						
CHARACTERISTIC		SYMBOL	TEST CONDITION	v_{DD}	-40	-40°C		25°C			85°C		
				(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN. MAX.		UNITS	
High-Level VOH		W	$ I_{OUT} < 1 \mu A$	5	4.95	-	£ .	5.00	-	4.95	l .		
		HOV	$v_{\rm IN}$ = $v_{\rm SS}$, $v_{\rm DD}$	10	9.95	-	ł	10.00	-	9.95			
				15 5	14.95	0.05	14,95	15.00 0.00	0.05	14.95	0.05	v	
Low-Leve	ow-Level V _{OL}		$ \mathbf{I}_{\mathbf{OUT}} < 1 \mu \mathbf{A}$	10	_	0.05	_	0.00	0.05	_	0.05		
Output V	oltage	OL.	$v_{IN}=v_{SS}, v_{DD}$	15	_	0.05	_	0.00	0.05	_	0.05	,	
	*	<u> </u>	V _{OH} =4.6V	5	_	_	_	0.00	-		_		
Output H	igh		$V_{OH}=2.5V$		_	_	1 25				_		
Curren	t	ІОН	$v_{OH}=9.5v$	5	-1.4	-	-1.25		-	-1.0	-		
Cullen	L		V _{OH} =13.5V	10	-1.4	-	-1.25		-	-3.0	-	mA	
			VIN=VSS, VDD	15	-4.0		-3.75	•	-	-3.0	-		
Ott I.			V _{OL} =0.4V	5	3.5	-	3.2		-	2.5	-	11,21	
Output L		I _{OL}	V _{OL} =0.5V	10	6.0	_	5.0		-	3.6	-		
Curren	t		V _{OL} =1.5V	15	26.0	_	24.0		_	18.0	_		
			V _{IN} =V _{SS} , V _{DD} V _{OUT} =0.5V, 4.5V					0					
Input Hi	gh		V _{OUT} =0.3V, 4.3V V _{OUT} =1.0V, 9.0V	ĺ	3.5	-	3.5	2.75	-	3.5	-		
		VIH	VOUT=1.5V, 3.5V	10	7.0	-	7.0	5.5	-	7.0	-		
Voltage	e		1 _{OUT} <1 _μ A	15	11.0	_	11.0	8.25	<u> </u>	11.0	-		
			$V_{OUT} = 0.5V, 4.5V$	5	_	1.5	_	2.25	1,.5	_	1.5	v	
Input Lo	w	v_{1L}	$v_{OUT}=1.0v, 9.0v$	_									
Voltage	e		V _{OUT} =1.5V,13.5V	10	-	3.0	_	4.5	3.0	_	3.0		
			$ I_{OUT} <1\mu A$	15	-	4.0	-	6.75	4.0	-	4.0		
Current "L"	"H" Level	IIH	V _{IH} =18V	18	_	0.3	_	10 ⁻⁵	0.3	-	1.0		
		I_{IL}	v _{IL} =0v	18	_	-0.3		-10-5	-0.3	-	-1.0		
3-State Output	"H" Level	I _{DH}	V _{OUT} =18V	18	-	0.5	_	10-4	0.5	-	30		
Leakage "L" Current Level	"L" Level	I _{DL}	v _{OUT} =0v	18	_	-0.5	_	-10 ⁻⁴	-0.5	_	- 30	μA	
Quiescen	t	_		5	-	4.0	-	0.002	4.0	-	30		
Device Current		IDD	V _{IN} =V _{SS} ,V _{DD}	10	-	8.0		0.004	8.0	-	60		
			*	15	_	16.0	-	0.008	16.0	-	120		

^{*} All valid input combinations.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta=25°C, V_{SS}=0V, C_L=50pF)

DYNAMIC EEECTRICAL CHARAC		THE CONDITION			TVD	MAX.	UNITS
CHARACTERISTIC	SYMBOL	TEST CONDITION	V _{DD(V)}	MIN.	TYP.		ONITS
Output Transition Time			5	-	130	400	•
•	tTLH		10	-	65	200	
(Low to High)			15		50	100	
Output Transition Time			5	-	70	200	
•	t _{THL}		10	-	40	100	
(High to Low)			15		35	80	
Propagation Delay Time			5		320	4 30	
	t _{pLH}		10	- '	150	220	
(IN - OUT)			15	_	110	200	
D D. 1			5	-	280	380	
Propagation Delay Time	t _{pHL}		10	-	130	220	
(IN - OUT)			15	_	100	200	ns
	t _{pHZ}	$R_L=1k\Omega$	5	_	320	500	115
Three State Disable Time			10	-	280	450	
(DISABLE - OUT)			15	_	250	400	
m	t _{pLZ}	$R_{L}=1k\Omega$	5	_	420	600	
Three State Disable Time			10	_	320	500	
(DISABLE - OUT)			15	_	270	450]
m or to Disable Time	t _{pZH}	R _L =1kΩ	5	-	280	400	
Three State Disable Time (DISABLE - OUT)			10	_	140	200	
			15	_	120	180	
			5	-	300	450] .
Three State Disable Time (DISABLE - OUT)	t _{pZL}	$R_{L}=1k\Omega$	10	_	، 150	225	
	PEL	"	15	_	130	200	
Input Capacitance	CIN				7.5	15	pF

WAVEFORM FOR MEASUREMENT OF DYNAMIC CHARACTERISTICS

