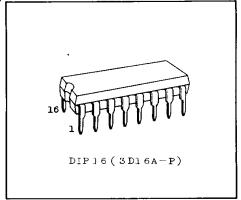
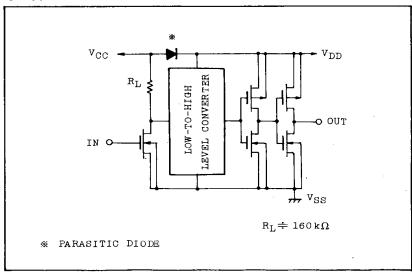
TC5020BP

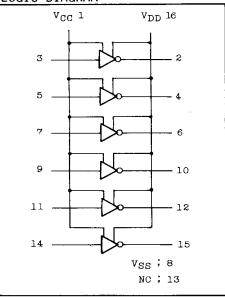

TC5020BP HEX LOW-TO-HIGH VOLTAGE TRANSLATOR (INVERTING)

TC5020BP contains six circuits of level converters which convert the signals from low power supply voltage logical systems to the logical signals for high power supply voltage C^2MOS systems.

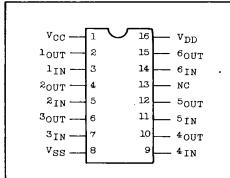
This is most suitable for interfacing between TTL, MDTL systems and C^2MOS systems, and between two power supply voltage C^2MOS systems.

Normally, VCC is connected to low voltage power supply and VDD is connected to high voltage power supply, however this can also operate having VCC and VDD common.


When the input is "H", some amount of ICC flows because of circuit structure.


ABSOLUTE MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	$v_{ m DD}$	$V_{SS}-0.5 \sim V_{SS}+20$	V
bo supply voltage	v_{CC}	$V_{SS}-0.5 \sim V_{DD}+0.5$	v
Input Voltage	VIN	$V_{SS}-0.5 \sim V_{CC}+0.5$	V
Output Voltage	VOUT	$V_{SS}-0.5 \sim V_{DD}+0.5$	V
DC Input Current	IIN	± 10	mA
Power Dissipation	PD	300	mW
Storage Temperature Range	Tstg	-65 ~ 150	°c
Lead Temp./Time	Tso1	260°C • 10sec	


CIRCUIT DIAGRAM

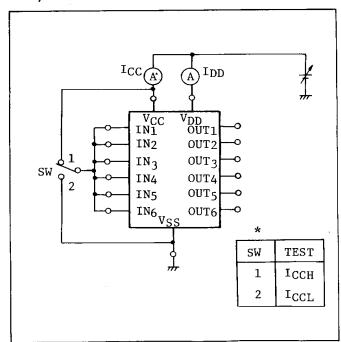
LOGIC DIAGRAM

PIN ASSIGNMENT

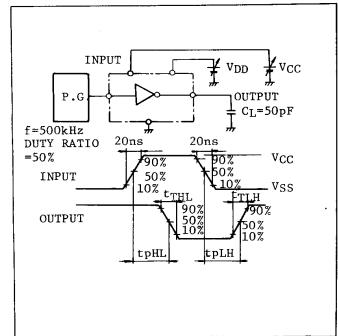
RECOMMENDED OPERATING CONDITIONS (VSS=0V)

CHARACTERISTIC	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply Voltage (1)	V _{CC}	$v_{CC} = v_{DD}$	3	_	18	· V
Supply Voltage (2)	VCC	Vac - Vpp	5	_	$v_{ m DD}$	v
Supply Voltage (2)	$v_{ m DD}$	$\Lambda^{CC} < \Lambda^{DD}$	5		18	l
Input Voltage	VIN		0	_	V _{CC}	. V
Operataing Temp.	Topr		-40	_	85	°C

ELECTRICAL CHARACTERISTICS (VSS=0V, VCC=VDD)


CHARACTERISTIC	SYMBOL	TEST CONDITIONS	V _{DD}	-40 MIN.	O°C MAX.	MIN.	25°C	MAX.	8. MIN.	5°C MAX.	UNIT
High Level Output Voltage	v _{OH}	I _{OUT} < 1µA V _{IN} = V _{SS}	5 10 15	4.95 9.95 14.95	1		5.00 10.00 15.00	- -	4.95 9.95 14.95	- - -	V
Low Level Output Voltage	$v_{ m OL}$	الا I I I OUT ا VIN = VDD	5 10 15	1 1 1	0.05 0.05 0.05	- - -	0.00	0.05 0.05 0.05	- - -	0.05 0.05 0.05	
High Level Output Current	гон	V _{OH} = 4.6V V _{OH} = 9.5V V _{OH} = 13.5V V _{IN} = V _{SS}	5 10 15	-0.2 -0.5 -1.4	- - -	-0.16 -0.4 -1.2		 	-0.12 -0.3 -1.0	- - -	mA
Low Level Output Current	${ t I}_{ m OL}$	V _{OL} = 0.4V V _{OL} = 0.5V V _{OL} = 1.5V V _{IN} = V _{DD}	5 10 15	0.52 1.3 3.6	-	0.44 1.1 3.0		- -	0.36 0.9 2.4	- - -	
High Level Input Voltage	v _{IH}	V _{OUT} = 0.5V V _{OUT} = 1.0V V _{OUT} = 1.5V I _{OUT} < 1µA	5 10 15	4.0 7.0 10.0	-	4.0 7.0 10.0		- -	4.0 7.0 10.0	-	V
Low Level Input Voltage	$v_{ m IL}$	V _{OUT} = 4.5V V _{OUT} = 9.0V V _{OUT} = 13.5V I _{OUT} < 1,11A	5 10 15		1.0 1.2 1.5	- -		1.0 1.2 1.5		1.0 1.2 1.5	
Input H Level	IIH	$V_{IH} = 18V$	18		0.3	-	10-5	0.3	_	1.0	ÆL
Current L Level	IIL	$V_{IL} = 0V$	18	-	-0.3		-10 ⁻ 5	-0.3	-	-1.0	
Quiescent Current Consumption	I _{DD}	V _{IN} = V _{SS} ,V _{DD}	5 10 15	- - -	1.0 2.0 4.0	- -	0.001 0.001 0.002	1.0 2.0 4.0	1 1	7.5 15.0 30.0	μA
Quiescent Current Consumption	1 _{CCH}	$V_{IN} = V_{DD}$	5 10 15	- - -	0.9 1.6 2.1	- -	0.2 0.4 0.6	0.48 0.96 1.5	1 1 1	0.9 1.6 2.1	mA
Quiescent Current Consumption	ICCL	V _{IN} = V _{SS}	5 10 15	- - -	1.0 2.0 4.0	- - -	0.001 0.001 0.002	1.0 2.0 4.0	- - -	7.5 15.0 30.0	Aιζ

^{*} All valid input combinations


SWITCHING CHARACTERISTICS (Ta=25°C	:, ∨SS=UV,	∪L=50pF)
------------------------------------	------------	----------

CHARACTERISTIC	SYMBOL	CONDITIONS	VCC(V)	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Rise Time	tTLH			5 10 15	- -	130 65 50	400 200 160	ns
Output Fall Time	t _{THL}		-	5 10 15	- - -	100 50 40	200 100 80	
(LOW-HIGH), Propagation t _p L Delay Time		5 10 15	5 10 15	- - -	780 330 230	1600 800 600		
	t _p LH	t _p LH	5 5 10	10 15 15	- - -	750 850 330	1600 1800 800	ns
(HIGH-LOW) Propagation Delay Time	+ 117	5 10 15	5 10 15	- - -	220 75 50	600 300 200		
	tpHL		5 5 10	10 15 15	- - -	130 150 60	300 400 200	
Input Capacity	CIN					5	7.5	pF

IDD, ICC TEST CIRCUIT

SWITCHING TIME TEST CIRCUIT AND WAVEFORM

473