High-Dynamic-Range, Direct Up-/Downconversion 750MHz to 1200MHz Quadrature Mod/Demod

Abstract

General Description The MAX2021 low-noise, high-linearity, direct upconversion/downconversion quadrature modulator/demodulator is designed for RFID handheld and portal readers, as well as single and multicarrier 750 MHz to 1200 MHz GSM/EDGE, cdma2000®, WCDMA, and iDEN ${ }^{\circledR}$ base-station applications. Direct conversion architectures are advantageous since they significantly reduce transmitter or receiver cost, part count, and power consumption as compared to traditional IF-based double conversion systems. In addition to offering excellent linearity and noise performance, the MAX2021 also yields a high level of component integration. This device includes two matched passive mixers for modulating or demodulating in-phase and quadrature signals, two LO mixer amplifier drivers, and an LO quadrature splitter. On-chip baluns are also integrated to allow for single-ended RF and LO connections. As an added feature, the baseband inputs have been matched to allow for direct interfacing to the transmit DAC, thereby eliminating the need for costly I/Q buffer amplifiers. The MAX2021 operates from a single +5 V supply. It is available in a compact 36 -pin thin QFN package (6 mm $\times 6 \mathrm{~mm}$) with an exposed paddle. Electrical performance is guaranteed over the extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.


```
                        Applications
    RFID Handheld and Portal Readers
    Single and Multicarrier WCDMA 850 Base Stations
    Single and Multicarrier cdmaOne \({ }^{\text {TM }}\) and cdma2000
    Base Stations
    GSM 850/GSM 900 EDGE Base Stations
    Predistortion Transmitters and Receivers
    WiMAX Transmitters and Receivers
    Fixed Broadband Wireless Access
    Military Systems
    Microwave Links
    Digital and Spread-Spectrum Communication
    Systems
    Video-on-Demand (VOD) and DOCSIS Compliant
    Edge QAM Modulation
    Cable Modem Termination Systems (CMTS)
cdma2000 is a registered trademark of Telecommunications
Industry Association.
iDEN is a registered trademark of Motorola, Inc
cdmaOne is a trademark of CDMA Development Group.
```

Features

- 750 MHz to 1200 MHz RF Frequency Range
- Scalable Power: External Current-Setting Resistors Provide Option for Operating Device in Reduced-Power/Reduced-Performance Mode
- 36 -Pin, $6 \mathrm{~mm} \times 6 \mathrm{~mm}$ TQFN Provides High Isolation in a Small Package
Modulator Operation:
- Meets 4-Carrier WCDMA 65dBc ACLR
- +21dBm Typical OIP3
- +58 dBm Typical OIP2
- +16.7dBm Typical OP1dB
- -32dBm Typical LO Leakage
- 43.5 dBc Typical Sideband Suppression
- -174dBm/Hz Output Noise Density
- DC to 300 MHz Baseband Input Allows a Direct Launch DAC Interface, Eliminating the Need for Costly I/Q Buffer Amplifiers
- DC-Coupled Input Allows Ability for Customer Offset Voltage Control
Demodulator Operation:
- +35.2dBm Typical IIP3
- +76dBm Typical IIP2
- $>30 \mathrm{dBm}$ IP1dB
-9.2dB Typical Conversion Loss
- 9.3dB Typical NF
- 0.06 dB Typical I/Q Gain Imbalance
- 0.15° I/Q Typical Phase Imbalance

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE	PKG CODE
MAX2021ETX	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	36 Thin QFN-EP* $(6 \mathrm{~mm} \times 6 \mathrm{~mm})$	T3666-2
MAX2021ETX-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	36 Thin QFN-EP* $(6 \mathrm{~mm} \times 6 \mathrm{~mm})$	T3666-2
MAX2021ETX +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	36 Thin QFN-EP* $(6 \mathrm{~mm} \times 6 \mathrm{~mm})$	T3666-2
MAX2021ETX +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	36 Thin QFN-EP* $(6 \mathrm{~mm} \times 6 \mathrm{~mm})$	T3666-2

*EP = Exposed paddle. $\quad+=$ Lead free.
$-T=$ Tape-and-reel package.

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

High-Dynamic-Range, Direct Up-/Downconversion 750MHz to 1200MHz Quadrature Mod/Demod

ABSOLUTE MAXIMUM RATINGS

RBIASLO3 M	10 mA
$\theta_{J A}$ (without air flow)	$34^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\mathrm{JA}}(2.5 \mathrm{~m} / \mathrm{s}$ air flow)	$28^{\circ} \mathrm{C} / \mathrm{W}$
θ_{Jc} (junction to exposed paddle).	$8.5{ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction Temperature	$+150^{\circ} \mathrm{C}$
Storage Temperature Range	$+150^{\circ} \mathrm{C}$
Lead Temperature (soldering 10s,	. $+245^{\circ} \mathrm{C}$
Lead Temperature (soldering 10s,	$+260^{\circ}$

Note A: Maximum reliable continuous power applied to the baseband differential port is +20 dBm from an external 100Ω source.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(MAX2021 Typical Application Circuit, $\mathrm{V} C \mathrm{C}=+4.75 \mathrm{~V}$ to +5.25 V , GND $=0 \mathrm{~V}$, I / Q inputs terminated into 100Ω differential, LO input terminated into 50Ω, RF output terminated into 50Ω, 0 V common-mode input, $\mathrm{R} 1=432 \Omega, \mathrm{R} 2=619 \Omega, \mathrm{R} 3=332 \Omega, \mathrm{~T} \mathrm{C}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BBI}}=\mathrm{V}_{\mathrm{BBQ}}=1.4 \mathrm{VP}_{\mathrm{P}-\mathrm{P},} \mathrm{f}_{\mathrm{I}} \mathrm{C}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	VCC		4.75	5.00	5.25	V
Total Supply Current	ITOTAL	Pins 3, 13, 15, 31, 33 all connected to VCC	230	271	315	mA
Total Power Dissipation				1355	1654	mW

AC ELECTRICAL CHARACTERISTICS (Modulator)

(MAX2021 Typical Application Circuit, $\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}$ to +5.25 V , GND $=0 \mathrm{~V}$, I/Q differential inputs driven from a $100 \Omega \mathrm{DC}$-coupled source, 0 V common-mode input, $P L O=0 d B m, 750 \mathrm{MHz} \leq f \mathrm{LO} \leq 1200 \mathrm{MHz}, 50 \Omega \mathrm{LO}$ and RF system impedance, R1 $=432 \Omega, R 2=619 \Omega$, $R 3=332 \Omega, \mathrm{~T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BBI}}=1.4 \mathrm{~V}_{\mathrm{P} \text {-P }}$ differential, $\mathrm{V}_{\mathrm{BBQ}}=1.4 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ differential, $\mathrm{f}_{\mathrm{I}}=1 \mathrm{MHz}$, $\mathrm{fLO}=900 \mathrm{MHz}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
BASEBAND INPUT							
Baseband Input Differential Impedance		$\mathrm{fIQ}=1 \mathrm{MHz}$		53			Ω
BB Common-Mode Input Voltage Range				-3.5	0	+3.5	V
LO INPUT							
LO Input Frequency Range				750		1200	MHz
LO Input Drive				-6		+3	dBm
LO Input Return Loss		RF and IF terminated (Note 3)		12			dB
I/Q MIXER OUTPUTS							
Output IP3	OIP3	$\begin{aligned} \mathrm{fBB} 1 & =1.8 \mathrm{MHz}, \\ \mathrm{fBB2} & =1.9 \mathrm{MHz} \end{aligned}$	$\mathrm{fLO}=900 \mathrm{MHz}$		21.1		dBm
			$\mathrm{fLO}=1000 \mathrm{MHz}$		22.3		
Output IP2	OIP2	$\begin{aligned} & \mathrm{fBB} 1=1.8 \mathrm{MHz}, \\ & \mathrm{f}_{\mathrm{BB} 2}=1.9 \mathrm{MHz} \end{aligned}$			57.9		dBm
Output P1dB		$\begin{aligned} & \mathrm{fBB}=25 \mathrm{MHz}, \\ & \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm} \end{aligned}$			16.7		dBm
Output Power	Pout				0.7		dBm
Output Power Variation Over Temperature		TC $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			-0.016		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Output-Power Flatness		Sweep fBB, PRF flatness for fBB from 1 MHz to 50 MHz			0.15		dB

High-Dynamic-Range, Direct Up-/Downconversion 750MHz to 1200MHz Quadrature Mod/Demod

AC ELECTRICAL CHARACTERISTICS (Modulator) (continued)

(MAX2021 Typical Application Circuit, $\mathrm{V} C \mathrm{C}=+4.75 \mathrm{~V}$ to +5.25 V , GND $=0 \mathrm{~V}$, I/Q differential inputs driven from a $100 \Omega \mathrm{DC}$-coupled source, OV common-mode input, PLO $=0 \mathrm{dBm}, 750 \mathrm{MHz} \leq \mathrm{fLO}^{\prime} \leq 1200 \mathrm{MHz}, 50 \Omega \mathrm{LO}$ and RF system impedance, R1 $=432 \Omega, \mathrm{R} 2=619 \Omega$, $R 3=332 \Omega, \mathrm{~T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=1.4 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ differential, $\mathrm{V}_{\mathrm{BBQ}}=1.4 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ differential, $\mathrm{f}_{\mathrm{IQ}}=1 \mathrm{MHz}$, $\mathrm{fLO}=900 \mathrm{MHz}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ACLR (1st Adjacent Channel 5MHz Offset)		Single-carrier WCDMA (Note 4)			65		dBc
LO Leakage		No external calibration, with each baseband input terminated in 50Ω			-32		dBm
Sideband Suppression		No external calibration,$\mathrm{fLO}=920 \mathrm{MHz}$	PLO $=0 \mathrm{dBm}$	30	39.6		dBc
			$\mathrm{PLO}=-3 \mathrm{dBm}$		43.5		
Output Noise Density		Each baseband input terminated in 50Ω (Note 5)			-174		$\mathrm{dBm} / \mathrm{Hz}$
Output Noise Floor		Pout $=0 \mathrm{dBm}, \mathrm{fLO}=900 \mathrm{MHz}$ (Note 6)			-168		$\mathrm{dBm} / \mathrm{Hz}$
RF Return Loss		(Note 3)			15		dB

AC ELECTRICAL CHARACTERISTICS (Demodulator)

(MAX2021 Typical Application Circuit when operated as a demodulator, $\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}$ to +5.25 V , $\mathrm{GND}=0 \mathrm{~V}$, differential baseband outputs converted to a 50Ω single-ended output, $\mathrm{P}_{\mathrm{RF}}=\mathrm{PLO}_{\mathrm{LO}}=0 \mathrm{dBm}, 750 \mathrm{MHz} \leq \mathrm{fLO}_{\mathrm{LO}} \leq 1200 \mathrm{MHz}, 50 \Omega \mathrm{LO}$ and RF system impedance, R1 $=$ $432 \Omega, \mathrm{R} 2=619 \Omega, \mathrm{R} 3=332 \Omega, \mathrm{TC}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V} C \mathrm{C}=+5 \mathrm{~V}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
RF INPUT							
RF Frequency	f_{RF}			750		1200	MHz
Conversion Loss	LC	$\mathrm{f}_{\mathrm{BB}}=25 \mathrm{MHz}$ (Note 7)			9.2		dB
Noise Figure	NF	$\mathrm{f}_{\mathrm{LO}}=900 \mathrm{MHz}$			9.3		dB
Noise Figure Under-Blocking	NFBLock	$\begin{aligned} & \text { fBLOCKER }=900 \mathrm{MHz}, \text { PRF }=11 \mathrm{dBm}, \\ & \mathrm{f}_{\mathrm{RF}}=\mathrm{f}_{\mathrm{LO}}=890 \mathrm{MHz}(\text { Note } 8) \end{aligned}$			17.8		dB
Input Third-Order Intercept	IIP3	$\begin{aligned} & \mathrm{fRF} 1=925 \mathrm{MHz}, \mathrm{fRF} 2=926 \mathrm{MHz}, \mathrm{fLO}= \\ & 900 \mathrm{MHz}, \mathrm{P}_{\mathrm{RF}}=\mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{f} P \mathrm{P} U \mathrm{R}=24 \mathrm{MHz} \end{aligned}$			35.2		dBm
Input Second-Order Intercept	IIP2	$\begin{aligned} & \mathrm{f}_{\mathrm{RF} 1}=925 \mathrm{MHz}, \mathrm{fRF} 2=926 \mathrm{MHz}, \mathrm{fLO}= \\ & 900 \mathrm{MHz}, \mathrm{P}_{\mathrm{RF}}=\mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{f} P \mathrm{PUR}=51 \mathrm{MHz} \end{aligned}$			76		dBm
Input 1dB Compression	$\mathrm{P}_{1 \mathrm{~dB}}$	$\mathrm{ffiF}=50 \mathrm{MHz}, \mathrm{fLO}=900 \mathrm{MHz}, \mathrm{PLO}=0 \mathrm{dBm}$			30		dBm
I/Q Gain Mismatch		$\mathrm{fbB}^{\text {a }} 1 \mathrm{MHz}, \mathrm{fLO}=900 \mathrm{MHz}, \mathrm{PLO}=0 \mathrm{dBm}$			0.06		dB
I/Q Phase Mismatch		$\begin{aligned} & f_{B B}=1 \mathrm{MHz}, \\ & f_{L O}=900 \mathrm{MHz} \end{aligned}$	PLO $=0 \mathrm{dBm}$		1.1		degrees
			PLO $=-3 \mathrm{dBm}$		0.15		

Note 1: Guaranteed by design and characterization.
Note 2: T_{C} is the temperature on the exposed paddle.
Note 3: Parameter also applies to demodulator topology.
Note 4: Single-carrier WCDMA with 10.5dB peak-to-average ratio at 0.1% complementary cumulative distribution function, $P_{R F}=-10 \mathrm{dBm}$ (PRF is chosen to give -65dBc ACLR).
Note 5: No baseband drive input. Measured with the inputs terminated in 50Ω. At low output levels, the output noise is thermal.
Note 6: The output noise versus Pout curve has the slope of LO noise ($\mathrm{Ln} \mathrm{dBc} / \mathrm{Hz}$) due to reciprocal mixing.
Note 7: Conversion loss is measured from the single-ended RF input to single-ended combined baseband output.
Note 8: The LO noise $(L=10(L n / 10)$, determined from the modulator measurements can be used to deduce the noise figure underblocking at operating temperature (Tp in Kelvin), FBLOCK $=1+($ Lcn - 1) Tp $/$ To + LPBLOCK / (1000kTo), where To $=290 \mathrm{~K}$, PBLOCK in $m W$, k is Boltzmann's constant $=1.381 \times 10(-23) \mathrm{J} / \mathrm{K}$, and $\mathrm{Lcn}=10(\mathrm{Lc} / 10), \mathrm{Lc}$ is the conversion loss. Noise figure under-blocking in dB is $\mathrm{NF}_{\text {BLOCK }}=10 \times \log$ (FBLOCK). Refer to Application Note 3632.

High-Dynamic-Range, Direct Up-/Downconversion 750MHz to 1200MHz Quadrature Mod/Demod

(MAX2021 Typical Application Circuit, $\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}$ to +5.25 V , GND $=0 \mathrm{~V}$, I/Q differential inputs driven from a 100Ω DC-coupled source, OV common-mode input, PLO $=0 d B m, 750 \mathrm{MHz} \leq \mathrm{fLO} \leq 1200 \mathrm{MHz}, 50 \Omega \mathrm{LO}$ and RF system impedance, R1 $=432 \Omega, \mathrm{R} 2=619 \Omega$, $R 3=332 \Omega, \mathrm{TC}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BBI}}=1.4 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ differential, $\mathrm{V}_{\mathrm{BBQ}}=1.4 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ differential, $\mathrm{f}_{\mathrm{IQ}}=1 \mathrm{MHz}$, $\mathrm{f}_{\mathrm{LO}}=900 \mathrm{MHz}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

TOTAL SUPPLY CURRENT
vs. TEMPERATURE (Tc)

aCLR vs. OUTPUT POWER PER CARRIER

SIDEBAND SUPPRESSION
vs. 10 FREQUENCY

MODULATOR

SIDEBAND SUPPRESSION
vs. 10 FREQUENCY

OUTPUT IP3 vs. LO FREQUENCY

ACLR vs. OUTPUT POWER PER CARRIER

SIDEBAND SUPPRESSION
vs. 10 FREQUENCY

OUTPUT IP3 vs. LO FREQuENCY

High-Dynamic-Range, Direct Up-/Downconversion 750MHz to 1200 MHz Quadrature Mod/Demod

Typical Operating Characteristics (continued)
(MAX2021 Typical Application Circuit, $\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}$ to +5.25 V , GND $=0 \mathrm{~V}$, I/Q differential inputs driven from a 100Ω DC-coupled source, OV common-mode input, PLO $=0 d B m, 750 \mathrm{MHz} \leq \mathrm{fLO} \leq 1200 \mathrm{MHz}, 50 \Omega \mathrm{LO}$ and RF system impedance, R1 $=432 \Omega, \mathrm{R} 2=619 \Omega$, $R 3=332 \Omega, \mathrm{~T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BBI}}=1.4 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ differential, $\mathrm{V}_{\mathrm{BBQ}}=1.4 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ differential, $\mathrm{f}_{\mathrm{I}}=1 \mathrm{MHz}$, $\mathrm{f}_{\mathrm{LO}}=900 \mathrm{MHz}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

OUTPUT IP2
vs. COMMON-MODE VOLTAGE

High-Dynamic-Range, Direct Up-/Downconversion 750MHz to 1200MHz Quadrature Mod/Demod

Typical Operating Characteristics (continued)
(MAX2021 Typical Application Circuit, $\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}$ to +5.25 V , GND $=0 \mathrm{~V}$, I/Q differential inputs driven from a 100Ω DC-coupled source, OV common-mode input, PLO $=0 d B m, 750 \mathrm{MHz} \leq f \mathrm{LO} \leq 1200 \mathrm{MHz}, 50 \Omega \mathrm{LO}$ and RF system impedance, R1 $=432 \Omega$, R2 $=619 \Omega$, $R 3=332 \Omega, \mathrm{~T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BBI}}=1.4 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ differential, $\mathrm{V}_{\mathrm{BBQ}}=1.4 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ differential, $\mathrm{f}_{\mathrm{IQ}}=1 \mathrm{MHz}$, $\mathrm{f}_{\mathrm{LO}}=900 \mathrm{MHz}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

OUTPUT NOISE vs. OUTPUT POWER

High-Dynamic-Range, Direct Up-/Downconversion 750MHz to 1200MHz Quadrature Mod/Demod

Typical Operating Characteristics

(MAX2021 Typical Application Circuit, VCC $=+4.75 \mathrm{~V}$ to +5.25 V , GND $=0 \mathrm{~V}$, I/Q differential inputs driven from a 100Ω DC-coupled source, 0 V common-mode input, $\mathrm{PRF}=5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, 750 \mathrm{MHz} \leq f \mathrm{LO} \leq 1200 \mathrm{MHz}, 50 \Omega \mathrm{LO}$ and RF system impedance, R1 $=432 \Omega$, $R 2=619 \Omega, R 3=332 \Omega, \mathrm{~T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V} C \mathrm{C}=+5 \mathrm{~V}, \mathrm{fLO}_{\mathrm{LO}}=900 \mathrm{MHz}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

/ИノХХІル

High-Dynamic-Range, Direct Up-/Downconversion 750MHz to 1200MHz Quadrature Mod/Demod

Pin Description

PIN	NAME	FUNCTION
$\begin{aligned} & 1,5,9-12,14,16-19,22, \\ & 24,27-30,32,34,35,36 \end{aligned}$	GND	Ground
2	RBIASLO3	3rd LO Amplifier Bias. Connect a 332Ω resistor to ground.
3	VCCLOA	LO Input Buffer Amplifier Supply Voltage. Bypass to GND with 33pF and $0.1 \mu \mathrm{~F}$ capacitors as close to the pin as possible.
4	LO	Local Oscillator Input. 50Ω input impedance.
6	RBIASLO1	1st LO Input Buffer Amplifier Bias. Connect a 432Ω resistor to ground.
7	N.C.	No Connection. Leave unconnected.
8	RBIASLO2	2nd LO Amplifier Bias. Connect a 619Ω resistor to ground.
13	VCCLOI1	I-Channel 1st LO Amplifier Supply Voltage. Bypass to GND with 33 pF and $0.1 \mu \mathrm{~F}$ capacitors as close to the pin as possible.
15	VCCLOI2	I-Channel 2nd LO Amplifier Supply Voltage. Bypass to GND with 33pF and $0.1 \mu \mathrm{~F}$ capacitors as close to the pin as possible.
20	BBI+	Baseband In-Phase Noninverting Port
21	BBI-	Baseband In-Phase Inverting Port
23	RF	RF Port
25	BBQ-	Baseband Quadrature Inverting Port
26	BBQ+	Baseband Quadrature Noninverting Port
31	VCCLOQ2	Q-Channel 2nd LO Amplifier Supply Voltage. Bypass to GND with 33 pF and $0.1 \mu \mathrm{~F}$ capacitors as close to the pin as possible.
33	VCCLOQ1	Q-Channel 1st LO Amplifier Supply Voltage. Bypass to GND with 33 pF and $0.1 \mu \mathrm{~F}$ capacitors as close to the pin as possible.
EP	GND	Exposed Ground Paddle. The exposed paddle MUST be soldered to the ground plane using multiple vias.

Abstract

Detailed Description The MAX2021 is designed for upconverting differential in-phase (I) and quadrature (Q) inputs from baseband to a 750 MHz to 1200 MHz RF frequency range. The device can also be used as a demodulator, downconverting an RF input signal directly to baseband. Applications include RFID handheld and portal readers, as well as single and multicarrier GSM/EDGE, cdma2000, WCDMA, and iDEN base stations. Direct conversion architectures are advantageous since they significantly reduce transmitter or receiver cost, part count, and power consumption as compared to traditional IF-based double conversion systems. The MAX2021 integrates internal baluns, an LO buffer, a phase splitter, two LO driver amplifiers, two matched double-balanced passive mixers, and a wideband quadrature combiner. The MAX2021's high-linearity mixers, in conjunction with the part's precise in-phase and quadrature channel matching, enable the device to possess excellent dynamic range, ACLR, 1dB compression

point, and LO and sideband suppression characteristics. These features make the MAX2021 ideal for fourcarrier WCDMA operation.

LO Input Balun, LO Buffer, and Phase Splitter

The MAX2021 requires a single-ended LO input, with a nominal power of 0 dBm . An internal low-loss balun at the LO input converts the single-ended LO signal to a differential signal at the LO buffer input. In addition, the internal balun matches the buffer's input impedance to 50Ω over the entire band of operation.
The output of the LO buffer goes through a phase splitter, which generates a second LO signal that is shifted by 90° with respect to the original. The 0° and $90^{\circ} \mathrm{LO}$ signals drive the I and Q mixers, respectively.

LO Driver

Following the phase splitter, the 0° and $90^{\circ} \mathrm{LO}$ signals are each amplified by a two-stage amplifier to drive the I and Q mixers. The amplifier boosts the level of the LO

High-Dynamic-Range, Direct Up-/Downconversion 750MHz to 1200 MHz Quadrature Mod/Demod

signals to compensate for any changes in LO drive levels. The two-stage LO amplifier allows a wide input power range for the LO drive. The MAX2021 can tolerate LO level swings from -6 dBm to +3 dBm .

I/Q Modulator

The MAX2021 modulator is composed of a pair of matched double-balanced passive mixers and a balun. The I and Q differential baseband inputs accept signals from DC to 300 MHz with differential amplitudes up to 4 VP -p. The wide input bandwidths allow operation of the MAX2021 as either a direct RF modulator or as an image-reject mixer. The wide common-mode compliance range allows for direct interface with the baseband DACs. No active buffer circuitry is required between the baseband DACs and the MAX2021 for cdma2000 and WCDMA applications.
The I and Q signals directly modulate the 0° and $90^{\circ} \mathrm{LO}$ signals and are upconverted to the RF frequency. The outputs of the I and Q mixers are combined through a balun to produce a singled-ended RF output.

Applications Information

LO Input Drive

The LO input of the MAX2021 is internally matched to 50Ω, and requires a single-ended drive at a 750 MHz to 1200 MHz frequency range. An integrated balun converts the singled-ended input signal to a differential signal at the LO buffer differential input. An external DC-blocking capacitor is the only external part required at this interface. The LO input power should be within the -6 dBm to +3 dBm range. An LO input power of -3 dBm is recommended for best overall peformance.

Baseband I/Q Input Drive

Drive the MAX2021 I and Q baseband inputs differentially for best performance. The baseband inputs have a 53Ω differential input impedance. The optimum source impedance for the I and Q inputs is 100Ω differential. This source impedance achieves the optimal signal transfer to the I and Q inputs, and the optimum output RF impedance match. The MAX2021 can accept input power levels of up to +20 dBm on the 1 and Q inputs. Operation with complex waveforms, such as CDMA carriers or GSM signals, utilize input power levels that are far lower. This lower power operation is made necessary by the high peak-to-average ratios of these complex waveforms. The peak signals must be kept below the compression level of the MAX2021. The input common-mode voltage should be confined to the -3.5 V to +3.5 V DC range.
The MAX2021 is designed to interface directly with Maxim high-speed DACs. This generates an ideal total
transmitter lineup, with minimal ancillary circuit elements. Such DACs include the MAX5875 series of dual DACs, and the MAX5895 dual interpolating DAC. These DACs have ground-referenced differential current outputs. Typical termination of each DAC output into a 50Ω load resistor to ground, and a 10 mA nominal DC output current results in a 0.5 V common-mode DC level into the modulator I/Q inputs. The nominal signal level provided by the DACs will be in the -12 dBm range for a single CDMA or WCDMA carrier, reducing to -18 dBm per carrier for a four-carrier application.
The I/Q input bandwidth is greater than 50 MHz at -0.1 dB response. The direct connection of the DAC to the MAX2021 ensures the maximum signal fidelity, with no performance-limiting baseband amplifiers required. The DAC output can be passed through a lowpass filter to remove the image frequencies from the DAC's output response. The MAX5895 dual interpolating DAC can be operated at interpolation rates up to $x 8$. This has the benefit of moving the DAC image frequencies to a very high, remote frequency, easing the design of the baseband filters. The DAC's output noise floor and interpolation filter stopband attenuation are sufficiently good to ensure that the 3GPP noise floor requirement is met for large frequency offsets, 60 MHz for example, with no filtering required on the RF output of the modulator.
Figure 1 illustrates the ease and efficiency of interfacing the MAX2021 with a Maxim DAC, in this case the MAX5895 dual 16-bit interpolating-modulating DAC.

Figure 1. MAX5895 DAC Interfaced with MAX2021

High-Dynamic-Range, Direct Up-/Downconversion 750MHz to 1200MHz Quadrature Mod/Demod

The MAX5895 DAC has programmable gain and differential offset controls built in. These can be used to optimize the LO leakage and sideband suppression of the MAX2021 quadrature modulator.

RF Output

The MAX2021 utilizes an internal passive mixer architecture that enables the device to possess an exceptionally low-output noise floor. With such architectures, the total output noise is typically a power summation of the theoretical thermal noise (KTB) and the noise contribution from the on-chip LO buffer circuitry. As demonstrated in the Typical Operating Characteristics, the MAX2021's output noise approaches the thermal limit of $-174 \mathrm{dBm} / \mathrm{Hz}$ for lower output power levels. As the output power increases, the noise level tracks the noise contribution from the LO buffer circuitry, which is approximately $-168 \mathrm{dBc} / \mathrm{Hz}$.
The I/Q input power levels and the insertion loss of the device determine the RF output power level. The input power is a function of the delivered input I and Q voltages to the internal 50Ω termination. For simple sinusoidal baseband signals, a level of 89 mV P-P differential on the I and the Q inputs results in a -17 dBm input power level delivered to the I and Q internal 50Ω terminations. This results in an RF output power of -23.2 dBm .

External Diplexer

LO leakage at the RF port can be nulled to a level less than -80 dBm by introducing DC offsets at the I and Q ports. However, this null at the RF port can be compro-

Figure 2. Diplexer Network Recommended for GSM 900 Transmitter Applications
mised by an improperly terminated I/Q IF interface. Care must be taken to match the I/Q ports to the driving DAC circuitry. Without matching, the LO's second-order (2fLO) term may leak back into the modulator's I/Q input port where it can mix with the internal LO signal to produce additional LO leakage at the RF output. This leakage effectively counteracts against the LO nulling. In addition, the LO signal reflected at the I/Q IF port produces a residual $D C$ term that can disturb the nulling condition.
As demonstrated in Figure 2, providing an RC termination on each of the $I_{+}, I-, Q+, Q-p o r t s ~ r e d u c e s ~ t h e ~ a m o u n t ~ o f ~$ LO leakage present at the RF port under varying temperature, LO frequency, and baseband drive conditions. See the Typical Operating Characteristics for details. Note that the resistor value is chosen to be 100Ω with a corner frequency $1 /(2 \pi R C)$ selected to adequately filter the fLO and $2 f$ lo leakage, yet not affecting the flatness of the baseband response at the highest baseband frequency. The common-mode fLO and 2fLO signals at I+/I- and Q+/Q- effectively see the RC networks and thus become terminated in $50 \Omega(\mathrm{R} / 2)$. The RC network provides a path for absorbing the 2flo and flo leakage, while the inductor provides high impedance at fLO and 2fLo to help the diplexing process.

RF Demodulator

The MAX2021 can also be used as an RF demodulator, downconverting an RF input signal directly to baseband. The single-ended RF input accepts signals from 750 MHz to 1200 MHz with power levels up to +30 dBm . The passive mixer architecture produces a conversion loss of typically 9.2 dB . The downconverter is optimized for high linearity and excellent noise performance, typically with $a+35.2 \mathrm{dBm}$ IIP3, a P1dB of greater than +30 dBm , and a 9.3 dB noise figure.
A wide I/Q port bandwidth allows the port to be used as an image-reject mixer for downconversion to a quadrature IF frequency.
The RF and LO inputs are internally matched to 50Ω. Thus, no matching components are required, and only DC-blocking capacitors are needed for interfacing.

Power Scaling with Changes to the Bias Resistors

Bias currents for the LO buffers are optimized by fine tuning resistors R1, R2, and R3. Maxim recommends using $\pm 1 \%$-tolerant resistors; however, standard $\pm 5 \%$ values can be used if the $\pm 1 \%$ components are not readily available. The resistor values shown in the Typical Application Circuit were chosen to provide peak performance for the entire 750 MHz to 1200 MHz band. If desired, the current can be backed off from this nominal value by choosing different values for R1,

High-Dynamic-Range, Direct Up-/Downconversion 750MHz to 1200MHz Quadrature Mod/Demod

Table 1. Typical Performance Trade-Offs as a Function of Current Draw-Modulator Mode

LO FREQ (MHz)	RF FREQ (MHz)	R1 (Ω)	$\begin{aligned} & \text { R2 } \\ & (\Omega) \end{aligned}$	$\begin{aligned} & \text { R3 } \\ & (\Omega) \end{aligned}$	$\begin{aligned} & \text { ICC } \\ & (\mathrm{mA}) \end{aligned}$	$\begin{gathered} \text { OIP3 } \\ \text { (dBm) } \end{gathered}$	LO LEAK (dBm)	IMAGE REJ (dBc)	$\begin{aligned} & \text { OIP2 } \\ & \text { (dBm) } \end{aligned}$
800	801.8	420	620	330	271	19.6	-32.1	23.9	50.5
		453	665	360	253	21.9	-32.7	34.0	51.0
		499	698	402	229	18.9	-33.7	30.0	52.6
		549	806	464	205	15.7	-34.4	23.7	46.0
		650	1000	550	173	13.6	-34.2	23.3	32.3
900	901.8	420	620	330	271	20.7	-31.4	43.4	54.0
		453	665	360	253	21.6	-31.6	42.4	55.4
		499	698	402	229	20.6	-31.8	42.7	59.8
		549	806	464	205	19.0	-31.9	40.3	50.7
		650	1000	550	173	14.9	-30.5	25.0	34.6
1000	1001.8	420	620	330	271	22.4	-32.8	39.3	55.5
		453	665	360	253	22.2	-33.2	39.1	56.3
		499	698	402	229	19.9	-33.8	43.5	55.0
		549	806	464	205	17.6	-34.8	40.5	51.4
		650	1000	550	173	14.6	-33.9	36.8	32.8

Note: $V_{C C}=5 \mathrm{~V}, P_{L O}=0 \mathrm{dBm}, T_{A}=+25^{\circ} \mathrm{C}, I / Q$ voltage levels $=1.4 \mathrm{~V} P-P$ differential.

R2, and R3. Tables 1 and 2 outline the performance trade-offs that can be expected for various combinations of these bias resistors. As noted within the tables, the performance trade-offs may be more pronounced for different operating frequencies. Contact the factory for additional details.

Layout Considerations

A properly designed PC board is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. For the best performance, route the ground pin traces directly to the exposed pad under the package. The PC board exposed paddle MUST be connected to the ground plane of the PC board. It is suggested that multiple vias be used to connect this pad to the lowerlevel ground planes. This method provides a good RF/thermal conduction path for the device. Solder the exposed pad on the bottom of the device package to the PC board. The MAX2021 evaluation kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com.

Power-Supply Bypassing

Proper voltage-supply bypassing is essential for highfrequency circuit stability. Bypass all VCC_ pins with

33 pF and $0.1 \mu \mathrm{~F}$ capacitors placed as close to the pins as possible. The smallest capacitor should be placed closest to the device.
To achieve optimum performance, use good voltagesupply layout techniques. The MAX2021 has several RF processing stages that use the various VCC_ pins, and while they have on-chip decoupling, off-chip interaction between them may degrade gain, linearity, carrier suppression, and output power-control range. Excessive coupling between stages may degrade stability.

Exposed Pad RF/Thermal Considerations

The EP of the MAX2021's 36 -pin thin QFN-EP package provides a low thermal-resistance path to the die. It is important that the PC board on which the IC is mounted be designed to conduct heat from this contact. In addition, the EP provides a low-inductance RF ground path for the device.
The exposed paddle (EP) MUST be soldered to a ground plane on the PC board either directly or through an array of plated via holes. An array of 9 vias, in a $3 \times$ 3 array, is suggested. Soldering the pad to ground is critical for efficient heat transfer. Use a solid ground plane wherever possible.

High-Dynamic-Range, Direct Up-/Downconversion 750MHz to 1200MHz Quadrature Mod/Demod

Table 2. Typical Performance Trade-Offs as a Function of Current Draw—Demodulator Mode

LO FREQ (MHz)	RF FREQ (MHz)	R1 (Ω)	R2 (Ω)	R3 (Ω	$\begin{aligned} & \hline \text { Icc } \\ & (\mathrm{mA}) \end{aligned}$	CONVERSION LOSS (dB)	$\begin{gathered} \hline \text { IIP3 } \\ \text { (dBm) } \end{gathered}$	57MHz IIP2 (dBm)
800	771	420	620	330	269	9.8	33.85	62.1
		453	665	360	254	9.83	33.98	62.9
		499	698	402	230	9.81	32.2	66.6
		549	806	464	207	9.84	31.1	66.86
		650	1000	550	173	9.95	29.87	65.25
900	871	420	620	330	269	9.21	33.1	68
		453	665	360	254	9.25	33.9	66.87
		499	698	402	230	9.36	34.77	66.7
		549	806	464	207	9.39	35.3	66.6
		650	1000	550	173	9.46	32	64.64
1000	971	420	620	330	269	9.47	34.9	>77.7
		453	665	360	254	9.5	35.4	>77.5
		499	698	402	230	9.53	34.58	>76.5
		549	806	464	207	9.5	33.15	>76.5
		650	1000	550	173	9.61	31.5	76

Note: Used on PC board 180° combiners and off PC board quadrature combiner with $V C C=5 \mathrm{~V}, P_{R F}=-3 d B m, P_{L O}=0 d B m, T_{A}=+25^{\circ} \mathrm{C}$, IF1 $=28 \mathrm{MHz}, I F 2=29 \mathrm{MHz}$.
\qquad

High-Dynamic-Range, Direct Up-/Downconversion 750MHz to 1200MHz Quadrature Mod/Demod

High-Dynamic-Range, Direct Up-/Downconversion 750MHz to 1200MHz Quadrature Mod/Demod

Table 3. Component List Referring to the Typical Application Circuit

COMPONENT	VALUE	DESCRIPTION
C1, C6, C7, C10, C13	33 pF	$33 \mathrm{pF} \pm 5 \%, 50 \mathrm{~V}$ C0G ceramic capacitors (0402)
$\mathrm{C} 2, \mathrm{C} 5, \mathrm{C} 8, \mathrm{C} 11, \mathrm{C} 12$	$0.1 \mu \mathrm{~F}$	$0.1 \mu \mathrm{~F} \pm 10 \%, 16 \mathrm{~V}$ XR ceramic capacitors (0603)
C3	82 pF	$82 \mathrm{pF} \pm 5 \%, 50 \mathrm{~V}$ C0G ceramic capacitor (0402)
C9	8.2 pF	$8.2 \mathrm{pF} \pm 0.1 \mathrm{pF}, 50 \mathrm{~V}$ C0G ceramic capacitor (0402)
R1	432Ω	$432 \Omega \pm 1 \%$ resistor (0402)
R2	619Ω	$619 \Omega \pm 1 \%$ resistor (0402)
R3	332Ω	$332 \Omega \pm 1 \%$ resistor (0402)

Chip Information
PROCESS: SiGe BiCMOS

For the latest package outline information, go to www.maxim-ic.com/packages.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

