High Performance Quad DVGA

General Description

The LMH6522 contains four, high performance, digitally controlled variable gain amplifiers (DVGA). It has been designed for use in narrowband and broadband IF sampling applications. Typically, the LMH6522 drives a high performance ADC in a broad range of mixed signal and digital communication applications such as mobile radio and cellular base stations where automatic gain control (AGC) is required to increase system dynamic range.
Each channel of LMH6522 has an independent, digitally controlled attenuator and a high linearity, differential output, amplifier. All circuitry has been optimized for low distortion and maximum system design flexibility. Power consumption is managed by a three-state enable pin. Individual channels can be disabled or placed into a Low Power Mode or a higher performance, High Power Mode.
The LMH6522 digitally controlled attenuator provides precise 1 dB gain steps over a 31 dB range. The digital attenuator can be controlled by either a SPI ${ }^{\text {TM }}$ Serial bus or a high speed parallel bus.
The output amplifier has a differential output, allowing large signal swings on a single 5 V supply. The low impedance output provides maximum flexibility when driving a wide range filter designs or analog to digital converters. For applications which have very large changes in signal level LMH6522 can support up to 62 dB of gain range by cascading channels.
The LMH6522 operates over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The LMH6522 is available in a 54 -Pin, thermally enhanced, LLP package.

Features

- OIP3: 49dBm @ 200MHz
- Noise Figure: 8.5 dB
- Voltage Gain: 26dB
- 1dB Gain Steps
- -3 dB bandwidth of 1400 MHz
- Gain Step Accuracy: 0.2 dB
- Disable function for each channel
- Parallel and Serial gain control
- Low Power Mode for power management flexibility
- Small footprint LLP package

Applications

- Cellular base stations
- Wideband and narrowband IF sampling receivers
- Wideband direct conversion
- ADC Driver

Performance Curve

30127381

Table of Contents

General Description 1
Features 1
Applications 1
Performance Curve 1
Block Diagram 2
Absolute Maximum Ratings 4
Operating Ratings (Note 1) 4
Connection Diagram 6
Ordering Information 6
Typical Performance Characteristics 9
Application Information 16
INTRODUCTION 16
BASIC CONNECTIONS 18
INPUT CHARACTERISTICS 18
OUTPUT CHARACTERISTICS 19
CASCADE OPERATION 20
DIGITAL CONTROL 21
PARALLEL INTERFACE 21
SPI COMPATIBLE SERIAL INTERFACE 21
SPISU2 SPI CONTROL BOARD AND TINYI2CSPI SOFTWARE 24
THERMAL MANAGEMENT 24
INTERFACING TO AN ADC 24
ADC Noise Filter 24
POWER SUPPLIES 25
DYNAMIC POWER MANAGEMENT, USING LOW POWER MODE 25
COMPATIBLE HIGH SPEED ANALOG TO DIGITAL CONVERTERS 26
Physical Dimensions 27

Absolute Maximum Ratings
 (Note 1)
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)	2 kV
\quad Human Body Model	200 V
\quad Machine Model	750 V
\quad Charged Device Model	-0.6 V to 5.5 V
Positive Supply Voltage (Pin 3)	$<200 \mathrm{mV}$
Differential Voltage between Any	-0.6 V to 5.5 V
Two Grounds	-0.6 V to 5.5 V
Analog Input Voltage Range	
Digital Input Voltage Range	Infinite
Output Short Circuit Duration	
(one pin to ground)	

Junction Temperature	$+150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering Information	
Infrared or Convection $(30 \mathrm{sec})$	$260^{\circ} \mathrm{C}$

Operating Ratings (Note 1)

Supply Voltage (Pin 3)	4.75 V to 5.25 V
Differential Voltage Between Any	
Two Grounds	$<10 \mathrm{mV}$
Analog Input Voltage Range, AC Coupled	OV to V+
Temperature Range (Note 3)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Package Thermal Resistance ($\theta_{\text {JA }}$)	
4- Layer JEDEC Board	$23^{\circ} \mathrm{C} / \mathrm{W}$
8- Layer Eval. Board	$15^{\circ} \mathrm{C} / \mathrm{W}$

5V Electrical Characteristics (Note 4)

The following specifications apply for single supply with $\mathrm{V}+=5 \mathrm{~V}$, Maximum Gain (0 Attenuation), $\mathrm{R}_{\mathrm{L}}=200 \Omega$, $\mathrm{V}_{\text {OUT }}=4 \mathrm{~V}_{\text {PPD }}$, fin $=$ 200 MHz , High Power Mode, Boldface limits apply at temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Min } \\ (\text { Note 6) } \end{gathered}$	Typ (Note 5)	$\begin{gathered} \hline \text { Max } \\ \text { (Note 6) } \\ \hline \end{gathered}$	Units
Dynamic Performance						
3dBBW	-3dB Bandwidth	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {PPD }}$		1.4		GHz
	Output Noise Voltage	Source $=100 \Omega$		30		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
NF	Noise Figure	Source $=100 \Omega$		8.5		dB
OIP3	Output Third Order Intercept Point	$\mathrm{f}=100 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=4 \mathrm{dBm}$ per tone		53		dBm
	Output Third Order Intercept Point	$\mathrm{f}=200 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=4 \mathrm{dBm}$ per tone		49		
OIP2	Output Second Order Intercept Point	$\begin{aligned} & \mathrm{P}_{\text {out }}=4 \mathrm{dBm} \text { per Tone, } \mathrm{f} 1=101 \mathrm{MHz}, \\ & \mathrm{f} 2=203 \mathrm{MHz} \end{aligned}$		78		dBm
IMD3	Third Order Intermodulation Products	$\mathrm{f}=100 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=4 \mathrm{dBm}$ per tone		-98		dBc
	Third Order Intermodulation Products	$\mathrm{f}=200 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=4 \mathrm{dBm}$ per tone		-90		
P1dB	1dB Compression Point			17		dBm
HD2	Second Order Harmonic Distortion	$\mathrm{f}=100 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {PPD }}$		-88		dBc
HD2	Second Order Harmonic Distortion	$\mathrm{f}=200 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {PPD }}$		-78		dBc
HD3	Third Order Harmonic Distortion	$\mathrm{f}=100 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {PPD }}$		-99		dBc
HD3	Third Order Harmonic Distortion	$\mathrm{f}=200 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {PPD }}$		-75		dBc
CMRR	Common Mode Rejection	Pin $=-15 \mathrm{dBm}$		-35		dBc
Analog I/O						
$\mathrm{R}_{\text {IN }}$	Input Resistance	Differential, Measured at DC		97		Ω
$\mathrm{V}_{\text {ICM }}$	Input Common Mode Voltage	Self Biased		2.5		V
	Maximum Input Voltage Swing	Volts peak to peak, differential		5.5		$\mathrm{V}_{\text {PPD }}$
	Maximum DIfferential Output Voltage Swing	Differential, f < 10MHz		10		$\mathrm{V}_{\text {PPD }}$
$\overline{\mathrm{R}_{\text {OUT }}}$	Output Resistance	Differential, Measured at DC		20		Ω
XTLK	Channel to Channel Crosstalk	Maximum Gain, f=200MHz		-65		dBc
Gain Parameters						
	Maximum Voltage Gain	Attenuation code 00000		25.74		dB
	Minimum Gain	Attenuation code 11111		-4.3		dB
	Gain Steps			32		
	Gain Step Size			1.0		dB
	Channel Matching	Gain error between channels		± 0.15		dB

Symbol	Parameter	Conditions	Min (Note 6)	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	Max (Note 6)	Units
	Gain Step Error	Any two adjacent steps over entire range		± 0.5		dB
	Gain Step Error	Any two adjacent steps, 0 dB attenuation to 23 dB attenuation		± 0.1		dB
	Gain Step Phase Shift	Any two adjacent steps over entire range		± 3		Degrees
	Gain Step Phase Shift	Any two adjacent steps, OdB attenuation to 23 dB attenuation		± 2		Degrees
	Gain Step Switching Time			20		ns
	Enable/ Disable Time	Settled to 90\% level		200		us

Power Requirements

ICC	Supply Current			465	485	mA
P	Power			2.3	2.43	W
$\mathrm{I}_{\text {BIAS }}$	Output Pin Bias Current	External inductor, no load, $\mathrm{V}_{\mathrm{OUT}}<200 \mathrm{mV}$		36		mA
ICC	Disabled Supply Current			74		mA

All Digital Inputs Except Enables

	Logic Compatibility					
VITL, 2.5V CMOS, 3.3V CMOS, 5V CMOS	Logic Input Low Voltage					
VIH	Logic Input High Voltage		0		0.4	V
IIH	Logic Input High Input Current	Digital Input Voltage = 2.0V	2.0		5.0	V
IIL	Logic Input Low Input Current	Digital Input Voltage $=0.4 \mathrm{~V}$		-9		$\mu \mathrm{~A}$

Enable Pins

VIL	Logic Input Low Voltage	Amplifier disabled	0		0.4	V
VIM	Logic Input Mid Level	Amplifier Low Power Mode	0.6		1.9	V
VIH	Logic Input High Level	Amplifier High Power Mode	2.2		5	V
VSB	Enable Pin Self Bias Voltage	No external load		1.37		V
IIL	Input Bias Current, Logic Low	Digital input voltage $=0.2 \mathrm{~V}$		-200		$\mu \mathrm{~A}$
IIM	Input Bias Current, Logic Mid	Digital input voltage $=1.5 \mathrm{~V}$		28		$\mu \mathrm{~A}$
IIH	Input Bias Current, Logic High	Digital input voltage $=3.0 \mathrm{~V}$		500		$\mu \mathrm{~A}$

Parallel Mode Timing

t_{GS}	Setup Time		3			ns
t_{GH}	Hold Time		3			ns

Serial Mode

$\mathrm{f}_{\text {CLK }}$	SPI Clock Frequency	50% duty cycle, ATE tested @ 20MHz	20	50		MHz

Low Power Mode
(Enable pins are self biased)

I_{CC}	Total Supply Current	all four channels in low power mode		370	398	mA
$\mathrm{I}_{\mathrm{BIAS}}$	Output Pin Bias Current	External Inductor, No Load, $\mathrm{V}_{\text {OUT }}<$ 200 mV		26		mA
I_{CC}	Disabled Supply Current	Enable Pin $<0.4 \mathrm{~V}$		74		mA
OIP3	Output Intermodulation Intercept Point	$\mathrm{f}=200 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=4$ dBm per tone		44	dBm	
P1dB	1 dB Compression Point			16		dBm
HD2	Second Order Harmonic Distortion	$\mathrm{f}=100 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {PPD }}$	-90		dBc	
HD2	Second Order Harmonic Distortion	$\mathrm{f}=200 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {PPD }}$	-79	dBc		
HD3	Third Order Harmonic Distortion	$\mathrm{f}=100 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {PPD }}$	-91	dBc		
HD3	Third Order Harmonic Distortion	$\mathrm{f}=200 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {PPD }}$	-79	dBc		

[^0]Note 3: The maximum power dissipation is a function of $T_{J(M A X)}, \theta_{J A}$. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(M A X)}-T_{A}\right) / \theta_{J A}$. All numbers apply for packages soldered directly onto a PC Board.
Note 4: Electrical Table values apply only for factory testing conditions at the temperature indicated. No guarantee of parametric performance is indicated in the electrical tables under conditions different than those tested
Note 5: Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on shipped production material.
Note 6: Limits are 100% production tested at $25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed through correlation using Statistical Quality Control (SQC) methods.
Note 7: Negative input current implies current flowing out of the device.
Note 8: Drift determined by dividing the change in parameter at temperature extremes by the total temperature change.

Connection Diagram

54-Pin LLP

Ordering Information

Package	Part Number	Package Marking	Transport Media	NSC Drawing
$54-$ Pin LLP	LMH6522SQE	L6522	250 Units Tape and Reel	SQA54A
	LMH6522SQ		$2 k$ Units Tape and Reel	

Pin Descriptions

Pin Number	Symbol	Pin Category	Description
Analog I/O			
2, 3	INA+, INA -	Analog Input	Differential inputs channel A
44, 43	OUTA+, OUTA-	Analog Output	Differential outputs Channel A
7, 8	INB+, INB -	Analog Input	Differential inputs channel B
39, 38	OUTB+, OUTB-	Analog Output	Differential outputs Channel B
11, 12	INC+, INC -	Analog Input	Differential inputs channel C
35, 34	OUTC+, OUTC-	Analog Output	Differential outputs Channel C
16, 17	IND+, IND -	Analog Input	Differential inputs channel D
30, 29	OUTD+, OUTD-	Analog Output	Differential outputs Channel D
Power			
$\begin{array}{\|l\|} \hline 1,4,6,9,10,13,14, \\ 15,18 \end{array}$	GND	Ground	Ground pins. Connect to low impedance ground plane. All pin voltages are specified with respect to the voltage on these pins. The exposed thermal pad is internally bonded to the ground pins.
31, 33, 40, 42	$\begin{aligned} & +5 \mathrm{VD},+5 \mathrm{VC},+5 \mathrm{VB}, \\ & +5 \mathrm{VA} \end{aligned}$	Power	Power supply pins. Valid power supply range is 4.75 V to 5.25 V .
Exposed Center Pad		Thermal/ Ground	Thermal management/ Ground
Digital Inputs			
5	MODE	Digital Input	0= Parallel Mode, 1 = Serial Mode
Parallel Mode Digital Pins, MODE = Logic Low			
49, 48, 47, 46, 45	A0, A1, A2, A3, A4	Digital Input	Channel A attenuator control
41	ENBA	Digital Input	Channel A enable pin
54, 53, 52, 51, 50	B0, B1, B2, B3, B4	Digital Input	Channel B attenuator control
37	ENBB	Digital Input	Channel B enable pin: pin has three states: Low, Mid, High
19, 20, 21, 22, 23	C0, C1, C2, C3, C4	Digital Input	Channel C attenuator control
36	ENBC	Digital Input	Channel C enable pin
24, 25, 26, 27, 28	D0, D1, D2, D3, D4	Digital Input	Channel D attenuator control
32	ENBD	Digital Input	Channel D enable pin
Serial Mode Digital Pins, MODE = Logic High SPI Compatible			
45	SDO	Digital Output- Open Collector	Serial Data Output (Requires external bias.)
46	SDI	Digital Input	Serial Data In
47	CSb	Digital Input	Chip Select
48	CLK	Digital Input	Clock

Pin List

Pin	Description	Pin	Description
1	GND	28	D4
2	INA +	29	OUTD-
3	INA-	30	OUTD+
4	GND	31	+5 VD
5	MODE	32	ENBD
6	GND	33	$+5 V C$
7	INB +	34	OUTC-
8	INB-	35	OUTC+
9	GND	36	ENBC
10	GND	37	ENBB
11	INC+	38	OUTB-
12	INC-	39	OUTB+
13	GND	40	$+5 V B$
14	GND	41	ENBA
15	GND	42	$+5 V A$
16	IND +	43	OUTA-
17	IND-	44	OUTA+
18	GND	45	A4 / SDO
19	C0	46	A3 / SDI
20	C1	47	A2 / CSb
21	C2	48	A1 / CLK
22	C3	49	A0
23	C4	50	B4
24	D0	51	B3
25	D1	52	B2
26	D2	53	B1
27	D3	54	BO

Typical Performance Characteristics $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}+=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=200 \Omega\right.$, Maximum Gain, High Power, $\mathrm{f}=$ 200MHz; Unless Specified).

30127361

30127356

OIP3 vs Attenuation

30127353
OIP3 vs Load Resistance

30127365 OIP3 vs Supply Voltage

30127355

30127373

Supply Current vs Temperature

30127358

30127324

30127354

30127359
HD3 vs Frequency, High Power Mode

30127325

30127371

Channel Matching, Maximum Gain

30127374

Gain Step Amplitude Error

Isolation, Non-Adjacent Channels

30127372

30127335

30127342

30127344

30127346

30127343

30127345

CMRR vs Frequency

30127341

30127375

Application Information

30127334
FIGURE 1. LMH6522 Typical Application

INTRODUCTION

The LMH6522 is a fully differential amplifier optimized for signal path applications up to 400 MHz . The LMH6522 has a 100Ω input and a low impedance output. The gain is digitally controlled over a 31 dB range from +26 dB to -5 dB . The

LMH6522 is optimized for accurate gain steps and minimal phase shift combined with low distortion products. This makes the LMH6522 ideal for voltage amplification and an ideal ana\log to digital converter (ADC) driver where high linearity is necessary.

FIGURE 2. LMH6522 Block Diagram

BASIC CONNECTIONS

A voltage between 4.75 V and 5.25 V should be applied to the supply pin labeled +5 V . Each supply pin should be decoupled with a low inductance, surface-mount ceramic capacitor of 0.01 uF as close to the device as possible. Additional bypass capacitors of 0.1 uF and 1 nF are optional, but would provide bypassing over a wider frequency range.
The outputs of the LMH6522 need to be biased to ground using inductors and output coupling capacitors of 0.01 uF are recommended. The input pins are self biased to 2.5 V and should be ac-coupled with 0.01 uF capacitors as well. The output bias inductors and ac-coupling capacitors are the main limitations for operating at low frequencies. Larger values of inductance on the bias inductors and larger values of capacitance on the coupling capacitors will give more low frequency range. Using bias inductors over 1 uH , however, may compromise high frequency response due to unwanted parasitic loading on the amplifier output pins.

Each channel of the LMH6522 consists of a digital step attenuator followed by a low distortion 26 dB fixed gain amplifier and a low impedance output stage. The attenuation is digitally controlled over a 31 dB range from 0 dB to 31 dB . The LMH6522 has a 100Ω differential input impedance and a low, 20Ω, output impedance.
Each channel of the LMH6522 has an enable pin. Grounding the enable pin will put the channel in a power saving shutdown mode. Additionally, there are two "on" states which gives the option of two power modes. High Power Mode is selected by biasing the enable pins at 2.0 V or higher. The LMH6522 enable pins will self bias to the Low Power State, alternatively supplying a voltage between 0.6 V and 1.8 V will place the channel in Low Power Mode. If connected to a TRI-STATE buffer the LMH6522 enable pins will be in shutdown for a logic 0 output, in High Power Mode for a logic 1 state and they will self bias to Low Power Mode for the high impedance state.

FIGURE 3. LMH6522 Basic Connections Schematic

INPUT CHARACTERISTICS

The LMH6522 input impedance is set by internal resistors to a nominal 100Ω. Process variations will result in a range of values. At higher frequencies parasitic reactances will start to impact the impedance. This characteristic will also depend on board layout and should be verified on the customer's system board.
At maximum gain the digital attenuator is set to 0 dB and the input signal will be much smaller than the output. At minimum gain the output is 5 dB or more smaller than the input. In this configuration the input signal will begin to clip against the ESD protection diodes before the output reaches maximum swing limits. The input signal cannot swing more than 0.5 V below the negative supply voltage (normally 0 V) nor should it exceed the positive supply voltage. The input signal will clip and cause severe distortion if it is too large. Because the input stage self biases to approximately mid rail the supply voltage will impose the limit for input voltage swing.
At higher frequencies the LMH6522 input impedance is not purely resistive. In Figure 4 a circuit is shown that matches the amplifier input impedance with a source that is 100Ω. This would be the case when connecting the LMH6522 directly to
a mixer. For an easy way to calculate the L and C circuit values there are several options for online tools or down-loadable programs. The following tool might be helpful.
Excel can also be used for simple circuits; however, the "Analysis ToolPak" add-in must be installed to calculate complex numbers
http://www.circuitsage.com/matching/matcher2.html

30127369

FIGURE 4. Differential LC Conversion Circuit

OUTPUT CHARACTERISTICS

The LMH6522 has a low impedance output very similar to a traditional Op-amp output. This means that a wild range of loads can be driven with good performance. Matching load impedance for proper termination of filters is as easy as inserting the proper value of resistor between the filter and the amplifier. This flexibility makes system design and gain calculations very easy.
By using a differential output stage the LMH6522 can achieve very large voltage swings on a single 5 V supply. This is illustrated in Figure 5. This figure shows how a voltage swing of $5 \mathrm{~V}_{\text {PPD }}$ is realized while only swinging $2.5 \mathrm{~V}_{\text {PP }}$ on each output. The LMH6522 can swing up to $10 \mathrm{~V}_{\text {PPD }}$ which is sufficient to drive most ADCs to full scale while using a matched impedance anti alias filter between the amplifier and the ADC. The LMH6522 has been designed for AC coupled applications and has been optimized for operation above 5 MHz .

FIGURE 5. Differential Output Voltage
Like most closed loop amplifiers the LMH6522 output stage can be sensitive to capacitive loading. To help with board layout and to help minimize sensitivity to bias inductor capacitance the LMH5522 output lines have internal 10Ω resistors. These resistors should be taken into account when choosing matching resistor values. This is shown in as using 40.2Ω resistors instead of 50Ω resistors to match the 100Ω differ-
ential load. Best practise is to place the external termination resistors as close to the DVGA output pins as possible. Due to reactive components between the DVGA output and the filter input it may be desirable to use even smaller value resistors than a simple calculation would indicate. For instance, at 200 MHz resistors of 30 Ohms provide slightly better OIP3 performance on the LMH6522EVAL evaluation board and may also provide a better match to the filter input.
The LMH6522 output pins require a DC path to ground. On the evaluation board, inductors are installed to provide proper output biasing. The bias current is approximately 36 mA per output pin. The resistance of the output bias inductors will raise the output common mode slightly. An inductor with low resistance will keep the output bias voltage close to zero, so the DC resistance of the inductor chosen will be important. It is also important to make sure that the inductor can handle the 36 mA of bias current.
In addition to the DC current in the inductor there will be some AC current as well. With large inductors and high operating frequencies the inductor will present a very high impedance and will have minimal AC current. If the inductor is chosen to have a smaller value, or if the operating frequency is very low there could be enough AC current flowing in the inductor to become significant. The total current should not exceed the inductor current rating.
Another reason to choose low resistance bias inductors is that due to the nature of the LMH6522 output stage, the output offset voltage is determined by the output bias components. The output stage has an offset current that is typically 3 mA and this offset current, multiplied by the resistance of the output bias inductors will determine the output offset voltage.
The ability of the LMH6522 to drive low impedance loads while maintaining excellent OIP3 performance creates an opportunity to greatly increase power gain and drive low impedance filters. Figure 6 shows the OIP3 performance of the LMH6522 over a range of filter impedances. Also on the same graph is the power gain realized by changing load impedance. The power gain reflects the 6dB of loss caused by the termination resistors necessary to match the amplifier output impedance to the filter characteristic impedance. The graphs shows the ability of the LMH6522 to drive a constant voltage to an ADC input through various filter impedances with very little change in OIP3 performance. This gives the system designer much needed flexibility in filter design.

30127379
FIGURE 6. OIP3 and Power Gain vs Filter Impedance

OIP3 and Gain Measured at Amplifier Output, Filter Back

 TerminatedPrinted circuit board (PCB) design is critical to high frequency performance. In order to ensure output stability the load matching resistors should be placed as close to the amplifier
output pins as possible. This allows the matching resistors to mask the board parasitics from the amplifier output circuit. An example of this is shown in figure Figure 7. If the Flilter is a bandpass filter with no DC path the $0.01 \mu \mathrm{~F}$ coupling capacitors can be eliminated. The LMH6522EVAL evaluation board is available to serve a guide for system board layout.

30127368
FIGURE 7. Output Configuration

CASCADE OPERATION

30127383
FIGURE 8. Schematic for Cascaded Amplifiers

With four amplifiers in one package the LMH6522 is ideally configured for cascaded operation. By using two amplifiers in series additional gain range can be achieved. The schematic in Figure 8 shows one way to connect two stages of the LMH6522. The resultant frequency response is shown below in Figure 9. When using the LMH6522 amplifiers in a cascade configuration it is important to keep the signal level within reasonable limits at all nodes of the signal path. With over 40 dB of total gain it is possible to amplify signals to clipping levels if the gain is not set correctly.

30127384
FIGURE 9. Frequency Response of Cascaded Amplifiers

DIGITAL CONTROL

The LMH6522 will support two modes of control, parallel mode and serial mode (SPI compatible). Parallel mode is fastest and requires the most board space for logic line routing. Serial mode is compatible with existing SPI compatible systems.
The LMH6522 has gain settings covering a range of 31 dB . To avoid undesirable signal transients the LMH6522 should not be powered on with large inputs signals present. Careful planning of system power on sequencing is especially important to avoid damage to ADC inputs.
The LMH6522 was designed to interface with 2.5 V to 5 V CMOS logic circuits. If operation with 5 V logic is required care should be taken to avoid signal transients exceeding the DVGA supply voltage. Long, unterminated digital signal traces are particularly susceptible to these transients. Signal voltages on the logic pins that exceed the device power supply voltage may trigger ESD protection circuits and cause unreliable operation.
Some pins on the LMH6522 have different functions depending on the digital control mode. These functions will be described in the sections to follow.

Pins with Dual Functions

Pin	MODE $=0$	MODE $=1$
45	A4	SDO ${ }^{*}$
46	A3	SDI
47	A2	CSb
48	A1	CLK

Pin 45 requires external bias. See Serial Mode Section for Details.

PARALLEL INTERFACE

Parallel mode offers the fastest gain update capability with the drawback of requiring the most board space dedicated to control lines. When designing a system that requires very fast gain changes parallel mode is the best selection. To place the LMH6522 into parallel mode the MODE pin (pin 5) is set to the logical zero state. Alternately the MODE pin can be connected directly to ground.
The attenuator control pins are internally biased to logic high state with weak pull up resistors. The MODE pin has a weak internal resistor to ground. The enable pins bias to a mid logic state which is the Low Power Mode.
The LMH6522 has a 5-bit gain control bus. Data from the gain control pins is immediately sent to the gain circuit (i.e. gain is changed immediately). To minimize gain change glitches all gain pins should change at the same time. In order to achieve the very fast gain step switching time the internal gain change circuit is very fast. Gain glitches could result from timing skew between the gain set bits. This is especially the case when a small gain change requires a change in state of three or more gain control pins. If necessary the DVGA could be put into a disabled state while the gain pins are reconfigured and then brought active when they have settled.
ENA and ENB pins are provided to reduce power consumption by disabling the highest power portions of the LMH6522. The gain register will preserve the last active gain setting during the disabled state. These pins will float high and can be left disconnected if they won't be used. If the pins are left disconnected a 0.01uF capacitor to ground will help prevent external noise from coupling into these pins. See the Typical Performance section for disable and enable timing information.

*Enable pins are tri state buffer compatible.
30127317

FIGURE 10. Parallel Mode Connection

SPI COMPATIBLE SERIAL INTERFACE

Serial interface allows a great deal of flexibility in gain programming and reduced board complexity. Using only 4 wires for both channels allows for significant board space savings. The trade off for this reduced board complexity is slower response time in gain state changes. For systems where gain is changed only infrequently or where only slow gain changes are required serial mode is the best choice. To place the LMH6522 into serial mode the MODE pin (Pin 5) should be put into the logic high state. Alternatively the MODE pin an be connected directly to the 5 V supply bus.
The LMH6522 has a serial interface that allows access to the control registers. The serial interface is a generic 4 -wire synchronous interface that is compatible with SPI type interfaces that are used on many microcontrollers and DSP controllers. The serial mode is active when the two mode pins are set as follows: $\mathrm{MODE}=1$. In this configuration the pins function as shown in the pin description table. The SPI interface uses the following signals: clock input (CLK), serial data in (SDI), serial data out, and serial chip select (CS). The chip select pin is active low.
The enable pins are inactive in the serial mode. These pins can be left disconnected for serial mode.
The CLK pin is the serial clock pin. It is used to register the input data that is presented on the SDI pin on the rising edge; and to source the output data on the SDO pin on the falling edge. User may disable clock and hold it in the low state, as long as the clock pulse-width minimum specification is not violated when the clock is enabled or disabled.
The CSb pin is the chip select pin. The b indicates that this pin is actually a "NOT chip select" since the chip is selected in the logic low state. Each assertion starts a new register access - i.e., the SDATA field protocol is required. The user is required to deassert this signal after the 16th clock. If the CSb pin is deasserted before the 16th clock, no address or data write will occur. The rising edge captures the address just shifted-in and, in the case of a write operation, writes the addressed register. There is a minimum pulse-width requirement for the deasserted pulse - which is specified in the Electrical Specifications section.
The SDI pin is the input pin for the serial data. It must observe setup / hold requirements with respect to the SCLK. Each cycle is 16 -bits long
The SDO pin is the data output pin. This output is normally at a high impedance state, and is driven only when CSb is asserted. Upon CSb assertion, contents of the register addressed during the first byte are shifted out with the second 8 SCLK falling edges. Upon power-up, the default register address is 00 h . The SDO pin requires external bias for clock
speeds over 1 MHz . See Figure 12 for details on sizing the external bias resistor. Because the SDO pin is a high impedance pin, the board capacitance present at the pin will restrict data out speed that can be achieved. For a RC limited circuit the frequency is $\sim 1 /\left(2^{*} \mathrm{Pi}^{\star} R C\right)$. As shown in the figure resistor values of 300 to 2000 Ohms are recommended.

Each serial interface access cycle is exactly 16 bits long as shown in Figure 11. Each signal's function is described below. the read timing is shown in Figure 13, while the write timing is shown in figure Figure 14.

FIGURE 11. Serial Interface Protocol (SPI compatible)

FIGURE 12. Internal Operation of the SDO pin

R/Wb	Read / Write bit. A value of 1 indicates a read operation, while a value of 0 indicates a write operation.
Reserved	Not used. Must be set to 0.
ADDR:	Address of register to be read or written.
DATA	In a write operation the value of this field will be written to the addressed register when the chip select pin is deasserted. In a read operation this field is ignored.

FIGURE 13. Read Timing

Read Timing

Data Output on SDO Pin

Parameter	Description
t_{CSH}	Chip select hold time
$\mathrm{t}_{\mathrm{CSS}}$	Chip select setup time
$\mathrm{t}_{\mathrm{OZD}}$	Initial output data delay
$\mathrm{t}_{\mathrm{ODZ}}$	High impedance delay
t_{OD}	Output data delay

FIGURE 14. Write Timing Data Written to SDI Pin

Write Timing Data Input on SDI Pin

Parameter	Description
t_{PL}	Minimum clock low time (clock duty dycle)
t_{PH}	Minimum clock high time (clock duty cycle)
t_{SU}	Input data setup time
t_{H}	Input data hold time

Serial Word Format for LMH6522

C7	C6	C5	C4	C3	C2	C1	C0
1 = read	0	0	0	0	000= CHA		
0=write					001=CHB		
					010=CHC		
					011=CHD		
					100=Fast Adjust		

CH A through D Register Definition

7	6	5	4	3	2	1	0
Reserved, \|=0	Power Level: 0= Low 1=High	$\begin{aligned} & \text { Enable: } 0 \\ & =\text { OFF } \\ & 1=\text { ON } \end{aligned}$	Attenuation Setting: $00000=$ Maximum Gain 11111 = Minimum Gain				

Fast Adjust Register Definition

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
CH D	CH C	CH B	CH A				

Fast Adjust Codes

Code	Action
00	No Change
01	Decrease Attenuation by 1 Step (1dB)
10	Increase Attenuation by 1 Step (1dB)
11	Reserved, action undefined

SPISU2 SPI CONTROL BOARD AND TINYI2CSPI SOFTWARE

Also available separately from the LMH6522EVAL evaluation board is a USB to SPI control board and supporting software. The SPISU2 board will connect directly to the LMH6522 evaluation board and provides a simple way to test and evaluate the SPI interface. For more details refer to the LMH6522EVAL user's guide. The evaluation board user's guide provides instructions on connecting the SPISU2 board and for configuring the TinyI2CSPI software.

THERMAL MANAGEMENT

The LMH6522 is packaged in a thermally enhanced package. The exposed pad is connected to the GND pins. It is recommended, but not necessary, that the exposed pad be connected to the supply ground plane. In any case, the thermal dissipation of the device is largely dependent on the attachment of this pad. The exposed pad should be attached to as
much copper on the circuit board as possible, preferably external copper. However, it is also very important to maintain good high speed layout practices when designing a system board. Please refer to the LMH6522 evaluation board for suggested layout techniques.
Package information is available on the National web site. http://www.national.com/packaging/folders/sqa54a.html

INTERFACING TO AN ADC

The LMH6522 was designed to be used with high speed ADCs such as the ADC16DV160. As shown in the Typical Application on page 1, AC coupling provides the best flexibility especially for IF sub-sampling applications.
The inputs of the LMH6522 will self bias to the optimum voltage for normal operation. The internal bias voltage for the inputs is approximately mid rail which is 2.5 V with the typical 5 V power supply condition. In most applications the LMH6522 input will need to be AC coupled.
The output pins require a DC path to ground that will carry the $\sim 36 \mathrm{~mA}$ of bias current required to power the output transistors. The output common mode voltage should be established very near to ground. This means that using RF chokes or RF inductors is the easiest way to bias the LMH6522 output pins. Inductor values of $1 \mu \mathrm{H}$ to 400 nH are recommended. High Q inductors will provide the best performance. If low frequency operation is desired, particular care must be given to the inductor selection because inductors that offer good performance at very low frequencies often have very low self resonant frequencies. If very broadband operation is desired the use of conical inductors such as the BCL-802JL from Coilcraft may be considered. These inductors offer very broadband response, at the expense of large physical size and a high DC resistance of 3.4 Ohms.

ADC Noise Filter

Below are schematics and a table of values for second order Butterworth response filters for some common IF frequencies. These filters, shown in Figure 15, offer a good compromise between bandwidth, noise rejection and cost. This filter topology is the same as is used on the ADC14V155KDRB High IF Receiver reference design board. This filter topology works best with the 12,14 and 16 bit analog to digital converters shown in the table.

Filter Component Values

Center Frequency	75 MHz	150 MHz	180 MHz	250 MHz
Bandwidth	40 MHz	60 MHz	75 MHz	100 MHz
R1, R2	90Ω	90Ω	90Ω	90Ω
L1, L2	390 nH	370 nH	300 nH	225 nH
C1, C2	10 pF	3 pF	2.7 pF	1.9 pF
C3	22 pF	19 pF	15 pF	11 pF
L5	220 nH	62 nH	54 nH	36 nH
R3, R4	100Ω	100Ω	100Ω	100Ω

Resistor values are approximate, but have been reduced due to the internal 10 Ohms of output resistance per pin.

FIGURE 15. Sample Filter

POWER SUPPLIES

The LMH6522 was designed primarily to be operated on 5 V power supplies. The voltage range for $\mathrm{V}+$ is 4.75 V to 5.25 V . Power supply accuracy of 2.5% or better is advised. When operated on a board with high speed digital signals it is important to provide isolation between digital signal noise and the LMH6522 inputs. The SP16160CH1RB reference board provides an example of good board layout.

DYNAMIC POWER MANAGEMENT, USING LOW POWER

 MODEThe LMH6522 offers the option of a reduced power mode of operation referred to as Low Power Mode. In this mode of operation power consumption is reduced by approximately 20%. In many applications the linearity of the LMH6522 is fully
adequate for most signal conditions. This would apply for a radio in a noise limited environment with no close-in blocker signals. During these conditions the LMH6522 can be operated in the low power mode. When a blocking signal is detected, or when system dynamic range needs to be increased, the LMH6522 can be rapidly switched from the Low Power Mode to the standard, High Power Mode.
The output response shown in Figure 16 is for a 2 MHz switching frequency pulse applied to the enable pin with a 50 MHz input signal. Analysis with a spectrum analyzer showed that the power mode switching spurs created by the switching signal were -80 dBc with respect to the 50 MHz tone signal. This shows that rapid switching of power modes has virtually no impact on the signal quality.

FIGURE 16. Signal Output During Mode Change from High Power Mode to Low Power Mode

COMPATIBLE HIGH SPEED ANALOG TO DIGITAL CONVERTERS

Product Number	Max Sampling Rate (MSPS)	Resolution	Channels
ADC12L063	62	12	SINGLE
ADC12DL065	65	12	DUAL
ADC12L066	66	12	SINGLE
ADC12DL066	66	12	DUAL
CLC5957	70	12	SINGLE
ADC12L080	80	12	SINGLE
ADC12DL080	80	12	DUAL
ADC12C080	80	12	SINGLE
ADC12C105	105	12	SINGLE
ADC12C170	170	12	SINGLE
ADC12V170	170	12	SINGLE
ADC14C080	80	14	SINGLE
ADC14C105	105	14	SINGLE
ADC14DS105	105	14	DUAL
ADC14155	155	14	SINGLE
ADC14V155	155	14	SINGLE
ADC16V130	130	16	SINGLE
ADC16DV160	160	16	DUAL
ADC08D500	500	8	DUAL
ADC08500	500	8	SINGLE
ADC08D1000	1000	8	DUAL
ADC081000	1000	8	SINGLE
ADC08D1500	1500	8	DUAL
ADC081500	1500	8	SINGLE
ADC08(B)3000	3000	8	SINGLE
ADC08L060	60	8	SINGLE
ADC08060	60	8	SINGLE
ADC10DL065	65	10	DUAL
ADC10065	65	10	SINGLE
ADC10080	80	10	SINGLE
ADC08100	100	8	SINGLE
ADCS9888	170	8	SINGLE
ADC08(B)200	200	8	SINGLE
ADC11C125	125	11	SINGLE
ADC11C170	170	11	SINGLE

Physical Dimensions inches (millimeters) unless otherwise noted

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

Products		Design Support	
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench
Audio	www.national.com/audio	App Notes	www.national.com/appnotes
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns
Data Converters	www.national.com/adc	Samples	www.national.com/samples
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy
PowerWise® Solutions	www.national.com/powerwise	Applications \& Markets	www.national.com/solutions
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero
Temperature Sensors	www.national.com/tempsensors	SolarMagic ${ }^{\text {TM }}$	www.national.com/solarmagic
PLL/VCO	www.national.com/wireless	PowerWise $®$ Design University	www.national.com/training

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.
TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.
EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.
Copyright® 2011 National Semiconductor Corporation
For the most current product information visit us at www.national.com

National Semiconductor	National Semiconductor Europe	National Semiconductor Asia	National Semiconductor Japan
Americas Technical	Technical Support Center	Pacific Technical Support Center	Technical Support Center
Support Center	Email: europe.support@nsc.com	Email: ap.support@nsc.com	
Email: support@nsc.com			

[^0]: Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications, see the Electrical Characteristics tables.
 Note 2: Human Body Model, applicable std. MIL-STD-883, Method 3015.7. Machine Model, applicable std. JESD22-A115-A (ESD MM std. of JEDEC)
 Field-Induced Charge-Device Model, applicable std. JESD22-C101-C (ESD FICDM std. of JEDEC).

