LMH6642/LMH6643/LMH6644 Low Power, 130MHz, 75mA Rail-to-Rail Output Amplifiers

General Description

The LMH664X family true single supply voltage feedback amplifiers offer high speed (130MHz), low distortion (-62 dBc), and exceptionally high output current (approximately 75 mA) at low cost and with reduced power consumption when compared against existing devices with similar performance.
Input common mode voltage range extends to 0.5 V below V^{-} and 1 V from V^{+}. Output voltage range extends to within 40 mV of either supply rail, allowing wide dynamic range especially desirable in low voltage applications. The output stage is capable of approximately 75 mA in order to drive heavy loads. Fast output Slew Rate ($130 \mathrm{~V} / \mathrm{\mu s}$) ensures large peak-to-peak output swings can be maintained even at higher speeds, resulting in exceptional full power bandwidth of 40 MHz with a 3 V supply. These characteristics, along with low cost, are ideal features for a multitude of industrial and commercial applications.
Careful attention has been paid to ensure device stability under all operating voltages and modes. The result is a very well behaved frequency response characteristic $(0.1 \mathrm{~dB}$ gain flatness up the 12 MHz under 150Ω load and $A_{V}=+2$) with minimal peaking (typically 2 dB maximum) for any gain setting and under both heavy and light loads. This along with fast settling time (68ns) and low distortion allows the device to operate well in ADC buffer, and high frequency filter applications as well as other applications.
This device family offers professional quality video performance with low DG (0.01%) and DP (0.01°) characteristics. Differential Gain and Differential Phase characteristics are also well maintained under heavy loads (150) and throughout the output voltage range. The LMH664X family is offered
in single (LMH6642), dual (LMH6643), and quad (LMH6644) options. See ordering information for packages offered.

Features

$\left(\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{A}_{\mathrm{V}}=+1\right.$. Typical values unless specified).

- -3 dB BW $\left(\mathrm{A}_{\mathrm{v}}=+1\right)$

130 MHz

- Supply voltage range 2.7 V to 12.8 V
- Slew rate (Note 8), ($A_{V}=-1$)

130V/us

- Supply current (no load)
$2.7 \mathrm{~mA} / \mathrm{amp}$
- Output short circuit current
- Linear output current
$\pm 75 \mathrm{~mA}$
- Input common mode volt. 0.5 V beyond $\mathrm{V}^{-}, 1 \mathrm{~V}$ from V^{+}
- Output voltage swing

40 mV from rails

- Input voltage noise (100kHz)
- Input current noise (100 kHz)
$17 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
$0.9 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- THD ($5 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{PP}}, \mathrm{A}_{\mathrm{V}}=+2$)
$-62 \mathrm{dBc}$
- Settling time 68ns
- Fully characterized for $3 \mathrm{~V}, 5 \mathrm{~V}$, and $\pm 5 \mathrm{~V}$
- Overdrive recovery

100ns

- Output short circuit protected (Note 11)
- No output phase reversal with CMVR exceeded

Applications

- Active filters
- CD/DVD ROM
- ADC buffer amp
- Portable video
- Current sense buffer

Closed Loop Gain vs. Frequency for Various Gain

Large Signal Frequency Response

Absolute Maximum Ratings（Note 1）
If Military／Aerospace specified devices are required， please contact the National Semiconductor Sales Office／ Distributors for availability and specifications．

ESD Tolerance
$\mathrm{V}_{\text {IN }}$ Differential
Output Short Circuit Duration
Supply Voltage（ V^{+}－ V^{-}）
Voltage at Input／Output pins
Input Current
Storage Temperature Range
Junction Temperature（Note 4）
Soldering Information

2KV（Note 2） 200V（Note 9） $\pm 2.5 \mathrm{~V}$
（Note 3），（Note 11） 13.5 V
$\mathrm{V}^{+}+0.8 \mathrm{~V}, \mathrm{~V}^{-}-0.8 \mathrm{~V}$ $\pm 10 \mathrm{~mA}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$

Infrared or Convection Reflow（20 sec）
$235^{\circ} \mathrm{C}$
Wave Soldering Lead Temp．$(10 \mathrm{sec})$
$260^{\circ} \mathrm{C}$

Operating Ratings（Note 1）

Supply Voltage $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$	2.7 V to 12.8 V
Junction Temperature Range（Note 4）	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Package Thermal Resistance（Note 4）$\left(\theta_{\mathrm{JA}}\right)$	
SOT23－5	$265^{\circ} \mathrm{C} / \mathrm{W}$
SOIC－8	$190^{\circ} \mathrm{C} / \mathrm{W}$
MSOP－8	$235^{\circ} \mathrm{C} / \mathrm{W}$
SOIC－14	$145^{\circ} \mathrm{C} / \mathrm{W}$
TSSOP－14	$155^{\circ} \mathrm{C} / \mathrm{W}$

3V Electrical Characteristics

Unless otherwise specified，all limits guaranteed for at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ ，and $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V}^{+} / 2$ ． Boldface limits apply at the temperature extremes．

Symbol	Parameter	Conditions	$\begin{gathered} \text { Min } \\ (\text { Note 6) } \end{gathered}$	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	$\begin{gathered} \text { Max } \\ (\text { Note 6) } \end{gathered}$	Units
BW	－3dB BW	$\mathrm{A}_{\mathrm{V}}=+1, \mathrm{~V}_{\text {OUT }}=200 \mathrm{mV} \mathrm{PP}$	80	115		MHz
		$\mathrm{A}_{\mathrm{V}}=+2,-1, \mathrm{~V}_{\text {OUT }}=200 \mathrm{mV} \mathrm{V}_{\text {PP }}$		46		
$\mathrm{BW}_{0.1 \mathrm{~dB}}$	0．1dB Gain Flatness	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=+2, \mathrm{R}_{\mathrm{L}}=150 \Omega \text { to } \mathrm{V}+/ 2, \\ & \mathrm{R}_{\mathrm{L}}=402 \Omega, \mathrm{~V}_{\text {OUT }}=200 \mathrm{mV}_{\mathrm{PP}} \end{aligned}$		19		MHz
PBW	Full Power Bandwidth	$\mathrm{A}_{\mathrm{V}}=+1,-1 \mathrm{~dB}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V}_{\text {PP }}$		40		MHz
e_{n}	Input－Referred Voltage Noise	$\mathrm{f}=100 \mathrm{kHz}$		17		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}=1 \mathrm{kHz}$		48		
i_{n}	Input－Referred Current Noise	$\mathrm{f}=100 \mathrm{kHz}$		0.90		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}=1 \mathrm{kHz}$		3.3		
THD	Total Harmonic Distortion	$\begin{array}{\|l\|} \hline \mathrm{f}=5 \mathrm{MHz}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{PP}}, \mathrm{~A}_{\mathrm{V}}=-1, \\ \mathrm{R}_{\mathrm{L}}=100 \Omega \text { to } \mathrm{V}^{+} 2 \\ \hline \end{array}$		－48		dBc
DG	Differential Gain	$\begin{aligned} \mathrm{V}_{\mathrm{CM}} & =1 \mathrm{~V}, \mathrm{NTSC}, \mathrm{~A}_{\mathrm{V}}=+2 \\ \mathrm{R}_{\mathrm{L}} & =150 \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$		0.17		\％
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to $\mathrm{V}^{+} / 2$		0.03		
DP	Differential Phase	$\begin{aligned} \mathrm{V}_{\mathrm{CM}} & =1 \mathrm{~V}, \mathrm{NTSC}, \mathrm{~A}_{\mathrm{V}}=+2 \\ \mathrm{R}_{\mathrm{L}} & =150 \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$		0.05		deg
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to $\mathrm{V}^{+} / 2$		0.03		
CT Rej．	Cross－Talk Rejection	$\begin{array}{\|l\|} \hline \mathrm{f}=5 \mathrm{MHz}, \text { Receiver: } \\ \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{g}}=510 \Omega, \mathrm{~A}_{\mathrm{V}}=+2 \\ \hline \end{array}$		47		dB
T_{S}	Settling Time	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{PP}}, \pm 0.1 \%, 8 \mathrm{pF} \text { Load, } \\ & \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V} \end{aligned}$		68		ns
SR	Slew Rate（Note 8）	$\mathrm{A}_{\mathrm{V}}=-1, \mathrm{~V}_{1}=2 \mathrm{~V}_{\mathrm{PP}}$	90	120		V／us
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage			± 1	$\begin{aligned} & \pm 5 \\ & \pm 7 \end{aligned}$	mV
TC V ${ }_{\text {OS }}$	Input Offset Average Drift	（Note 12）		± 5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	（Note 7）		－1．50	$\begin{aligned} & \hline-2.60 \\ & -3.25 \end{aligned}$	$\mu \mathrm{A}$
los	Input Offset Current			20	$\begin{gathered} 800 \\ 1000 \end{gathered}$	nA
$\mathrm{R}_{\text {IN }}$	Common Mode Input Resistance			3		$\mathrm{M} \Omega$
$\mathrm{Cl}_{\text {IN }}$	Common Mode Input Capacitance			2		pF

3V Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for at $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$, and $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V}^{+} / 2$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{aligned} & \text { Min } \\ & (\text { Note 6) } \end{aligned}$	$\begin{aligned} & \text { Typ } \\ & \text { (Note 5) } \end{aligned}$	$\begin{gathered} \text { Max } \\ \text { (Note 6) } \end{gathered}$	Units
CMVR	Input Common-Mode Voltage Range	CMRR $\geq 50 \mathrm{~dB}$		-0.5	$\begin{aligned} & \hline-0.2 \\ & -0.1 \end{aligned}$	V
			$\begin{aligned} & 1.8 \\ & 1.6 \end{aligned}$	2.0		
CMRR	Common Mode Rejection Ratio	V_{CM} Stepped from 0V to 1.5 V	72	95		dB
$\mathrm{A}_{\text {vol }}$	Large Signal Voltage Gain	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \\ \hline \end{array}$	$\begin{aligned} & 80 \\ & 75 \\ & \hline \end{aligned}$	96		dB
		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=150 \Omega \text { to } \mathrm{V}^{+} / 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 74 \\ & 70 \end{aligned}$	82		
$\mathrm{V}_{\text {O }}$	Output Swing High	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V}^{+} / 2, \mathrm{~V}_{\text {ID }}=200 \mathrm{mV}$	2.90	2.98		V
		$\mathrm{R}_{\mathrm{L}}=150 \Omega$ to $\mathrm{V}^{+} / 2, \mathrm{~V}_{\text {ID }}=200 \mathrm{mV}$	2.80	2.93		
	Output Swing Low	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V}^{+} / 2, \mathrm{~V}_{\text {ID }}=-200 \mathrm{mV}$		25	75	mV
		$\mathrm{R}_{\mathrm{L}}=150 \Omega$ to $\mathrm{V}^{+} / 2, \mathrm{~V}_{\text {ID }}=-200 \mathrm{mV}$		75	150	
$\mathrm{I}_{\text {Sc }}$	Output Short Circuit Current	$\begin{array}{\|l} \hline \text { Sourcing to } \mathrm{V}^{+} / 2 \\ \mathrm{~V}_{\mathrm{ID}}=200 \mathrm{mV} \text { (Note 10) } \end{array}$	$\begin{aligned} & 50 \\ & 35 \end{aligned}$	95		mA
		Sinking to $\mathrm{V}^{+} / 2$ $\mathrm{V}_{\mathrm{ID}}=-200 \mathrm{mV}(\text { Note } 10)$	$\begin{aligned} & 55 \\ & 40 \\ & \hline \end{aligned}$	110		
$\mathrm{I}_{\text {OUT }}$	Output Current	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ from either supply		± 65		mA
+PSRR	Positive Power Supply Rejection Ratio	$\mathrm{V}^{+}=3.0 \mathrm{~V}$ to $3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}$	75	85		dB
$\mathrm{I}_{\text {S }}$	Supply Current (per channel)	No Load		2.70	$\begin{aligned} & 4.00 \\ & 4.50 \end{aligned}$	mA

5V Electrical Characteristics

Unless otherwise specified, all limits guaranteed for at $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$, and $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V}^{+} / 2$.
Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \hline \text { Min } \\ (\text { Note 6) } \end{gathered}$	Typ (Note 5)	Max (Note 6)	Units
BW	-3dB BW	$\mathrm{A}_{\mathrm{V}}=+1, \mathrm{~V}_{\text {OUT }}=200 \mathrm{mV} \mathrm{VPP}$	90	120		MHz
		$\mathrm{A}_{\mathrm{V}}=+2,-1, \mathrm{~V}_{\text {OUT }}=200 \mathrm{mV} \mathrm{VPP}$		46		
$\mathrm{BW}_{0.1 \mathrm{~dB}}$	0.1 dB Gain Flatness	$\begin{aligned} & A_{V}=+2, R_{L}=150 \Omega \text { to } \mathrm{V}+/ 2, \\ & R_{f}=402 \Omega, V_{\text {OUT }}=200 \mathrm{mV}_{\mathrm{PP}} \end{aligned}$		15		MHz
PBW	Full Power Bandwidth	$\mathrm{A}_{\mathrm{V}}=+1,-1 \mathrm{~dB}, \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V}_{\text {PP }}$		22		MHz
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=100 \mathrm{kHz}$		17		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}=1 \mathrm{kHz}$		48		
i_{n}	Input-Referred Current Noise	$\mathrm{f}=100 \mathrm{kHz}$		0.90		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}=1 \mathrm{kHz}$		3.3		
THD	Total Harmonic Distortion	$\mathrm{f}=5 \mathrm{MHz}, \mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{PP}}, \mathrm{A}_{\mathrm{V}}=+2$		-60		dBc
DG	Differential Gain	$\begin{aligned} & \text { NTSC, } A_{V}=+2 \\ & R_{L}=150 \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$		0.16		\%
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to $\mathrm{V}^{+} / 2$		0.05		
DP	Differential Phase	$\begin{aligned} & \hline \text { NTSC, } A_{V}=+2 \\ & R_{L}=150 \Omega \text { to } \mathrm{V}^{+} / 2 \\ & \hline \end{aligned}$		0.05		deg
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to $\mathrm{V}^{+} / 2$		0.01		
CT Rej.	Cross-Talk Rejection	$\begin{aligned} & f=5 \mathrm{MHz} \text {, Receiver: } \\ & R_{f}=R_{g}=510 \Omega, A_{V}=+2 \end{aligned}$		47		dB
T_{S}	Settling Time	$\mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{PP}}, \pm 0.1 \%, 8 \mathrm{pF}$ Load		68		ns

5V Electrical Characteristics (Continued)
Unless otherwise specified, all limits guaranteed for at $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$, and $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V}^{+} / 2$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Min } \\ (\text { Note 6) } \end{gathered}$	$\begin{aligned} & \text { Typ } \\ & \text { (Note 5) } \end{aligned}$	$\begin{gathered} \text { Max } \\ \text { (Note 6) } \end{gathered}$	Units
SR	Slew Rate (Note 8)	$\mathrm{A}_{\mathrm{V}}=-1, \mathrm{~V}_{1}=2 \mathrm{~V}_{\mathrm{PP}}$	95	125		V/ $/ \mathrm{s}$
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage			± 1	$\begin{aligned} & \pm 5 \\ & \pm 7 \end{aligned}$	mV
TC V ${ }_{\text {Os }}$	Input Offset Average Drift	(Note 12)		± 5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	(Note 7)		-1.70	$\begin{aligned} & -2.60 \\ & -3.25 \end{aligned}$	$\mu \mathrm{A}$
I_{OS}	Input Offset Current			20	$\begin{gathered} 800 \\ 1000 \end{gathered}$	nA
$\mathrm{R}_{\text {IN }}$	Common Mode Input Resistance			3		$\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Common Mode Input Capacitance			2		pF
CMVR	Input Common-Mode Voltage Range	CMRR $\geq 50 \mathrm{~dB}$		-0.5	$\begin{aligned} & -0.2 \\ & -0.1 \end{aligned}$	V
			$\begin{aligned} & 3.8 \\ & 3.6 \end{aligned}$	4.0		
CMRR	Common Mode Rejection Ratio	V_{CM} Stepped from 0V to 3.5V	72	95		dB
$\mathrm{A}_{\mathrm{VOL}}$	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } 4.50 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	$\begin{aligned} & 86 \\ & 82 \end{aligned}$	98		dB
		$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } 4.25 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=150 \Omega \text { to } \mathrm{V}^{+} / 2 \end{aligned}$	$\begin{aligned} & 76 \\ & 72 \end{aligned}$	82		
V_{O}	Output Swing High	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V}^{+} / 2, \mathrm{~V}_{\mathrm{ID}}=200 \mathrm{mV}$	4.90	4.98		V
		$\mathrm{R}_{\mathrm{L}}=150 \Omega$ to $\mathrm{V}^{+} / 2, \mathrm{~V}_{\text {ID }}=200 \mathrm{mV}$	4.65	4.90		
	Output Swing Low	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{V}^{+} / 2, \mathrm{~V}_{\text {ID }}=-200 \mathrm{mV}$		25	100	mV
		$\mathrm{R}_{\mathrm{L}}=150 \Omega$ to $\mathrm{V}^{+} / 2, \mathrm{~V}_{\text {ID }}=-200 \mathrm{mV}$		100	150	
I_{sc}	Output Short Circuit Current	Sourcing to $\mathrm{V}^{+} / 2$ $\mathrm{V}_{\mathrm{ID}}=200 \mathrm{mV}(\text { Note } 10)$	$\begin{aligned} & 55 \\ & 40 \end{aligned}$	115		mA
		Sinking to $\mathrm{V}^{+} / 2$ $\mathrm{V}_{\mathrm{ID}}=-200 \mathrm{mV} \text { (Note 10) }$	$\begin{aligned} & \hline 70 \\ & 55 \\ & \hline \end{aligned}$	140		
$\mathrm{I}_{\text {OUT }}$	Output Current	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ from either supply		± 70		mA
+PSRR	Positive Power Supply Rejection Ratio	$\mathrm{V}^{+}=4.0 \mathrm{~V}$ to 6 V	79	90		dB
I_{s}	Supply Current (per channel)	No Load		2.70	$\begin{aligned} & 4.25 \\ & 5.00 \end{aligned}$	mA

$\pm 5 \mathrm{~V}$ Electrical Characteristics

Unless otherwise specified, all limits guaranteed for at $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to ground. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Min } \\ \text { (Note 6) } \end{gathered}$	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	$\begin{gathered} \text { Max } \\ \text { (Note 6) } \end{gathered}$	Units
BW	-3dB BW	$\mathrm{A}_{\mathrm{V}}=+1, \mathrm{~V}_{\text {OUT }}=200 \mathrm{mV}$ PP	95	130		MHz
		$\mathrm{A}_{\mathrm{V}}=+2,-1, \mathrm{~V}_{\text {OUT }}=200 \mathrm{mV} \mathrm{V}_{\text {PP }}$		46		
$\mathrm{BW}_{0.1 \mathrm{~dB}}$	0.1dB Gain Flatness	$\begin{aligned} & A_{V}=+2, R_{L}=150 \Omega \text { to } V+/ 2, \\ & R_{f}=806 \Omega, V_{\text {OUT }}=200 \mathrm{mV}_{P P} \end{aligned}$		12		MHz
PBW	Full Power Bandwidth	$\mathrm{A}_{\mathrm{V}}=+1,-1 \mathrm{~dB}, \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V}_{\text {PP }}$		24		MHz
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=100 \mathrm{kHz}$		17		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}=1 \mathrm{kHz}$		48		

$\pm 5 \mathrm{~V}$ Electrical Characteristics（Continued）

Unless otherwise specified，all limits guaranteed for at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to ground． Boldface limits apply at the temperature extremes．

Symbol	Parameter	Conditions	Min $($ Note 6）	Typ （Note 5）	Max （Note 6）	Units
i_{n}	Input－Referred Current Noise	$\mathrm{f}=100 \mathrm{kHz}$		0.90		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}=1 \mathrm{kHz}$		3.3		
THD	Total Harmonic Distortion	$\mathrm{f}=5 \mathrm{MHz}, \mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{PP}}, \mathrm{A}_{\mathrm{V}}=+2$		－62		dBc
DG	Differential Gain	$\begin{aligned} & \hline \text { NTSC, } A_{\mathrm{V}}=+2 \\ & \mathrm{R}_{\mathrm{L}}=150 \Omega \text { to } \mathrm{V}^{+} / 2 \\ & \hline \end{aligned}$		0.15		\％
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to $\mathrm{V}^{+} / 2$		0.01		
DP	Differential Phase	$\begin{aligned} & \hline \text { NTSC, } A_{V}=+2 \\ & R_{\mathrm{L}}=150 \Omega \text { to } \mathrm{V}^{+} / 2 \\ & \hline \end{aligned}$		0.04		deg
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to $\mathrm{V}^{+} / 2$		0.01		
CT Rej．	Cross－Talk Rejection	$\begin{aligned} & \hline \mathrm{f}=5 \mathrm{MHz}, \text { Receiver: } \\ & \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{g}}=510 \Omega, \mathrm{~A}_{\mathrm{V}}=+2 \\ & \hline \end{aligned}$		47		dB
$\mathrm{T}_{\text {S }}$	Settling Time	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{PP}}, \pm 0.1 \%, 8 \mathrm{pF} \text { Load, } \\ & \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V} \end{aligned}$		68		ns
SR	Slew Rate（Note 8）	$\mathrm{A}_{\mathrm{V}}=-1, \mathrm{~V}_{1}=2 \mathrm{~V}_{\mathrm{PP}}$	100	135		V／$/$ s
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage			± 1	$\begin{aligned} & \pm 5 \\ & \pm 7 \end{aligned}$	mV
TC V OS	Input Offset Average Drift	（Note 12）		± 5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	（Note 7）		－1．60	$\begin{aligned} & \hline-2.60 \\ & -3.25 \end{aligned}$	$\mu \mathrm{A}$
l_{os}	Input Offset Current			20	$\begin{gathered} \hline 800 \\ 1000 \end{gathered}$	nA
$\mathrm{R}_{\text {IN }}$	Common Mode Input Resistance			3		$\mathrm{M} \Omega$
$\mathrm{Cl}_{\text {IN }}$	Common Mode Input Capacitance			2		pF
CMVR	Input Common－Mode Voltage Range	CMRR $\geq 50 \mathrm{~dB}$		－5．5	$\begin{aligned} & \hline-5.2 \\ & -5.1 \end{aligned}$	V
			$\begin{aligned} & 3.8 \\ & 3.6 \end{aligned}$	4.0		
CMRR	Common Mode Rejection Ratio	V_{CM} Stepped from－5V to 3．5V	74	95		dB
$\mathrm{A}_{\text {VOL }}$	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=-4.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 88 \\ & 84 \end{aligned}$	96		dB
		$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=-4.0 \mathrm{~V} \text { to } 4.0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=150 \Omega \end{aligned}$	$\begin{aligned} & 78 \\ & 74 \\ & \hline \end{aligned}$	82		
$\mathrm{V}_{\text {O }}$	Output Swing High	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\text {ID }}=200 \mathrm{mV}$	4.90	4.96		V
		$\mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{~V}_{\text {ID }}=200 \mathrm{mV}$	4.65	4.80		
	Output Swing Low	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\text {ID }}=-200 \mathrm{mV}$		－4．96	－4．90	V
		$\mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{~V}_{\text {ID }}=-200 \mathrm{mV}$		－4．80	－4．65	
$I_{\text {sc }}$	Output Short Circuit Current	Sourcing to Ground $\mathrm{V}_{\mathrm{ID}}=200 \mathrm{mV} \text { (Note } 10 \text {) }$	$\begin{aligned} & 60 \\ & 35 \\ & \hline \end{aligned}$	115		mA
		Sinking to Ground $\mathrm{V}_{\mathrm{ID}}=-200 \mathrm{mV}$（Note 10）	$\begin{aligned} & 85 \\ & 65 \end{aligned}$	145		
$\mathrm{I}_{\text {OUT }}$	Output Current	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ from either supply	± 75			mA
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & \left(\mathrm{V}^{+}, \mathrm{V}^{-}\right)=(4.5 \mathrm{~V},-4.5 \mathrm{~V}) \text { to }(5.5 \mathrm{~V}, \\ & -5.5 \mathrm{~V}) \end{aligned}$	78	90		dB
$\mathrm{I}_{\text {S }}$	Supply Current（per channel）	No Load		2.70	$\begin{aligned} & 4.50 \\ & 5.50 \end{aligned}$	mA

$\pm 5 \mathrm{~V}$ Electrical Characteristics（Continued）

Note 1：Absolute Maximum Ratings indicate limits beyond which damage to the device may occur．Operating Ratings indicate conditions for which the device is intended to be functional，but specific performance is not guaranteed．For guaranteed specifications and the test conditions，see the Electrical Characteristics．
Note 2：Human body model， $1.5 \mathrm{k} \Omega$ in series with 100 pF ．
Note 3：Applies to both single－supply and split－supply operation．Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$ ．
Note 4：The maximum power dissipation is a function of $T_{J(M A X)}, \theta_{J A}$ ，and T_{A} ．The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(M A X)}-T_{A}\right) / \theta_{J A}$ ．All numbers apply for packages soldered directly onto a PC board．
Note 5：Typical values represent the most likely parametric norm．
Note 6：All limits are guaranteed by testing or statistical analysis．
Note 7：Positive current corresponds to current flowing into the device．
Note 8：Slew rate is the average of the rising and falling slew rates．
Note 9：Machine Model， 0Ω in series with 200 pF ．
Note 10：Short circuit test is a momentary test．See Note 11.
Note 11：Output short circuit duration is infinite for $V_{S}<6 \mathrm{~V}$ at room temperature and below．For $\mathrm{V}_{\mathrm{S}}>6 \mathrm{~V}$ ，allowable short circuit duration is 1.5 ms ．
Note 12：Offset voltage average drift determined by dividing the change in V_{OS} at temperature extremes by the total temperature change．

Connection Diagrams

Typical Performance Characteristics erwise specified.

Closed Loop Frequency Response for Various Supplies

20018557

Closed Loop Gain vs. Frequency for Various Gain

Closed Loop Gain vs. Frequency for Various Supplies

Closed Loop Gain vs. Frequency for Various Gain

20018551
Closed Loop Frequency Response for Various Temperature

20018550

Closed Loop Frequency Response for Various Temperature

Typical Performance Characteristics $A t T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+5, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{R}_{F}=\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega$. Unless otherwise specified. (Continued)

Large Signal Frequency Response

Closed Loop Frequency Response for Various Supplies

20018544

Closed Loop Small Signal Frequency Response for Various Supplies

20018546

20018545

20018508

Typical Performance Characteristics $A t T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+5, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$. Unless otherwise specified. (Continued)

20018510
Open Loop Gain/Phase for Various Temperature

20018533

20018515

Open Loop Gain/Phase for Various Temperature

20018532
HD2 (dBc) vs. Output Swing

20018514
HD2 vs. Output Swing

Typical Performance Characteristics $A t \mathrm{~T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+5, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$. Unless otherwise specified. (Continued)

20018505
Settling Time vs. Input Step Amplitude (Output Slew and Settle Time)

20018513

20018518

THD (dBc) vs. Output Swing

20018506

Input Noise vs. Frequency

20018512

Typical Performance Characteristics $A t T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+5, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$. Unless otherwise specified. (Continued)

20018516
Swing vs. V_{S}

20018529
Output Sinking Saturation Voltage vs. Iout

20018520

20018517
Short Circuit Current (to $\mathrm{V}_{\mathrm{S}} / \mathbf{2}$) vs. V_{S}

20018531
Output Sourcing Saturation Voltage vs. I IOUT

Typical Performance Characteristics $A t T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+5, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{R}_{F}=\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega$. Unless otherwise specified. (Continued)

Closed Loop Output Impedance vs. Frequency $\mathrm{A}_{\mathrm{V}}=+\mathbf{1}$

20018502

CMRR vs. Frequency

20018507
$\mathrm{V}_{\text {os }}$ vs. $\mathrm{V}_{\text {Out }}$ (Typical Unit)

20018530

PSRR vs. Frequency

20018503
Crosstalk Rejection vs. Frequency (Output to Output)

20018511

Typical Performance Characteristics $A t T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+5, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$. Unless otherwise specified. (Continued)
V_{os} vs. $\mathrm{V}_{\mathbf{S}}$ (for 3 Representative Units)

\mathbf{V}_{Os} vs. $\mathbf{V}_{\mathbf{S}}$ (for 3 Representative Units)

20018524
$l_{\text {os }}$ vs. V_{s}

20018523
I_{B} vs. V_{S}

20018525
I_{s} vs. $V_{C M}$

Typical Performance Characteristics At $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+5, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$. Unless otherwise specified. (Continued)

20018521

Large Signal Step Response

Small Signal Step Response

Small Signal Step Response

Large Signal Step Response

Small Signal Step Response

Typical Performance Characteristics $A t T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+5, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$. Unless otherwise specified. (Continued)

Large Signal Step Response

Small Signal Step Response

Large Signal Step Response

Application Notes

CIRCUIT DESCRIPTION

The LMH664X family is based on National Semiconductor's proprietary VIP10 dielectrically isolated bipolar process.
This device family architecture features the following:

- Complimentary bipolar devices with exceptionally high f_{t} $(\sim 8 \mathrm{GHz})$ even under low supply voltage (2.7 V) and low bias current.
- A class A-B "turn-around" stage with improved noise, offset, and reduced power dissipation compared to similar speed devices (patent pending).
- Common Emitter push-push output stage capable of 75 mA output current (at 0.5 V from the supply rails) while consuming only 2.7 mA of total supply current per channel. This architecture allows output to reach within millivolts of either supply rail.
- Consistent performance from any supply voltage (3V10 V) with little variation with supply voltage for the most important specifications (e.g. BW, SR, Iout, etc.)
- Significant power saving ($\sim 40 \%$) compared to competitive devices on the market with similar performance.

Application Hints

This Op Amp family is a drop-in replacement for the AD805X family of high speed Op Amps in most applications. In addition, the LMH664X will typically save about 40% on power dissipation, due to lower supply current, when compared to competition. All AD805X family's guaranteed parameters are included in the list of LMH664X guaranteed specifications in order to ensure equal or better level of performance. However, as in most high performance parts, due to subtleties of applications, it is strongly recommended that the performance of the part to be evaluated is tested under actual operating conditions to ensure full compliance to all specifications.
With 3V supplies and a common mode input voltage range that extends 0.5 V below V^{-}, the LMH664X find applications in low voltage/low power applications. Even with 3 V supplies, the -3 dB BW (@ $A_{V}=+1$) is typically 115 MHz with a tested limit of 80 MHz . Production testing guarantees that process variations with not compromise speed. High frequency response is exceptionally stable confining the typical -3 dB BW over the industrial temperature range to $\pm 2.5 \%$.
As can be seen from the typical performance plots, the LMH664X output current capability ($\sim 75 \mathrm{~mA}$) is enhanced compared to AD805X. This enhancement, increases the output load range, adding to the LMH664X's versatility.
Because of the LMH664X's high output current capability attention should be given to device junction temperature in order not to exceed the Absolute Maximum Rating.

This device family was designed to avoid output phase reversal. With input overdrive, the output is kept near supply rail (or as closed to it as mandated by the closed loop gain setting and the input voltage). See Figure 1:

FIGURE 1. Input and Output Shown with CMVR Exceeded

However, if the input voltage range of -0.5 V to 1 V from V^{+}is exceeded by more than a diode drop, the internal ESD protection diodes will start to conduct.The current in the diodes should be kept at or below 10 mA .
Output overdrive recovery time is less than 100 ns as can be seen from Figure 2 plot:

FIGURE 2. Overload Recovery Waveform

Application Notes

(Continued)

SINGLE SUPPLY, LOW POWER PHOTODIODE AMPLIFIER

The circuit shown in Figure 3 is used to amplify the current from a photo-diode into a voltage output. In this circuit, the emphasis is on achieving high bandwidth and the transimpedance gain setting is kept relatively low. Because of its high slew rate limit and high speed, the LMH664X family lends itself well to such an application.
This circuit achieves approximately $1 \mathrm{~V} / \mathrm{mA}$ of transimpedance gain and capable of handling up to $1 \mathrm{~mA}_{\mathrm{pp}}$ from the photodiode. Q1, in a common base configuration, isolates the high capacitance of the photodiode $\left(\mathrm{C}_{\mathrm{d}}\right)$ from the Op Amp input in order to maximize speed. Input is AC coupled through C1 to ease biasing and allow single supply operation. With 5 V single supply, the device input/output is shifted to near half supply using a voltage divider from V_{CC}. Note that Q1 collector does not have any voltage swing and the Miller effect is minimized. D1, tied to Q1 base, is for temperature compensation of Q1's bias point. Q1 collector current was set to be large enough to handle the peak-to-peak photodiode excitation and not too large to shift the U1 output too far from mid-supply.
No matter how low an R_{f} is selected, there is a need for C_{f} in order to stabilize the circuit. The reason for this is that the Op

Amp input capacitance and Q1 equivalent collector capacitance together $\left(\mathrm{C}_{\mathrm{IN}}\right)$ will cause additional phase shift to the signal fed back to the inverting node. C_{f} will function as a zero in the feedback path counter-acting the effect of the C_{IN} and acting to stabilized the circuit. By proper selection of C_{f} such that the Op Amp open loop gain is equal to the inverse of the feedback factor at that frequency, the response is optimized with a theoretical 45° phase margin.

$$
\begin{equation*}
\mathrm{C}_{\mathrm{F}}=\sim \operatorname{SQRT}\left[\left(\mathrm{C}_{\mathbb{N}}\right) /\left(2 \pi \cdot \mathrm{GBWP} \cdot \mathrm{R}_{\mathrm{F}}\right)\right] \tag{1}
\end{equation*}
$$

where GBWP is the Gain Bandwidth Product of the Op Amp Optimized as such, the I-V converter will have a theoretical pole, f_{p}, at:

$$
\begin{equation*}
\mathrm{f}_{\mathrm{P}}=\mathrm{SQRT}\left[\mathrm{GBWP} /\left(2 \pi \mathrm{R}_{\mathrm{F}} \cdot \mathrm{C}_{\mathbb{N}}\right)\right] \tag{2}
\end{equation*}
$$

With Op Amp input capacitance of 3pF and an estimate for Q1 output capacitance of about 3 pF as well, $\mathrm{C}_{\text {IN }}=6 \mathrm{pF}$. From the typical performance plots, LMH6642/6643 family GBWP is approximately 57 MHz . Therefore, with $R_{f}=1 \mathrm{k}$, from Equation 1 and 2 above.
$C_{f}=\sim 4.1 \mathrm{pF}$, and $\mathrm{f}_{\mathrm{p}}=39 \mathrm{MHz}$

FIGURE 3. Single Supply Photodiode I-V Converter

Application Notes (Continued)

For this example, optimum C_{f} was empirically determined to be around 5 pF . This time domain response is shown in Figure 4 below showing about 9ns rise/fall times, corresponding to about 39 MHz for f_{p}. The overall supply current from the +5 V supply is around 5 mA with no load.

FIGURE 4. Converter Step Response ($1 \mathrm{~V}_{\mathrm{PP}}, 20 \mathrm{~ns} / \mathrm{DIV}$)

PRINTED CIRCUIT BOARD LAYOUT AND COMPONENT VALUES SECTION

Generally, a good high frequency layout will keep power supply and ground traces away from the inverting input and output pins. Parasitic capacitances on these nodes to ground will cause frequency response peaking and possible circuit oscillations (see Application Note OA-15 for more information). National Semiconductor suggests the following evaluation boards as a guide for high frequency layout and as an aid in device testing and characterization:

Device	Package	Evaluation Board PN
LMH6642MF	SOT23-5	CLC730216
LMH6642MA	8-Pin SOIC	CLC730227
LMH6643MA	8-Pin SOIC	CLC730036
LMH6643MM	8-Pin MSOP	CLC730123
LMH6644MA	14-Pin SOIC	CLC730231
LMH6644MT	14-Pin TSSOP	CLC730131

These free evaluation boards are shipped when a device sample request is placed with National Semiconductor.
Another important parameter in working with high speed/ high performance amplifiers, is the component values selection. Choosing external resistors that are large in value will effect the closed loop behavior of the stage because of the interaction of these resistors with parasitic capacitances. These capacitors could be inherent to the device or a byproduct of the board layout and component placement. Either way, keeping the resistor values lower, will diminish this interaction to a large extent. On the other hand, choosing very low value resistors could load down nodes and will contribute to higher overall power dissipation.

Ordering Information

Package	Part Number	Package Marking	Transport Media	NSC Drawing
5-Pin SOT23	LMH6642MF	A64A	1k Units Tape and Reel	MF05A
	LMH6642MFX		3k Units Tape and Reel	
8-Pin SOIC	LMH6642MA	LMH6642MA	95 Units/Rail	M08A
	LMH6642MAX		2.5k Units Tape and Reel	
	LMH6643MA	LMH6643MA	95 Units/Rail	
	LMH6643MAX		2.5k Units Tape and Reel	
8-Pin MSOP	LMH6643MM	A65A	1k Units Tape and Reel	MUA08A
	LMH6643MMX		3.5k Units Tape and Reel	
14-Pin SOIC	LMH6644MA	LMH6644MA	55 units/Rail	M14A
	LMH6644MAX		2.5k Units Tape and Reel	
14-Pin TSSO	LMH6644MT	LMH6644MT	94 Units/Rail	MTC14
	LMH6644MTX		2.5k Units Tape and Reel	

Physical Dimensions inches (milimeters) unless othewise noted

LAND PATTERN RECOMMENDATION

CONTROLLING DIMENSION IS INCH
VIMENSIONS IN [] ARE MILLIMETERS REFERENCE ONLY
MF05A (Rev C)

5-Pin SOT23

NS Package Number MF05A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Pin SOIC
NS Package Number M14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

MTC14 (Rev D)
14-Pin TSSOP
NS Package Number MTC14

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.
For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor follows the provisions of the Product Stewardship Guide for Customers (CSP-9-111C2) and Banned Substances and Materials of Interest Specification (CSP-9-111S2) for regulatory environmental compliance. Details may be found at: www.national.com/quality/green.
Lead free products are RoHS compliant.

National Semiconductor	National Semiconductor	National Semiconductor	National Semiconductor
Americas Customer	Europe Customer Support Center	Asia Pacific Customer	Japan Customer Support Center
Support Center	Fax: +49 (0) 180-530 8586	Support Center	Fax: 81-3-5639-7507
Email: new.feedback@nsc.com	Email: europe.support @ nsc.com	Email: ap.support@nsc.com	Email: jpn.feedback@nsc.com
Tel: 1-800-272-9959	Deutsch Tel: +49 (0) 6995086208		Tel: 81-3-5639-7560
	English Tel: +44 (0) 8702402171		
www.national.com	Français Tel: +33 (0) 141918790		

