

Absolute Maximum Ratings(Note 6)	
Supply Voltage (V_{CC})	-0.5 V to +4.6 V
DC Input Voltage (V_{l})	-0.5 V to +4.6 V
Output Voltage (V_{0})	
Outputs 3-STATE	-0.5 V to +4.6 V
Outputs Active (Note 7)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Diode Current (I_{K}) $\mathrm{V}_{1}<0 \mathrm{~V}$	$-50 \mathrm{~mA}$
DC Output Diode Current (lok)	
$\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$	-50 mA
$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\text {cc }}$	+50 mA
DC Output Source/Sink Current	
($\mathrm{lOH}^{\text {/ }} \mathrm{l} \mathrm{L}$)	$\pm 50 \mathrm{~mA}$
DC $\mathrm{V}_{\text {CC }}$ or Ground Current per	
Supply Pin (ICC or Ground)	$\pm 100 \mathrm{~mA}$
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating

 Conditions (Note 8)| Power Supply | 1.65 V to 3.6 V |
| :--- | ---: |
| \quad Operating | 1.2 V to 3.6 V |
| \quad Data Retention Only | -0.3 V to 3.6 V |
| Input Voltage | |
| Output Voltage $\left(\mathrm{V}_{\mathrm{O}}\right)$ | 0 V to V_{CC} |
| Output in Active States | 0 V to 3.6 V |
| Output in 3-STATE | |
| Output Current in $\mathrm{I}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$ | $\pm 24 \mathrm{~mA}$ |
| $\mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | $\pm 18 \mathrm{~mA}$ |
| $\mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | $\pm 6 \mathrm{~mA}$ |
| $\mathrm{~V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 2.3 V | |
| Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |

Free Air Operating Temperature $\left(T_{A}\right)$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Minimum Input Edge Rate ($\Delta \mathrm{t} / \Delta \mathrm{V}$)

$$
\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V} \text { to } 2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}
$$

Note 6: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical
Characteristics tables are not guaranteed at the Absolute Maximum Rat-
ings. The Recommended Operating Conditions tables will define the conditions for actual device operation.
Note 7: I_{0} Absolute Maximum Rating must be observed.
Note 8: Floating or unused pin (inputs or I/O's) must be held HIGH or LOW
DC Electrical Characteristics (2.7V $<\mathrm{V}_{\mathrm{CC}} \leq \mathbf{3 . 6 V}$)

Symbol	Parameter	Conditions	V_{cc} (V)	Min	Max	Units
V_{IH}	HIGH Level Input Voltage		2.7-3.6	2.0		V
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage		2.7-3.6		0.8	V
V_{OH}	HIGH Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	2.7-3.6	$\mathrm{V}_{\mathrm{CC}}-0.2$		v
		$\mathrm{l}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.7	2.2		
		$\mathrm{l}_{\mathrm{OH}}=-18 \mathrm{~mA}$	3.0	2.4		
		$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	3.0	2.2		
$\overline{\mathrm{V}} \mathrm{OL}$	LOW Level Output Voltage	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	2.7-3.6		0.2	v
		$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$	2.7		0.4	
		$\mathrm{l}_{\mathrm{OL}}=18 \mathrm{~mA}$	3.0		0.4	
		$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$	3.0		0.55	
I	Input Leakage Current	$0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 3.6 \mathrm{~V}$	2.7-3.6		± 5.0	$\mu \mathrm{A}$
loz	3-STATE Output Leakage	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	2.7-3.6		± 10	$\mu \mathrm{A}$
ToFF	Power Off Leakage Current	$0 \mathrm{~V} \leq\left(\mathrm{V}_{\mathrm{l}}, \mathrm{V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V}$	0		10	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \mathrm{V}_{\mathrm{CC}} \leq\left(\mathrm{V}_{\mathrm{l}}, \mathrm{~V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V} \text { (Note } 9 \text {) } \end{aligned}$	2.7-3.6		20 ± 20	$\mu \mathrm{A}$
$\overline{\Delta \mathrm{l}_{\mathrm{CC}}}$	Increase in $\mathrm{I}_{\text {CC }}$ per Input	$\mathrm{V}_{\mathrm{HH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$	2.7-3.6		750	$\mu \mathrm{A}$

Note 9: Outputs disabled or 3-STATE only.

DC Electrical Characteristics (2.3V $\leq \mathrm{V}_{\mathrm{CC}} \leq \mathbf{2 . 7 V}$)

Symbol	Parameter	Conditions	$\begin{aligned} & V_{c c} \\ & (\mathrm{~V}) \end{aligned}$	Min	Max	Units
V_{IH}	HIGH Level Input Voltage		2.3-2.7	1.6		V
V_{IL}	LOW Level Input Voltage		2.3-2.7		0.7	V
V_{OH}	HIGH Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	2.3-2.7	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{l}_{\mathrm{OH}}=-6 \mathrm{~mA}$	2.3	2.0		
		$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.3	1.8		
		$\mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA}$	2.3	1.7		
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	2.3-2.7		0.2	V
		$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$	2.3		0.4	
		$\mathrm{l}_{\mathrm{OL}}=18 \mathrm{~mA}$	2.3		0.6	
I_{1}	Input Leakage Current	$0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 3.6 \mathrm{~V}$	2.3-2.7		± 5.0	$\mu \mathrm{A}$
I_{OZ}	3-STATE Output Leakage	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 3.6 \mathrm{~V}$	2.3-2.7		± 10	$\mu \mathrm{A}$
		$\mathrm{V}_{1}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$				
IOFF	Power Off Leakage Current	$0 \mathrm{~V} \leq\left(\mathrm{V}_{\mathrm{l}}, \mathrm{V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V}$	0		10	$\mu \mathrm{A}$
${ }^{\text {cC }}$	Quiescent Supply Current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND	2.3-2.7		20	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}} \leq\left(\mathrm{V}_{\mathrm{l}}, \mathrm{V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V}$ (Note 10)	2.3-2.7		± 20	

Note 10: Outputs disabled or 3-STATE only.

DC Electrical Characteristics (1.65V $\leq \mathrm{V}_{\mathrm{Cc}}<\mathbf{2 . 3 V}$)

Symbol	Parameter	Conditions	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	Min	Max	Units
V_{IH}	HIGH Level Input Voltage		1.65-2.3	$0.65 \times \mathrm{V}_{\mathrm{CC}}$		V
V_{IL}	LOW Level Input Voltage		1.65-2.3		$0.35 \times \mathrm{V}_{\text {CC }}$	V
V_{OH}	HIGH Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	1.65-2.3	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{l}_{\mathrm{OH}}=-6 \mathrm{~mA}$	1.65	1.25		
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	1.65-2.3		0.2	v
		$\mathrm{l}_{\mathrm{OL}}=6 \mathrm{~mA}$	1.65		0.3	
I	Input Leakage Current	$0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 3.6 \mathrm{~V}$	1.65-2.3		± 5.0	$\mu \mathrm{A}$
I_{OZ}	3-STATE Output Leakage	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 3.6 \mathrm{~V}$	1.65-2.3		± 10	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$				
IofF	Power Off Leakage Current	$\mathrm{OV} \leq\left(\mathrm{V}_{\mathrm{I}}, \mathrm{V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V}$	0		10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CC }}$	Quiescent Supply Current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND	1.65-2.3		20	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}} \leq\left(\mathrm{V}_{\mathrm{l}}, \mathrm{V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V}$ (Note 11)			± 20	

Note 11: Outputs disabled or 3-STATE only.

Capacitance				
Symbol	Parameter	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Units
			Typical	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{1}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ ，or 3.3 V ，	3.5	pF
$\mathrm{C}_{\text {／／}}$	Input／Output Capacitance	$\mathrm{V}_{1}=0 \mathrm{~V}$ ，or $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or 3.3 V	5.5	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{f}=10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or 3.3 V	13	pF

$I_{\text {OUT }}-V_{\text {OUT }}$ Characteristics

FIGURE 1．Characteristics for Output－Pull Up Driver

FIGURE 2．Characteristics for Output－Pull Down Driver

AC Loading and Waveforms

TEST	SWITCH
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Open
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PLZ }}$	6 V at $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} ;$
	$\mathrm{V}_{\mathrm{CC}} \times 2$ at $\mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V} ; 1.8 \mathrm{~V}$ to $\pm 0.15 \mathrm{~V}$
$\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$	GND

FIGURE 4. Waveform for Inverting and Non-inverting Functions
$\mathbf{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq \mathbf{2 . 0 n s}, \mathbf{1 0} \%$ to 90%

FIGURE 6. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq \mathbf{2 . 0 n s}, \mathbf{1 0 \%}$ to 90%

Symbol	$\mathrm{V}_{\mathbf{C C}}$		
	$\mathbf{3 . 3 V} \pm \mathbf{0 . 3 V}$	$\mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$	$\mathbf{1 . 8} \pm \mathbf{0 . 1 5 V}$
V_{mi}	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{x}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{y}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

Physical Dimensions inches (millimeters) unless otherwise noted

NOTES:
A. THIS PACKAGE CONFORMS TO JEDEC M0-205
B. ALL DIMENSIONS IN MILLIMETERS
C. LAND PATTERN RECOMMENDATION: NSMD (Non Solder Mask Defined)
.35MM DIA PADS WITH A SOLDERMASK OPENING OF .45MM CONCENTRIC TO PADS
D. DRAWING CONFORMS TO ASME Y14.5M-1994

BGA54ArevD
54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide Package Number BGA54A

Preliminary

