General Description

FAIRCHILD

74VCX16835

SEMICONDUCTOR

The VCX16835 low voltage 18-bit universal bus driver combines D-type latches and D-type flip-flops to allow data flow in transparent, latched and clocked modes.

Low Voltage 18-Bit Universal Bus Driver with 3.6V Tolerant Inputs and Outputs

Data flow is controlled by output-enable (\overline{OE}) , latch-enable (LE), and clock (CLK) inputs. The device operates in Transparent Mode when LE is held HIGH. The device operates in clocked mode when LE is LOW and CLK is toggled. Data transfers from the Inputs (I_n) to Ouputs (O_n) on a Positive Edge Transition of the Clock. When \overline{OE} is LOW, the output data is enabled. When \overline{OE} is HIGH the output port is in a high impedance state.

The 74VCX16835 is designed for low voltage (1.65V to 3.6V) $\rm V_{CC}$ applications with I/O capability up to 3.6V.

The 74VCX16835 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining low CMOS power dissipation.

Features

Compatible with PC100 DIMM module specifications
 1.65V–3.6V V_{CC} supply operation

October 1998

Revised August 2001

- 3.6V tolerant inputs and outputs
- t_{PD} (CLK to O_n)
- 4.2ns max for 3.0V to 3.6V V_{CC} 5.2ns max for 2.3V to 2.7V V_{CC} 9.2ns max for 1.65V to 1.95V V_{CC}
- Power-down high impedance inputs and outputs
- Supports live insertion/withdrawal (Note 1)
 Static Drive (I_{OH}/I_{OL})
- ±24mA @ 3.0V ±18mA @ 2.3V ±6mA @ 1.65V
- Latchup performance exceeds 300 mA
- ESD performance: Human body model > 2000V
 - Machine model >200V
- Also packaged in plastic Fine-Pitch Ball Grid Array (FBGA) (Preliminary)

Note 1: To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} (OE to GND) through a pulldown resistor; the minimum value of the resistor is determined by the current sourcing capability of the driver.

Ordering Code:

Order Number	Package Number	Package Description
74VCX16835GX (Note 2)		54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide [TAPE and REEL]
74VCX16835MTD (Note 3)	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
	vailable in Tape and Reel	only.

© 2001 Fairchild Semiconductor Corporation DS500173

74VCX16835

Connection Diagrams

Р

in Ass	ignm	nent for TS	SOP
		$\overline{\bigcirc}$	1
NC —	1	- 56	-GND
NC -	2	55	- NC
01 —	3	54	-1
GND	4	53	-GND
0 ₂ _	5	52	-1 ₂
о _з _	6	51	-1 ₃
V_{cc} —	7	50	$-v_{cc}$
0 ₄ _	8	49	- 14
0 ₅ —	9	48	— 1 ₅
0 ₆ –	10	47	- 1 ₆
GND -	11	46	- GND
07-	12	45	- 1 ₇
0 ₈ –	13	44	-1 ₈
0 ₉ _	14	43	_ l9
0 ₁₀ –	15	42	-1 ₁₀
011 -	16	4 1	-41
012 -	17	40	-1 ₁₂
GND -	18	39	- GND
0 ₁₃ —	19	38	-1 ₁₃
0 ₁₄ _	20	37	- I ₁₄
0 ₁₅ —	21	36	-1 ₁₅
V _{cc} _	22	35	-v _{cc}
0 ₁₆ –	23	34	-1 ₁₆
0 ₁₇	24	33	- I ₁₇
GND -	25	32	- GND
0 ₁₈ -	26	3 1	-1 ₁₈
ÖE –	27	30	-CLK
LE _	28	29	GND
			-

Pin Assignment for FBGA

	1	2	3	4	5	6
۲	0	0	0	0	0	0
8		0				
С	0	0	0	0	0	0
Δ	0	0	0	0	0	0
ш	0	0	0	0	0	0
ш	0	0	0	0	0	0
Q	-	0	-	-	-	-
т		0				
٦	0	0	0	0	0	0

(Top Thru View)

Pin Descriptions

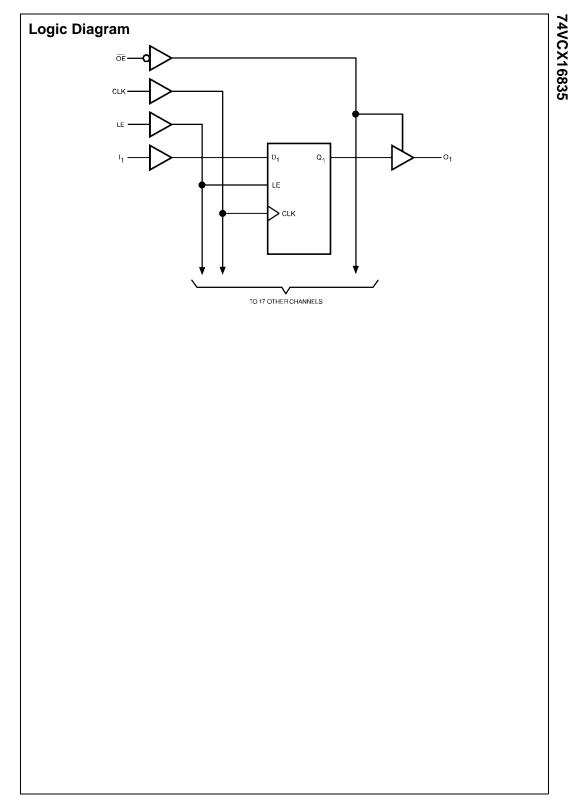
Pin Names	Description
OE	Output Enable Input (Active LOW)
LE	Latch Enable Input
CLK	Clock Input
l ₁ - l ₁₈	Data Inputs
I ₁ - I ₁₈ O ₁ - O ₁₈	3-STATE Outputs
NC	No Connect

FBGA Pin Assignments

	1	2	3	4	5	6
Α	O ₂	0 ₁	NC	GND	I ₁	l ₂
В	O ₄	0 ₃	NC	NC	l ₃	I_4
С	O ₆	O ₅	V _{CC}	V _{CC}	I ₅	I ₆
D	O ₈	0 ₇	GND	GND	1 ₇	I ₈
Е	0 ₁₀	0 ₉	GND	GND	l ₉	I ₁₀
F	O ₁₂	0 ₁₁	GND	GND	I ₁₁	I ₁₂
G	0 ₁₄	0 ₁₃	V _{CC}	V _{CC}	I ₁₃	I ₁₄
Н	O ₁₆	O ₁₅	OE	CLK	I ₁₅	I ₁₆
J	0 ₁₇	O ₁₈	LE	GND	I ₁₈	I ₁₇

Truth Table

	Inp	outs		Outputs
OE	LE	CLK	١ _n	0 _n
Н	Х	Х	Х	Z
L	н	Х	L	L
L	н	Х	н	н
L	L	\uparrow	L	L
L	L	\uparrow	н	н
L	L	н	Х	O ₀ (Note 4)
L	L	L	Х	O ₀ (Note 4) O ₀ (Note 5)


 $\label{eq:constraint} \begin{array}{l} \mathsf{H} = \mathsf{Logic} \; \mathsf{HIGH} \\ \mathsf{L} = \mathsf{Logic} \; \mathsf{LOW} \\ \mathsf{X} = \mathsf{Don't} \; \mathsf{Care, \; but \; not \; floating} \\ \mathsf{Z} = \mathsf{High} \; \mathsf{Impedance} \\ \uparrow = \mathsf{LOW-to-HIGH} \; \mathsf{Clock} \; \mathsf{Transition} \end{array}$

Note 4: Output level before the indicated steady-state input conditions were established provided that CLK was HIGH before LE went LOW.

Note 5: Output level before the indicated steady-state input conditions were established.

www.fairchildsemi.com

2

Absolute Maximum Ratings(Note 6)

Absolute Maximum Rat	t ings (Note 6)	Recommended Operatin	g
Supply Voltage (V _{CC})	-0.5V to +4.6V	Conditions (Note 8)	
DC Input Voltage (VI)	-0.5V to +4.6V	Power Supply	
Output Voltage (V _O)		Operating	1.65V to 3.6V
Outputs 3-STATE	-0.5V to +4.6V	Data Retention Only	1.2V to 3.6V
Outputs Active (Note 7)	–0.5 to V_{CC} + 0.5V	Input Voltage	-0.3V to 3.6V
DC Input Diode Current (I_{IK}) $V_I < 0V$	–50 mA	Output Voltage (V _O)	
DC Output Diode Current (I _{OK})		Output in Active States	0V to V _{CC}
V _O < 0V	–50 mA	Output in 3-STATE	0V to 3.6V
V _O > V _{CC}	+50 mA	Output Current in I _{OH} /I _{OL}	
DC Output Source/Sink Current		$V_{CC} = 3.0V$ to 3.6V	±24 mA
(I _{OH} /I _{OL})	±50 mA	$V_{CC} = 2.3V$ to 2.7V	±18 mA
DC V _{CC} or Ground Current per		V _{CC} = 1.65V to 2.3V	±6 mA
Supply Pin (I _{CC} or Ground)	±100 mA	Free Air Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Storage Temperature Range (T _{STG})	-65°C to +150°C	Minimum Input Edge Rate (Δt/ΔV)	
		$V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$	10 ns/V
		Note 6: The "Absolute Maximum Ratings" are those	e values beyond which

the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Rat-ings. The Recommended Operating Conditions tables will define the conditions for actual device operation.

Note 7: I_O Absolute Maximum Rating must be observed.

Note 8: Floating or unused pin (inputs or I/O's) must be held HIGH or LOW.

DC Electrical Characteristics (2.7V < $V_{CC} \leq 3.6V)$

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units	
VIH	HIGH Level Input Voltage		2.7–3.6	2.0		V	
VIL	LOW Level Input Voltage		2.7–3.6		0.8	V	
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.7–3.6	V _{CC} - 0.2			
		$I_{OH} = -12 \text{ mA}$	2.7	2.2		v	
		I _{OH} = -18 mA	3.0	2.4		v	
		I _{OH} = -24 mA	3.0	2.2			
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.7–3.6		0.2		
		I _{OL} = 12 mA	2.7		0.4	v	
		I _{OL} = 18 mA	3.0		0.4	v	
		I _{OL} = 24 mA	3.0		0.55		
l _l	Input Leakage Current	$0V \le V_I \le 3.6V$	2.7–3.6		±5.0	μΑ	
loz	3-STATE Output Leakage	$0V \le V_O \le 3.6V$	2.7–3.6		±10	۵	
		$V_I = V_{IH} \text{ or } V_{IL}$	2.7-3.0		±10	μA	
I _{OFF}	Power Off Leakage Current	$0V \le (V_I, V_O) \le 3.6V$	0		10	μA	
Icc	Quiescent Supply Current	V _I = V _{CC} or GND	2.7–3.6		20	μA	
		$V_{CC} \le (V_I, V_O) \le 3.6V$ (Note 9)	2.7-3.0		±20	μΑ	
Δl _{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.7-3.6		750	μA	

www.fairchildsemi.com

Symbol	Parameter	Conditions	v _{cc} (V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage		2.3 - 2.7	1.6		V
V _{IL}	LOW Level Input Voltage		2.3 - 2.7		0.7	V
V _{OH} HI	HIGH Level Output Voltage	I _{OH} = -100 μA	2.3 -2.7	V _{CC} - 0.2		
		I _{OH} = -6 mA	2.3	2.0		v
		$I_{OH} = -12 \text{ mA}$	2.3	1.8		v
		I _{OH} = -18 mA	2.3	1.7		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.3 - 2.7		0.2	
		I _{OL} = 12mA	2.3		0.4	V
		I _{OL} = 18 mA	2.3		0.6	
l _l	Input Leakage Current	$0V \le V_I \le 3.6V$	2.3 - 2.7		±5.0	μA
l _{oz}	3-STATE Output Leakage	$0V \le V_O \le 3.6V$			±10	A
		$V_I = V_{IH} \text{ or } V_{IL}$	2.3 - 2.7		±ΙΟ	μA
IOFF	Power Off Leakage Current	$0V \le (V_I, V_O) \le 3.6V$	0		10	μA
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.3 - 2.7		20	
		$V_{CC} \le (V_1, V_0) \le 3.6V$ (Note 10)	2.3 - 2.7		±20	μA

74VCX16835

Note 10: Outputs disabled or 3-STATE only.

DC Electrical Characteristics (1.65V \leq V_{CC} < 2.3V)

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage		1.65 - 2.3	$0.65 \times V_{CC}$		V
V _{IL}	LOW Level Input Voltage		1.65 - 2.3		$0.35 \times V_{CC}$	V
V _{OH} HIGH Level Output V	HIGH Level Output Voltage	I _{OH} = -100 μA	1.65 - 2.3	V _{CC} - 0.2		V
		I _{OH} = -6 mA	1.65	1.25		v
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	1.65 - 2.3		0.2	V
		I _{OL} = 6mA	1.65		0.3	v
l _l	Input Leakage Current	$0V \le V_I \le 3.6V$	1.65 - 2.3		±5.0	μΑ
I _{OZ}	3-STATE Output Leakage	$0V \le V_O \le 3.6V$	1.65 - 2.3		±10	μA
		$V_I = V_{IH} \text{ or } V_{IL}$	1.03 - 2.3		10	μΑ
I _{OFF}	Power Off Leakage Current	$0V \le (V_I, V_O) \le 3.6V$	0		10	μΑ
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND	1.65 - 2.3		20	
		$V_{CC} \le (V_I, V_O) \le 3.6V$ (Note 11)	1.00 - 2.3		±20	μA

Note 11: Outputs disabled or 3-STATE only.

www.fairchildsemi.com

5

74VCX16835

AC Electrical Characteristics (Note 12)

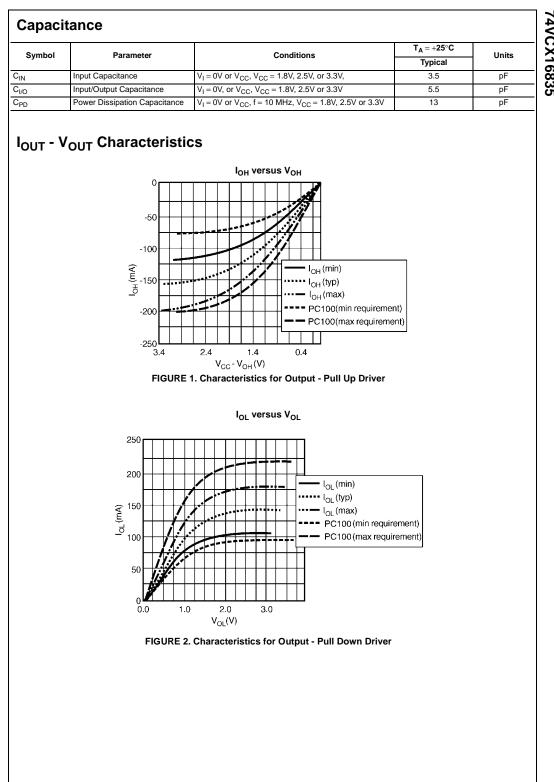
	Parameter	$T_A = -40^{\circ}$ C to $+85^{\circ}$ C, $C_L = 30$ pF, $R_L = 500\Omega$						
Symbol		$V_{CC}=3.3V\pm0.3V$		$V_{CC}=\textbf{2.5}\pm\textbf{0.2V}$		$V_{CC}=1.8\pm0.15V$		Units
		Min	Max	Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	250		200		100		MHz
t _{PHL} , t _{PLH}	Propagation Delay Bus to Bus	0.6	3.3	0.8	4.2	1.5	8.4	ns
t _{PHL} , t _{PLH}	Propagation Delay Clock to Bus	1.4	4.2	1.5	5.2	2.0	9.2	ns
t _{PHL} , t _{PLH}	Propagation Delay LE to Bus	0.6	3.8	0.8	4.9	1.5	9.8	ns
t _{PZL} , t _{PZH}	Output Enable Time	0.6	3.8	0.8	4.9	1.5	9.8	ns
t _{PLZ} , t _{PHZ}	Output Disable Time	0.6	3.9	0.8	4.5	1.5	7.6	ns
t _S	Setup Time	1.5		1.5		2.5		ns
t _H	Hold Time	0.7		0.7		1.0		ns
t _W	Pulse Width	1.5		1.5		4.0		ns
t _{OSHL} t _{OSLH}	Output to Output Skew (Note 13)		0.5		0.5		0.75	ns

Note 12: For CL=50pF, add approximately 300ps to the AC maximum specification.

Note 13: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

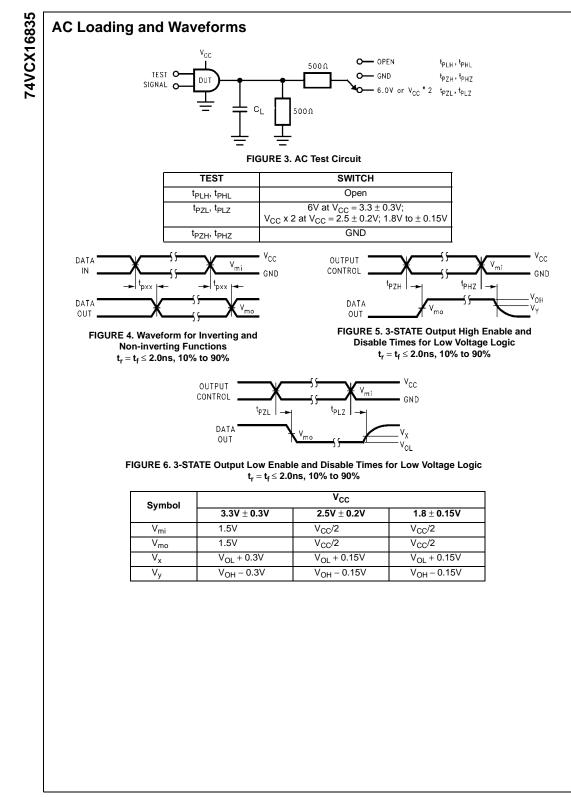
AC Electrical Characteristics Over Load (Note 14)

Symbol Parameter		T _A = -0°C	$\textbf{T}_{\textbf{A}}=-\textbf{0}^{\circ}\textbf{C}$ to +85°C, $\textbf{R}_{\textbf{L}}=\textbf{500}\Omega$ $\textbf{V}_{\textbf{CC}}=\textbf{3.3V}\pm\textbf{0.15V}$				
	Parameter	C _L = 0 pF		C _L = 50 pF		Units	
		Min	Max	Min	Max		
t _{PHL} , t _{PLH}	Propagation Delay Bus to Bus	0.7	2.1	1.0	3.6	ns	
t _{PHL} , t _{PLH}	Propagation Delay Clock to Bus	1.5	3.0	1.7	4.5	ns	
t _{PHL} , t _{PLH}	Propagation Delay LE to Bus	0.7	2.6	1.0	4.1	ns	
t _{PZL} , t _{PZH}	Output Enable Time	0.7	2.6	1.0	4.1	ns	
t _{PLZ} , t _{PHZ}	Output Disable Time	0.7	2.7	1.0	4.2	ns	
t _{PHL} , t _{PLH}	SSO Prop Delay Clock to Bus (Note 15)	1.5	3.3			ns	
t _S	Setup Time	1.5		1.5		ns	
t _H	Hold Time	0.7		0.7		ns	

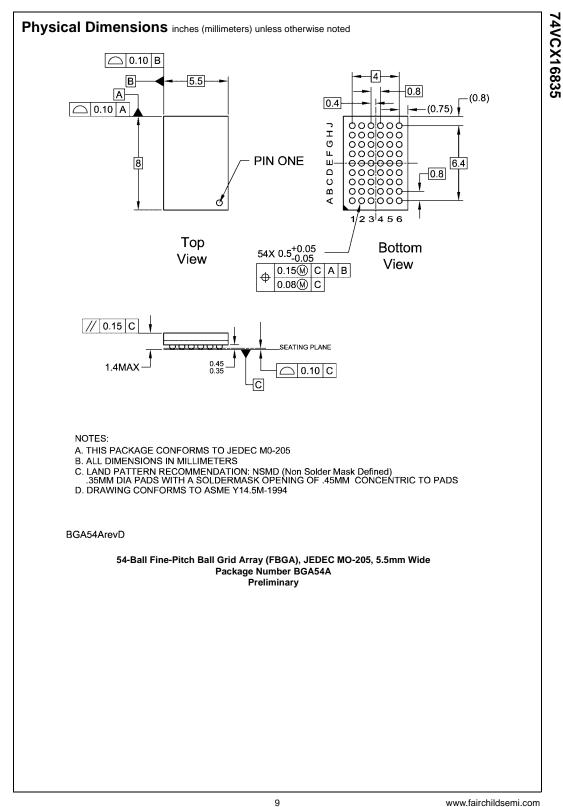

Note 14: This parameter is guaranteed by characterization but not tes

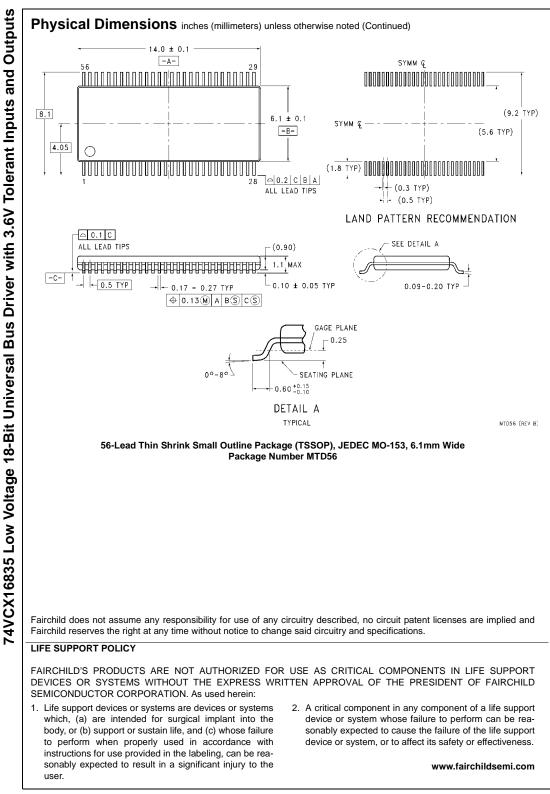
Note 15: SSO = Simultaneous Switching Output. Any output combination of LOW-to-HIGH and/or HIGH-to-LOW transition.

Dynamic Switching Characteristics


Symbol	Parameter	Conditions	V _{cc}	T _A =+25°C Typical	Units
			(V)		
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_{L} = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	0.35	
			2.5	0.7	V
			3.3	0.9	
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_{L} = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	-0.35	
			2.5	-0.7	V
			3.3	-0.9	
V _{OHV}	Quiet Output Dynamic Valley V _{OH}	$C_{L} = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	1.3	
			2.5	1.7	V
			3.3	2.0	

www.fairchildsemi.com


7


www.fairchildsemi.com

www.fairchildsemi.com

8

