Ordering Code:

Order Number	Package Number	Package Description			
74VCX162839MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide			
Devices also available in Tane and Reel. Specify by appending suffix letter "X" to the ordering code					

Logic Symbol **Pin Descriptions** Pin Names Description OE Output Enable Input (Active LOW) I₀–I₁₉ Inputs Outputs O₀-O₁₉ CLK Clock Input REGE Register Enable Input

© 2000 Fairchild Semiconductor Corporation DS500127 www.fairchildsemi.com

Features

■ Compatible with PC100 and PC133 DIMM module specifications

March 1998

Revised December 2000

- 1.65V–3.6V V_{CC} supply operation
- 3.6V tolerant inputs and outputs
- **2**6Ω series resistors in the outputs
- t_{PD} (CLK to O_n)

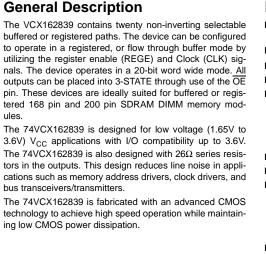
4.1 ns max for 3.0V to 3.6V V_{CC} 5.8 ns max for 2.3V to 2.7V V_{CC} 9.8 ns max for 1.65V to 1.95V V_{CC}

- Power-off high impedance inputs and outputs
- Supports live insertion and withdrawal (Note 1)
- Static Drive (I_{OH}/I_{OL})
 - ±12 mA @ 3.0V V_{CC} ±8 mA @ 2.3V V_{CC}
 - ±3 mA @ 1.65V V_{CC}
- Uses patented noise/EMI reduction circuitry
- Latch-up performance exceeds 300 mA
- ESD performance:

Human body model > 2000V

Machine model > 200V

Note 1: To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pull-up resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver


74VCX162839

Low Voltage 20-Bit Selectable Register/Buffer with 3.6V Tolerant Inputs/Outputs and 26 Ω Series Resistors in the Outputs

FAIRCHILD

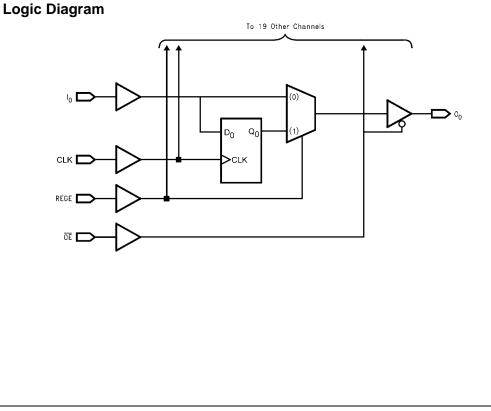
SEMICONDUCTOR TM

74VCX162839

Connection D	iagram	
Connection D $\overline{OE} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0$	1 56 2 55 3 54 4 53 5 52 6 51 7 50 8 49 9 48 10 47 11 46 12 45 13 44 14 43 15 42 16 41 17 40 18 39 19 38 20 37 21 36 22 35 23 34 24 33 25 32 26 37	СLК 0 1 0 12 1 V 0 4 1 V 0 4 1 S 0 C 4 1 S 0 6 ND 1 S 0 C 4 1 S 0 7 1 S 0 7
NC -	28 29	- REGE

Truth Table

	Inputs				
CLK	REGE	I _n	OE	0 _n	
Ŷ	Н	Н	L	н	
\uparrow	н	L	L	L	
х	L	н	L	н	
Х	L	L	L	L	
х	х	х	н	Z	


H = Logic HIGH

L = Logic LOWX = Don't Care, but not floating

Z = High Impedance $\uparrow = LOW-to-HIGH Clock Transition$

Functional Description

The 74VCX162839 consists of twenty selectable noninverting buffers or registers with word wide modes. Mode functionality is selected through operation of the CLK and REGE pin as shown by the truth table. When REGE is held at a logic HIGH the device operates as a 20-bit register. Data is transferred from ${\rm I_n}$ to ${\rm O_n}$ on the rising edge of the CLK input. When the REGE pin is held at a logic LOW the device operates in a flow through mode and data propagates directly from the ${\sf I}_n$ to the ${\sf O}_n$ outputs. All outputs can be 3-stated by holding the $\overline{\text{OE}}$ pin at a logic HIGH.

www.fairchildsemi.com

2

Absolute Maximum Ra	tings(Note 2)	Recommended Operatin	g
Supply Voltage (V _{CC})	-0.5V to +4.6V	Conditions (Note 4)	
DC Input Voltage (VI)	-0.5V to +4.6V	Power Supply	
Output Voltage (V _O)		Operating	1.65V to 3.6V
Outputs 3-STATE	-0.5V to +4.6V	Data Retention Only	1.2V to 3.6V
Outputs Active (Note 3)	–0.5V to V _{CC} + 0.5V	Input Voltage	-0.3V to +3.6V
DC Input Diode Current (I_{IK}) $V_I < 0V$	–50 mA	Output Voltage (V _O)	
DC Output Diode Current (I _{OK})		Output in Active States	0V to V _{CC}
V _O < 0V	–50 mA	Output in "OFF" State	0V to 3.6V
$V_{O} > V_{CC}$	+50 mA	Output Current in I _{OH} /I _{OL}	
DC Output Source/Sink Current		$V_{CC} = 3.0V$ to 3.6V	±12 mA
(I _{OH} /I _{OL})	±50 mA	$V_{CC} = 2.3V$ to 2.7V	±8 mA
DC V _{CC} or GND Current per		V _{CC} = 1.65V to 2.3V	±3 mA
Supply Pin (I _{CC} or GND)	±100 mA	Free Air Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$	Minimum Input Edge Rate ($\Delta t/\Delta V$)	
		$V_{\text{IN}} = 0.8 \text{V}$ to 2.0V, $V_{\text{CC}} = 3.0 \text{V}$	10 ns/V

10 ns/V Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Rat-ings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

74VCX162839

Note 3: I_{O} Absolute Maximum Rating must be observed.

Note 4: Floating or unused inputs must be held HIGH or LOW.

DC Electrical Characteristics (2.7V $< V_{CC} \leq 3.6V)$

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
′ін	HIGH Level Input Voltage		2.7 – 3.6	2.0		V
/ _{IL}	LOW Level Input Voltage		2.7 – 3.6		0.8	V
∕ _{он}	HIGH Level Output Voltage	$I_{OH} = -100 \ \mu A$	2.7 – 3.6	V _{CC} - 0.2		
		$I_{OH} = -6 \text{ mA}$	2.7	2.2		v
		$I_{OH} = -8 \text{ mA}$	3.0	2.4		v
		$I_{OH} = -12 \text{ mA}$	3.0	2.2		
/ _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.7 – 3.6		0.2	
		$I_{OL} = 6 \text{ mA}$	2.7		0.4	v
		I _{OL} = 8 mA	3.0		0.55	Ň
		I _{OL} = 12 mA	3.0		0.8	
I	Input Leakage Current	$0V \le V_I \le 3.6V$	2.7 – 3.6		±5.0	μA
OZ	3-STATE Output Leakage	$0V \le V_O \le 3.6V$	2.7 – 3.6		140	
-		$V_I = V_{IH} \text{ or } V_{IL}$	2.7 - 3.0		±10	μA
OFF	Power-OFF Leakage Current	$0V \le (V_I, V_O) \le 3.6V$	0		10	μA
сс	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.7 – 3.6		20	μΑ
		$V_{CC} \le (V_{I}, V_{O}) \le 3.6V$ (Note 5)	2.7 - 3.0		±20	
71 ^{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.7 - 3.6		750	μΑ

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Мах	Units
V _{IH}	HIGH Level Input Voltage		2.3 – 2.7	1.6		V
VIL	LOW Level Input Voltage		2.3 – 2.7		0.7	V
V _{он}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.3 – 2.7	V _{CC} - 0.2		
		$I_{OH} = -4 \text{ mA}$	2.3	2.0		v
		$I_{OH} = -6 \text{ mA}$	2.3	1.8		v
		$I_{OH} = -8 \text{ mA}$	2.3	1.7		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.3 – 2.7		0.2	
		$I_{OL} = 6 \text{ mA}$	2.3		0.4	V
		I _{OL} = 8 mA	2.3		0.6	
1	Input Leakage Current	$0V \le V_1 \le 3.6V$	2.3 – 2.7		±5.0	μΑ
oz	3-STATE Output Leakage	$0V \le V_O \le 3.6V$	2.3-2.7		±10	
		$V_I = V_{IH} \text{ or } V_{IL}$	2.3-2.1		±10	μA
OFF	Power-OFF Leakage Current	$0V \leq (V_I, V_O) \leq 3.6V$	0		10	μA
cc	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.3 - 2.7		20	
		$V_{CC} \le (V_I, V_O) \le 3.6V$ (Note 6)	2.3 - 2.7		±20	μΑ

Note 6: Outputs disabled or 3-STATE only.

DC Electrical Characteristics (1.65V \leq V_{CC} < 2.3V)

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage		1.65 - 2.3	0.65 x V _{CC}		
V _{IL}	LOW Level Input Voltage		1.65 - 2.3		$0.35 \times V_{CC}$	V
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	1.65 - 2.3	V _{CC} - 0.2		V
		$I_{OH} = -3 \text{ mA}$	1.65	1.25		v
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	1.65 - 2.3		0.2	V
		I _{OL} = 3 mA	1.65		0.3	v
I _I	Input Leakage Current	$0V \le V_I \le 3.6V$	1.65 - 2.3		±5.0	μΑ
l _{oz}	3-STATE Output Leakage	$0V \le V_O \le 3.6V$	1.65 - 2.3		±10	μA
		$V_I = V_{IH} \text{ or } V_{IL}$	1.05 - 2.5		±10	μΑ
I _{OFF}	Power-OFF Leakage Current	$0V \le (V_I, V_O) \le 3.6V$	0		10	μA
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND	1.65 - 2.3		20	
		$V_{CC} \le (V_I, V_O) \le 3.6V$ (Note 7)	1.05 - 2.5		±20	μA

Note 7: Outputs disabled or 3-STATE only.

www.fairchildsemi.com

		$T_A = -40^{\circ}$ C to $+85^{\circ}$ C, $C_L = 30$ pF, $R_L = 500\Omega$						
Symbol	Parameter	V _{CC} = 3.	$V_{CC}=3.3V\pm0.3V$		$\textbf{V}_{\textbf{CC}} = \textbf{2.5V} \pm \textbf{0.2V}$		$V \pm 0.15V$	Units
		Min	Max	Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	250		200		125		MHz
t _{PHL} t _{PLH}	Propagation Delay I _n to O _n (REGE = 0)	0.8	3.5	1.0	4.9	1.5	9.8	ns
t _{PHL} t _{PLH}	Propagation Delay CLK to O _n (REGE = 1)	0.8	4.1	1.0	5.8	1.5	9.8	ns
t _{PHL} , t _{PLH}	Propagation Delay REGE to On	0.8	4.9	1.0	6.4	1.5	9.8	ns
t _{PZL} , t _{PZH}	Output Enable Time	0.8	4.3	1.0	6.1	1.5	9.8	ns
t _{PLZ} , t _{PHZ}	Output Disable Time	0.8	4.3	1.0	4.9	1.5	8.8	ns
t _S	Setup Time	1.0		1.0		2.5		ns
t _H	Hold Time	0.7		0.7		1.0		ns
t _W	Pulse Width	1.5		1.5		4.0		ns
t _{osHL} t _{osLH}	Output to Output Skew (Note 9)		0.5		0.5		0.75	ns

Note 8: For $C_L = 50$ pF, add approximately 300 ps to the AC maximum specification.

Note 9: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

Extended AC Electrical Characteristics (Note 10)

		$T_A = -0^{\circ}C \text{ to } +85^{\circ}C, R_L =$	$\label{eq:T_A} \begin{split} T_A = -0^{\circ} C \ to \ +85^{\circ} C, \ R_L = 500 \Omega \ V_{CC} = 3.3 V \pm 0.3 V \\ \hline C_L = 50 \ pF \end{split}$			
Symbol	Parameter	C _L =				
		Min	Мах			
t _{PHL} , t _{PLH}	Propagation Delay I_n to O_n (REGE = 0)	1.0	3.8	ns		
t _{PHL} , t _{PLH}	Propagation Delay CLK to O _n (REGE = 1)	1.4	4.4	ns		
t _{PHL} , t _{PLH}	Propagation Delay REGE to On	1.0	5.2	ns		
t _{PZL} , t _{PZH}	Output Enable Time	1.0	4.6	ns		
t _{PLZ} , t _{PHZ}	Output Disable Time	1.0	4.6	ns		
t _S	Setup Time	1.0		ns		
t _H	Hold Time	0.7		ns		

Note 10: This parameter is guaranteed by characterization but not tested.

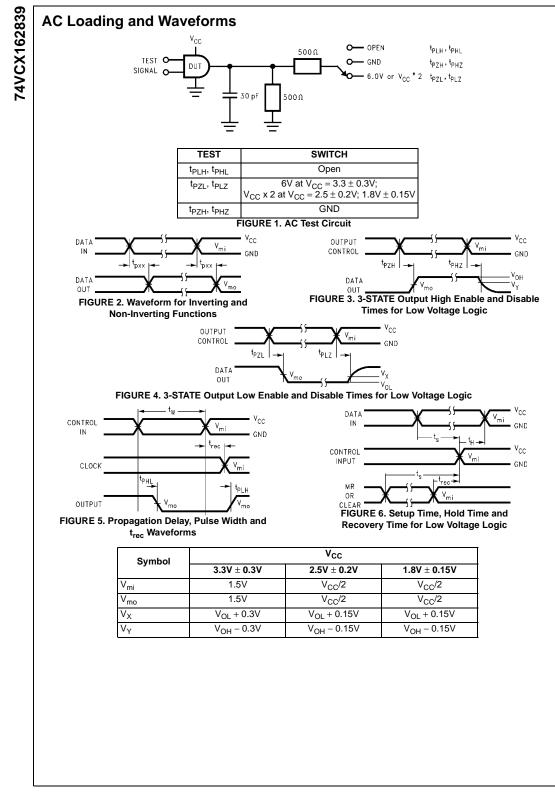
Power Dissipation Capacitance

Dynamic Switching Characteristics

Symbol	Parameter		Conditions	V _{CC} (V)	T _A = +25°C Typical	Units
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	C _L = 3	30 pF, V _{IH} = V _{CC} , V _{IL} = 0V	1.8	0.15	
				2.5	0.25	V
				3.3	0.35	
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	C _L = 3	30 pF, V _{IH} = V _{CC} , V _{IL} = 0V	1.8	-0.15	
				2.5	-0.25	V
				3.3	-0.35	
V _{OHV}	Quiet Output Dynamic Valley VOH	C _L = 3	$30 \text{ pF}, \text{ V}_{\text{IH}} = \text{V}_{\text{CC}}, \text{ V}_{\text{IL}} = 0\text{V}$	1.8	1.55	
				2.5	2.05	V
				3.3	2.65	
Capa	citance					
Symbol	Parameter		Conditions		$T_{A} = +25^{\circ}C$ Typical	Units
CIN	Input Capacitance		V_{CC} = 1.8V, 2.5V or 3.3V, V_I = 0V or V_{CC}	2	6	pF
C _{OUT}	Output Capacitance		$V_{I} = 0V \text{ or } V_{CC}, V_{CC} = 1.8V, 2.5V \text{ or } 3.3V$	/	7	pF

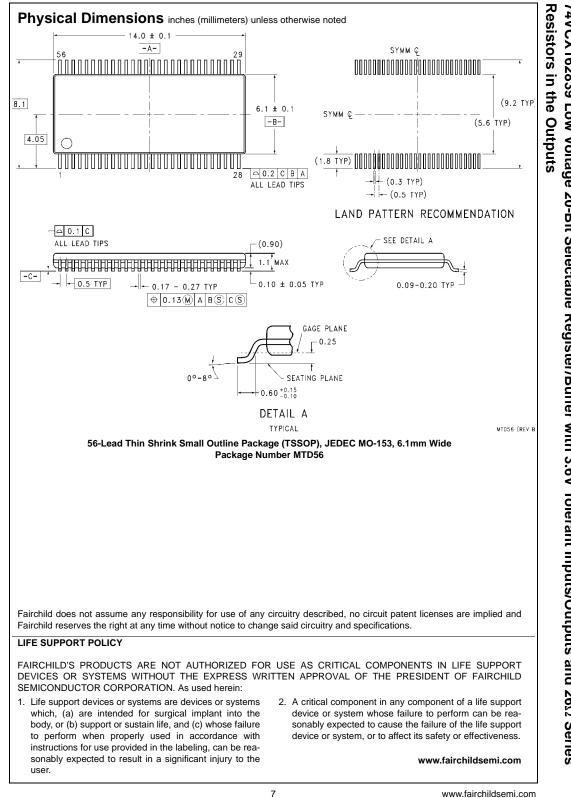
www.fairchildsemi.com

рF


20

74VCX162839

 C_{PD}


 $V_I = 0V \text{ or } V_{CC}, f = 10 \text{ MHz},$

 $V_{CC} = 1.8V$, 2.5V or 3.3V

www.fairchildsemi.com

6

74VCX162839 Low Voltage 20-Bit Selectable Register/Buffer with 3.6V Tolerant Inputs/Outputs and 26 Ω Series