FEATURES

Isolated RS-485/RS-422 transceiver, configurable as half or full duplex
isoPower ${ }^{\text {rm }}$ integrated isolated DC/DC converter ± 15 kV ESD protection on RS485 input/output pins
Complies with ANSI/TIA/EIA-485-A-98 and
ISO 8482:1987(E)
Data rate: 500kbps/16 Mbps
5 V or 3.3 V operation
Short Circuit to
256 nodes on bus
True fail-safe receiver inputs
High common-mode transient immunity: > $\mathbf{2 5} \mathbf{k V} / \mu \mathrm{s}$
Thermal shutdown protection
Safety and regulatory approvals (targeted)
UL recognition: $\mathbf{2 5 0 0}$ V $_{\text {RMS }}$ for 1 minute per UL 1577
VDE Certificates of Conformity
DIN VVDE V 0884-10 (VDE V 0884-10):2006-12
$V_{\text {IORM }}=560 \mathrm{~V}$ peak
Operating temperature range: -40° to $+85^{\circ} \mathrm{C}$
Wide-body, 20-lead SOIC package

APPLICATIONS

Isolated RS-485/RS-422 interfaces

Industrial field networks
Multipoint data transmission systems

GENERAL DESCRIPTION

The ADM2582E/ADM2587E are fully integrated isolated data transceivers with $\pm 15 \mathrm{kV}$ ESD protection and is suitable for high speed communication on multipoint transmission lines. The ADM2582E/ADM2587E includes an integrated Isolated DC-DC Power supply, which eliminates the need for an external DC-DC Isolation block.

It is designed for balanced transmission lines and complies with ANSI/TIA/EIA RS-485-A-98 and ISO 8482:1987(E).
The device employs Analog Devices, Inc., iCoupler ${ }^{\circledR}$ technology to combine a 3-channel isolator, a three-state differential line driver, a differential input receiver and an isoPower ${ }^{\mathrm{TM}}$ DC-DC converter into a single package. The device is powered by a single 5 V or 3.3 V supply realizing a fully isolated RS-485 solution.

Figure 1.

The ADM2582E/ADM2587E driver has an active high enable. Also provided is an active high receiver disable that causes the receive output to enter a high impedance state.
The device has current-limiting and thermal shutdown features to protect against output short circuits and situations where bus contention might cause excessive power dissipation. The part is fully specified over the industrial temperature range and is available in a 20 -lead, wide-body SOIC package.
The ADM2582E/ADM2587E contains isoPower technology that uses high frequency switching elements to transfer power through its transformer. Special care must be taken during printed circuit board (PCB) layout to meet emissions standards. Refer to Application Note AN-0971 for details on board layout considerations.

[^0][^1]
ADM2582E/ADM2587E

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Specifications (continued) 4
Timing Specifications - ADM2582E 4
Timing Specifications - ADM2587E 5
Absolute Maximum Ratings 6
ESD Caution 6
ADM2582E/ADM2587E Characteristics 7
Package Characteristics 7
Regulatory Information 7
Insulation and Safety-Related Specifications 7
VDE 0884 Insulation Characteristics (TARGETED) 8
Pin Configuration and Function Descriptions 9
Test Circuits 10
Switching Characteristics 11
Circuit Description 12
Signal Isolation 12
Power Isolation 12
Truth Tables. 12
Thermal Shutdown 12
True Fail-Safe Receiver Inputs 12
Applications Information 14
EMI Considerations 14
Insulation lifetime 14
Typical Applications 14
Outline Dimensions 16
Ordering Guide 16

REVISION HISTORY

02/09—Revision PrH: Initial Version

SPECIFICATIONS

All voltages are relative to their respective ground; $3.0 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$. All minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ unless otherwise noted.

Table 1.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter \& Symbol \& Min \& Typ \& Max \& Unit \& Test Conditions \\
\hline SUPPLY CURRENT \& \& \& \& \& \& \\
\hline ADM2587E TxD/RxD Data Rate \(\leq 500 \mathrm{kbps}\) \& Icc \& \& 90 \& \& mA \& \(\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}, 100 \Omega\) Load between Y and \(Z\) \\
\hline ADM2587E TxD/RxD Data Rate \(\leq 500 \mathrm{kbps}\) \& Icc \& \& 72 \& \& mA \& \(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, 100 \Omega\) Load between Y and \(Z\) \\
\hline ADM2587E TxD/RxD Data Rate \(\leq 500 \mathrm{kbps}\) \& Icc \& \& 125 \& \& mA \& \(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, 54 \Omega\) Load between Y and \(Z\) \\
\hline ADM2587E TxD/RxD Data Rate \(\leq 500 \mathrm{kbps}\) \& Icc \& \& 98 \& \& mA \& \(\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V}, 54 \Omega\) Load between Y and Z \\
\hline TxD/RxD Data Rate \(\leq 500 \mathrm{kbps}\) \& Icc \& \& \& 120 \& mA \& \(100 \Omega\) Load between \(Y\) and \(Z\) \\
\hline TxD/RxD Data Rate \(=16 \mathrm{Mbps}\) \& Icc \& \& \& 150 \& mA \& \(100 \Omega\) Load between \(Y\) and \(Z\) \\
\hline TxD/RxD Data Rate \(=16 \mathrm{Mbps}\) \& Icc \& \& \& 200 \& mA \& \(54 \Omega\) Load between \(Y\) and \(Z\) \\
\hline \multicolumn{7}{|l|}{DRIVER} \\
\hline \multicolumn{7}{|l|}{Differential Outputs} \\
\hline \multirow[t]{3}{*}{Differential Output Voltage, Loaded} \& \multirow[t]{2}{*}{|Vod2|} \& 2.0 \& \& 5.0 \& V \& \begin{tabular}{l}
\[
\mathrm{R}_{\mathrm{L}}=100 \Omega \text { (RS-422), }
\] \\
see Figure 3
\end{tabular} \\
\hline \& \& 1.5 \& \& 5.0 \& V \& \begin{tabular}{l}
\[
\mathrm{RL}=54 \Omega \text { (RS-485), }
\] \\
see Figure 3
\end{tabular} \\
\hline \& | \(\mathrm{V}_{\text {OD3 }}\) | \& \multirow[t]{6}{*}{1.5

100} \& \& 5.0 \& V \& | $-7 \mathrm{~V} \leq \mathrm{V}_{\text {TEST } 1} \leq 12 \mathrm{~V},$ |
| :--- |
| see Figure 4 |

\hline $\Delta\left|V_{\text {oo }}\right|$ for Complementary Output States \& $\Delta\left|V_{\text {oo }}\right|$ \& \& \& 0.2 \& V \& $$
\begin{aligned}
& \mathrm{R}_{\mathrm{L}}=54 \Omega \text { or } 100 \Omega, \\
& \text { see Figure } 3
\end{aligned}
$$

\hline Common-Mode Output Voltage \& Voc \& \& \& 3.0 \& V \& $$
\mathrm{R}_{\mathrm{L}}=54 \Omega \text { or } 100 \Omega
$$ see Figure 3

\hline $\Delta \mid$ Voc \mid for Complementary Output States \& $\Delta \mid$ Voc \mid \& \& \& 0.2 \& V \& $$
\mathrm{RL}=54 \Omega \text { or } 100 \Omega
$$ see Figure 3

\hline Short-Circuit Output Current \& los \& \& \& 250 \& mA \&

\hline Output Leakage Current (Y, Z) \& \multirow[t]{2}{*}{Io} \& \& \& \multirow[t]{2}{*}{125} \& $\mu \mathrm{A}$ \& $$
\begin{aligned}
& \mathrm{DE}=0 \mathrm{~V}, \overline{\mathrm{RE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \text { or } 3.6 \\
& \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=12 \mathrm{~V}
\end{aligned}
$$

\hline \& \& \multirow[t]{2}{*}{-100} \& \& \& $\mu \mathrm{A}$ \& $$
\begin{aligned}
& D E=0 V, \overline{R E}=0 V, V_{C C}=0 V \text { or } 3.6 \\
& V, V_{I N}=-7 V
\end{aligned}
$$

\hline \multicolumn{6}{|l|}{Logic Inputs $\mathrm{DE}, \overline{\mathrm{RE}}$, TxD} \&

\hline Input Threshold Low \& VILTx \& $0.3 \times \mathrm{V}_{\mathrm{DD}}$ \& \& \& V \& DE, $\overline{\mathrm{RE}}, \mathrm{TxD}$

\hline Input Threshold High \& $\mathrm{V}_{\text {IHTRXD }}$ \& \& \& $0.7 \times \mathrm{V}_{\mathrm{DD}}$ \& V \& $\mathrm{DE}, \overline{\mathrm{RE}}, \mathrm{TxD}$

\hline Input Current \& $\mathrm{ITXD}^{\text {d }}$ \& -10 \& 0.01 \& 10 \& $\mu \mathrm{A}$ \& $\mathrm{DE}, \overline{\mathrm{RE}}, \mathrm{TxD}$

\hline \multicolumn{7}{|l|}{RECEIVER}

\hline \multicolumn{7}{|l|}{Differential Inputs}

\hline Differential Input Threshold Voltage \& $\mathrm{V}_{\text {TH }}$ \& -200 \& -125 \& -30 \& mV \& $-7 \mathrm{~V}<\mathrm{V}_{\text {cm }}<12 \mathrm{~V}$

\hline Input Voltage Hysteresis \& $\mathrm{V}_{\text {HYS }}$ \& \& 15 \& \& mV \& V Oc $=0 \mathrm{~V}$

\hline Input Current (A, B) \& I_{1} \& \& \& 125 \& $\mu \mathrm{A}$ \& $$
\begin{aligned}
& \mathrm{DE}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V} \text { or } 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=12 \\
& \mathrm{~V}
\end{aligned}
$$

\hline \& \& -100 \& \& \& $\mu \mathrm{A}$ \& $$
\begin{aligned}
& \mathrm{DE}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V} \text { or } 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=-7 \\
& \mathrm{~V}
\end{aligned}
$$

\hline Line Input Resistance \& RIN \& 96 \& \& \& $\mathrm{k} \Omega$ \& $-7 \mathrm{~V}<\mathrm{V}_{\text {cm }}<12 \mathrm{~V}$

\hline Logic Outputs \& \& \& \& \& \&

\hline Output Voltage Low \& Volmx \& \& 0.2 \& 0.4 \& V \& $\mathrm{l}_{\text {OrX }}=1.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}=-0.2 \mathrm{~V}$

\hline Output Voltage High \& VohrxD \& $V_{D D 1}-0.3$ \& $\mathrm{V}_{\mathrm{DD} 1}-0.2$ \& \& V \& $\mathrm{l}_{\text {Irx }}=-1.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}=0.2 \mathrm{~V}$

\hline Short Circuit Current \& \& \& \& 100 \& mA \&

\hline
\end{tabular}

ADM2582E/ADM2587E

SPECIFICATIONS (CONTINUED)

All voltages are relative to their respective ground; $3.0 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$. All minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ unless otherwise noted.

Table 1 (Continued).

COMMON-MODE TRANSIENT IMMUNITY ${ }^{1}$		25			kV/ $\mu \mathrm{s}$	Vcm $=1 \mathrm{kV}$, transient magnitude $=800 \mathrm{~V}$

${ }^{1} \mathrm{CM}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining specification-compliant operation. V_{CM} is the common-mode potential difference between the logic and bus sides. The transient magnitude is the range over which the common-mode is slewed. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

TIMING SPECIFICATIONS - ADM2582E
$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Table 2.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
DRIVER						
Maximum Data Rate		16			Mbps	
Propagation Delay	$\mathrm{t}_{\text {PLH, }} \mathrm{t}_{\text {PHL }}$			100	ns	$\mathrm{R}_{\mathrm{L}}=54 \Omega, \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF} \text {, }$ see Figure 5 and Figure 9
Output Skew	tskew			8	ns	$\mathrm{R}_{\mathrm{L}}=54 \Omega, \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF},$ see Figure 5 and Figure 9
Rise Time/Fall Time	$t_{\text {R }}, t_{F}$			15	ns	$\mathrm{R}_{\mathrm{L}}=54 \Omega, \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF},$ see Figure 5 and Figure 9
Enable Time				120	ns	$R_{L}=110 \Omega, C_{L}=50 \mathrm{pF}$, see Figure 6 and Figure 11
Disable Time				150	ns	$R_{L}=110 \Omega, C_{L}=50 \mathrm{pF}$, see Figure 6 and Figure 11
RECEIVER						
Propagation Delay	$\mathrm{t}_{\text {PLH, }} \mathrm{t}_{\text {PHL }}$			110	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, see Figure 7 and Figure 10
Output Skew	$\mathrm{t}_{\text {skew }}$			8	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, see Figure 7 and Figure 10
Enable Time				15	ns	$R_{L}=1 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}$, see Figure 8 and Figure 12
Disable Time				15	ns	$R_{L}=1 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}$, see Figure 8 and Figure 12

TIMING SPECIFICATIONS - ADM2587E

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Table 2.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
DRIVER						
Maximum Data Rate		500			kbps	
Propagation Delay		250		700	ns	$\mathrm{R}_{\mathrm{L}}=54 \Omega, \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF}$ see Figure 5 and Figure 9
Output Skew	$\mathrm{tskew}^{\text {m }}$			100	ns	$\mathrm{R}_{\mathrm{L}}=54 \Omega, \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF},$ see Figure 5 and Figure 9
Rise Time/Fall Time	$t_{\text {R }}, t_{\text {F }}$	200		1100	ns	$\mathrm{R}_{\mathrm{L}}=54 \Omega, \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\mathrm{L} 2}=100 \mathrm{pF},$ see Figure 5 and Figure 9
Enable Time				2.5	$\mu \mathrm{s}$	$R_{L}=110 \Omega, C_{L}=50 \mathrm{pF}$, see Figure 6 and Figure 11
Disable Time				200	ns	$R_{L}=110 \Omega, C_{L}=50 \mathrm{pF}$, see Figure 6 and Figure 11
RECEIVER						
Propagation Delay	tPLH, $\mathrm{t}_{\text {PHL }}$			200	ns	$\mathrm{C}_{L}=15 \mathrm{pF}$, see Figure 7 and Figure 10
Output Skew				30	ns	$C_{L}=15 \mathrm{pF}$, see Figure 7 and Figure 10
Enable Time				15	ns	$R_{L}=1 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}$, see Figure 8 and Figure 12
Disable Time				15	ns	$R_{L}=1 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}$, see Figure 8 and Figure 12

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted. All voltages are relative to their respective ground.

Table 3.

Parameter	Rating
$V_{c \mathrm{c}}$	-0.5 V to +7 V
Digital Input Voltage (DE, $\overline{\mathrm{RE}, \mathrm{TxD})}$	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Digital Output Voltage	
\quad RxD	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Driver Output/Receiver Input Voltage	-9 V to +14 V
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Average Output Current per Pin	-35 mA to +35 mA
ESD (Human Body Model) on $\mathrm{A}, \mathrm{B}, \mathrm{Y}$ and	$\pm 15 \mathrm{kV}$
Z pins	
Lead Temperature	$300^{\circ} \mathrm{C}$
\quad Soldering (10 sec)	$215^{\circ} \mathrm{C}$
\quad Vapor Phase (60 sec$)$	$220^{\circ} \mathrm{C}$
\quad Infrared (15 sec)	

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 4. Maximum Continuous Working Voltage ${ }^{1}$

Parameter	Max	Unit	Reference Standard
AC Voltage			
Bipolar Waveform	424	\checkmark peak	50-year minimum lifetime
Unipolar Waveform			
Basic Insulation	600	\checkmark peak	Maximum approved working voltage per IEC 60950-1
Reinforced Insulation	560	\checkmark peak	Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10
DC Voltage			
Basic Insulation	600	\checkmark peak	Maximum approved working voltage per IEC 60950-1
Reinforced Insulation	560	\checkmark peak	Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10

${ }^{1}$ Refers to continuous voltage magnitude imposed across the isolation barrier.
See the Insulation Lifetime section for more details.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ADM2582E/ADM2587E CHARACTERISTICS
PACKAGE CHARACTERISTICS
Table 5.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Resistance (Input-Output) ${ }^{1}$	R-o		10^{12}		Ω	
Capacitance (Input-Output) ${ }^{1}$	$\mathrm{Cl}_{1-\mathrm{O}}$		3		pF	$\mathrm{f}=1 \mathrm{MHz}$
Input Capacitance ${ }^{2}$	C_{1}		4		pF	
Input IC Junction-to-Case Thermal Resistance	θ_{JcI}		33		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Thermocouple located at center of package underside
Output IC Junction-to-Case Thermal Resistance	$\theta_{\text {лсо }}$		28		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Thermocouple located at center of package underside

${ }^{1}$ Device considered a 2-terminal device: Pin 1 to Pin 8 shorted together and Pin 9 to Pin 16 shorted together.
${ }^{2}$ Input capacitance is from any input data pin to ground.

REGULATORY INFORMATION

Table 6. Pending ADM2582E/ADM2587E Approvals(TARGETED)

Organization	Approval Type	Notes
UL	To be recognized under the Component Recognition Program of Underwriters Laboratories, Inc.	In accordance with UL 1577, each ADM2582E/ADM2587E is proof tested by applying an insulation test voltage $\geq 2500 \mathrm{~V}$ rms for 1 second.
VDE	To be certified according to DIN V VDE V 0884- 10 (VDE V 0884-10): 2006-12	In accordance with VDE 0884-10, each ADM2582E/ADM2587E is proof tested by applying an insulation test voltage ≥ 1050 V VEAK for 1 second.

INSULATION AND SAFETY-RELATED SPECIFICATIONS

Table 7.

Parameter	Symbol	Value	Unit	Conditions
Rated Dielectric Insulation Voltage	L(I01)	2500	V rms	1-minute duration Minimum External Air Gap (Clearance) Measured from input terminals to output terminals, shortest distance through air
Minimum External Tracking	L(I02)	5.5 min	mm	Measured from input terminals to output terminals, shortest distance along body
Insulation distance through insulation (Creepage)		0.017 min	mm	In
Minimum Internal Gap (Internal Clearance)	CTI	>175	V	DIN IEC 112/VDE 0303-1
Tracking Resistance (Comparative Tracking Index)	Illa		Material Group (DIN VDE 0110: 1989-01, Table 1).	
Isolation Group				

ADM2582E/ADM2587E

VDE 0884 INSULATION CHARACTERISTICS (TARGETED)

This isolator is suitable for basic electrical isolation only within the safety limit data. Maintenance of the safety data must be ensured by means of protective circuits.
An asterisk (*) on a package denotes VDE 0884 approval for 560 V peak working voltage.
Table 8.

Description	Conditions	Symbol	Characteristic	Unit
CLASSIFICATIONS Installation Classification per DIN VDE 0110 for Rated Mains Voltage ≤ 150 V rms ≤ 300 V rms $\leq 400 \mathrm{~V} \text { rms }$ Climatic Classification Pollution Degree	DIN VDE 0110, see Table 1		I to IV I to III I to \|l 40/85/21 2	
VOLTAGE Maximum Working Insulation Voltage Input-to-Output Test Voltage Method b1 Method a After Environmental Tests, Subgroup 1 After Input and/or Safety Test, Subgroup 2/Subgroup 3 Highest Allowable Overvoltage	$V_{\text {IORM }} \times 1.875=V_{\text {PR, }} 100 \%$ production tested, $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$ $\mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\text {PR, }}, \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$ $\mathrm{V}_{\text {IORM }} \times 1.2=\mathrm{V}_{\text {PR, }} \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$ (Transient overvoltage, $\mathrm{t}_{\mathrm{TR}}=10 \mathrm{sec}$)	Viorm $V_{\text {PR }}$ $V_{\text {TR }}$	560 1050 896 672 4000	
SAFETY-LIMITING VALUES Case Temperature Input Current Output Current Insulation Resistance at T_{s}	Maximum value allowed in the event of a failure. $V_{10}=500 \mathrm{~V}$	Ts I_{s}, INPUT Is, output Rs	$\begin{aligned} & 150 \\ & 265 \\ & 335 \\ & >10^{9} \end{aligned}$	${ }^{\circ} \mathrm{C}$ mA mA Ω

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

${ }^{1}$ PIN 19 AND PIN12 NEEDS TO BE CONNECTED EXTERNALLY
Figure 2. Pin Configuration
Table 9.

Pin	Mnemonic	Function
1	GND_{1}	Ground, Logic Side.
2	$V_{\text {D }}$	Power Supply. Decoupling capacitor to GND_{1} required; capacitor value should be between $0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$.
3	GND_{1}	Ground, Logic Side.
4	RxD	Receiver Output Data. This output is high when $(A-B)>200 \mathrm{mV}$ and low when $(A-B)<-200 \mathrm{mV}$. The output is tristated when the receiver is disabled, that is, when $\overline{\mathrm{RE}}$ is driven high.
5	$\overline{\mathrm{RE}}$	Receiver Enable Input. This is an active-low input. Driving this input low enables the receiver; driving it high disables the receiver.
6	DE	Driver Enable Input. Driving this input high enables the driver; driving it low disables the driver.
7	TxD	Driver Input. Data to be transmitted by the driver is applied to this input.
8	VDD	Power Supply. Decoupling capacitor to GND1 required; capacitor value should be between $0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$.
9	GND_{1}	Ground, Logic Side.
10	GND_{1}	Ground, Logic Side.
11	GND_{2}	Ground, Bus Side.
12	$V_{\text {ISoout }}$	Isolated Power Supply Output. This pin must be connected externally to Visoin
13	Y	Driver Non-inverting output
14	GND_{2}	Ground (bus side).
15	Z	Driver Inverting output
16	GND_{2}	Ground (bus side).
17	B	Receiver Inverting Input.
18	A	Receiver Non-inverting Input.
19	$V_{\text {ISOIN }}$	Isolated Power Supply Input. This pin must be connected externally to $\mathrm{V}_{\text {ISoout }}$
20	GND_{2}	Ground (bus side).

TEST CIRCUITS

Figure 3. Driver Voltage Measurement

Figure 4. Driver Voltage Measurement

Figure 5. Driver Propagation Delay

Figure 8. Receiver Enable/Disable

Preliminary Technical Data

SWITCHING CHARACTERISTICS

Figure 9. Driver Propagation Delay, Rise/Fall Timing

Figure 10. Receiver Propagation Delay

Figure 11. Driver Enable/Disable Timing

Figure 12. Receiver Enable/Disable Timing

CIRCUIT DESCRIPTION

SIGNAL ISOLATION

The ADM2582E/ADM2587E signal isolation is implemented on the logic side of the interface. The part achieves signal isolation by having a digital isolation section and a transceiver section. (see Figure 1). Driver input and data applied to the TXD and DE pins, respectively, and referenced to logic ground $\left(\mathrm{GND}_{1}\right)$ are coupled across an isolation barrier to appear at the transceiver section referenced to isolated ground $\left(\mathrm{GND}_{2}\right)$. Similarly, the receiver output, referenced to isolated ground in the transceiver section, is coupled across the isolation barrier to appear at the RXD pin referenced to logic ground.

POWER ISOLATION

The ADM2582E/ADM2587E power isolation is implemented with using an isoPower ${ }^{\text {mim }}$ integrated isolated DC/DC converter.

TRUTH TABLES

The truth tables in this section use the abbreviations found in Table 10.

Table 10. Truth Table Abbreviations

Letter	Description
H	High level
I	Indeterminate
L	Low level
X	Irrelevant
Z	High impedance (off)
NC	Disconnected

Table 11. Transmitting

Supply Status		Inputs		Outputs	
V ${ }_{\text {DD } 1}$	V	DD2	DE	TxD	Y
On	On	H	H	H	L
On	On	H	L	L	H
On	On	L	X	Z	Z
On	Off	X	X	Z	Z
Off	On	L	X	Z	Z
Off	Off	X	X	Z	Z

Table 12. Receiving

Supply Status		Inputs		Outputs
VDD1	VDD2	A-B	$\overline{\mathbf{R E}}$	RxD
On	On	$>-0.05 \mathrm{~V}$	L or NC	H
On	On	<-0.2 V	L or NC	L
On	On	$-0.2 \mathrm{~V}<\mathrm{A}-\mathrm{B}<-0.05 \mathrm{~V}$	L or NC	I
On	On	Inputs open	L or NC	H
On	On	X	H	Z
On	Off	X	L or NC	H
Off	Off	X	L or NC	L

THERMAL SHUTDOWN

The ADM2582E/ADM2587E contain thermal shutdown circuitry that protects the part from excessive power dissipation during fault conditions. Shorting the driver outputs to a low impedance source can result in high driver currents. The thermal sensing circuitry detects the increase in die temperature under this condition and disables the driver outputs. This circuitry is designed to disable the driver outputs when a die temperature of $150^{\circ} \mathrm{C}$ is reached. As the device cools, the drivers are re-enabled at a temperature of $140^{\circ} \mathrm{C}$.

TRUE FAIL-SAFE RECEIVER INPUTS

The receiver inputs have a true fail-safe feature that ensures that the receiver output is high when the inputs are open or shorted. During line-idle conditions, when no driver on the bus is enabled, the voltage across a terminating resistance at the receiver input decays to 0 V . With traditional transceivers, receiver input thresholds specified between -200 mV and +200 mV mean that external bias resistors are required on the A and B pins to ensure that the receiver outputs are in a known state. The true fail-safe receiver input feature eliminates the need for bias resistors by specifying the receiver input threshold between -50 mV and -200 mV . The guaranteed negative threshold means that when the voltage between A and B decays to 0 V , the receiver output is guaranteed to be high.

DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY

The digital signals transmit across the isolation barrier using i Coupler technology. This technique uses chip scale transformer windings to couple the digital signals magnetically from one side of the barrier to the other. Digital inputs are encoded into waveforms that are capable of exciting the primary transformer winding. At the secondary winding, the induced waveforms are decoded into the binary value that was originally transmitted.
Positive and negative logic transitions at the isolator input cause narrow ($\sim 1 \mathrm{~ns}$) pulses to be sent to the decoder via the transformer. The decoder is bistable and is, therefore, either set or reset by the pulses, indicating input logic transitions. In the absence of logic transitions at the input for more than $1 \mu \mathrm{~s}$, periodic sets of refresh pulses indicative of the correct input state are sent to ensure dc correctness at the output. If the decoder receives no internal pulses of more than approximately $5 \mu \mathrm{~s}$, the input side is assumed to be unpowered or nonfunctional, in which case the isolator output is forced to a default state (see Table 3) by the watchdog timer circuit.
This situation should occur in the ADM2582E/ADM2587E devices only during power-up and power-down operations. The limitation on the ADM2582E/ADM2587E magnetic field

Preliminary Technical Data

immunity is set by the condition in which induced voltage in the transformer receiving coil is sufficiently large to either falsely set or reset the decoder. The following analysis defines the conditions under which this can occur.

The 3.3 V operating condition of the ADM2582E/ADM2587E is examined because it represents the most susceptible mode of operation. The pulses at the transformer output have an amplitude of $>1.0 \mathrm{~V}$. The decoder has a sensing threshold of about 0.5 V , thus establishing a 0.5 V margin in which induced voltages can be tolerated. The voltage induced across the receiving coil is given by
$V=(-d \beta / d t) \sum \pi r_{n 2} ; n=1,2, \ldots, N$
where:
β is magnetic flux density (gauss).
N is the number of turns in the receiving coil.
r_{n} is the radius of the $n_{\text {th }}$ turn in the receiving coil (cm).

Given the geometry of the receiving coil in the ADM2582E/ ADM2587E, and an imposed requirement that the induced voltage be, at most, 50% of the 0.5 V margin at the decoder, a maximum allowable magnetic field is calculated as shown in Error! Reference source not found..

Figure 13. Maximum Allowable External Magnetic Flux Density
For example, at a magnetic field frequency of 1 MHz , the maximum allowable magnetic field of 0.2 kgauss induces a voltage of 0.25 V at the receiving coil. This is about 50% of the sensing threshold and does not cause a faulty output transition. Similarly, if such an event occurs during a transmitted pulse (and is of the worst-case polarity), it reduces the received pulse from $>1.0 \mathrm{~V}$ to 0.75 V , which is still well above the 0.5 V sensing threshold of the decoder.
The preceding magnetic flux density values correspond to specific current magnitudes at given distances from the ADM2582E/ADM2587E transformers. Figure 26 expresses these allowable current magnitudes as a function of frequency for selected distances. As shown in Figure 26, the ADM2582E/ ADM2587E are extremely immune and can be affected only by extremely large currents operated at high frequency very close to the component. For the 1 MHz example, a 0.5 kA current
would need to be placed 5 mm away from the ADM2582E/ ADM2587E to affect component operation.

Figure 14. Maximum Allowable Current for Various Current-toADM2582E/ADM2587E Spacings

Note that in combinations of strong magnetic field and high frequency, any loops formed by printed circuit board traces could induce error voltages sufficiently large to trigger the thresholds of succeeding circuitry. Care should be taken in the layout of such traces to avoid this possibility.

APPLICATIONS INFORMATION
 EMI CONSIDERATIONS

The dc-to-dc converter section of the ADM2582E/ADM2587E components must, of necessity, operate at very high frequency to allow efficient power transfer through the small transformers. This creates high frequency currents that can propagate in circuit board ground and power planes, causing edge and dipole radiation. Grounded enclosures are recommended for applications that use these devices. If grounded enclosures are not possible, good RF design practices should be followed in layout of the PCB. See application Note AN-0971 for more information on the Control of Radiated Emissions with isoPower Devices.

INSULATION LIFETIME

All insulation structures eventually break down when subjected to voltage stress over a sufficiently long period. The rate of insulation degradation is dependent on the characteristics of the voltage waveform applied across the insulation. Analog Devices conducts an extensive set of evaluations to determine the lifetime of the insulation structure within the ADM2582E/ADM2587E.
Accelerated life testing is performed using voltage levels higher than the rated continuous working voltage. Acceleration factors for several operating conditions are determined, allowing calculation of the time to failure at the working voltage of interest. The values shown in Table 4 summarize the peak voltages for 50 years of service life in several operating conditions. In many cases, the working voltage approved by agency testing is higher than the 50 -year service life voltage. Operation at working voltages higher than the service life voltage listed leads to premature insulation failure.
The insulation lifetime of the ADM2582E/ADM2587E depends on the voltage waveform type imposed across the isolation barrier. The iCoupler insulation structure degrades at different rates, depending on whether the waveform is bipolar ac, unipolar ac, or dc. Figure 15, Figure 16, and Figure 17 illustrate these different isolation voltage waveforms.
Bipolar ac voltage is the most stringent environment. A 50 -year operating lifetime under the bipolar ac condition determines the Analog Devices recommended maximum working voltage.
In the case of unipolar ac or dc voltage, the stress on the insulation is significantly lower. This allows operation at higher working voltages while still achieving a 50 -year service life. The
working voltages listed in Table 4 can be applied while maintaining the 50 -year minimum lifetime, provided the voltage conform to either the unipolar ac or dc voltage cases. Any cross-insulation voltage waveform that does not conform to Figure 16 or Figure 17 should be treated as a bipolar ac waveform, and its peak voltage should be limited to the 50 -year lifetime voltage value listed in Table 4.

Figure 15. Bipolar AC Waveform

RATED PEAK VOLTAGE

Figure 16. DC Waveform

RATED PEAK VOLTAGE

NOTES:

1. THE VOLTAGE IS SHOWN AS SINUSOIDAL FOR ILLUSTRATION

PURPOSES ONLY. IT IS MEANT TO REPRESENT ANY VOLTAGE WAVEFORM VARYING BETWEEN 0 AND SOME LIMITING VALUE. THE LIMITING VALUE CAN BE POSITIVE OR NEGATIVE, BUT THE 商
VOLTAGE CANNOT CROSS OV.

Figure 17. Unipolar AC Waveform

TYPICAL APPLICATIONS

Figure 18 and Figure 19 show typical applications of the ADM2582E/ADM2587E in half-duplex and full-duplex RS-485 network configurations. Up to 256 transceivers can be connected to the RS- 485 bus. To minimize reflections, the line must be terminated at the receiving end in its characteristic impedance, and stub lengths off the main line must be kept as short as possible. For half-duplex operation, this means that both ends of the line must be terminated, because either end can be the receiving end.

Figure 18. ADM2582E/ADM2587E Typical Half-Duplex RS-485 Network

ADM2582E/ADM2587E

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-013-AC
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR

Figure 20. 20-Lead Standard Small Outline Package [SOIC_W] Wide Body (RW-20)
Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model	Data Rate (Mbps)	Temperature Range	Package Description	Package Option
ADM2582EBRWZ 1	16	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 -Lead SOIC_W	RW-20
ADM2582EBRWZ-REEL7 1	16	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 -Lead SOIC_W	RW-20
ADM2587EBRWZ 1	0.5	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 -Lead SOIC_W	RW-20
ADM2587EBRWZ-REEL7 1	0.5	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 -Lead SOIC_W	RW-20

[^2]
[^0]: Rev. PrH
 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

[^1]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
 Tel: 781.329.4700
 Fax: 781.461.3113
 ©2009 Analog Devices, Inc. All rights reserved.

[^2]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant part.

