

M66255FP

8192 × 10-Bit Line Memory (FIFO)

REJ03F0249-0200 Rev.2.00 Sep 14, 2007

Description

The M66255FP is a high-speed line memory with a FIFO (First In First Out) structure of 8192-word \times 10-bit configuration which uses high-performance silicon gate CMOS process technology.

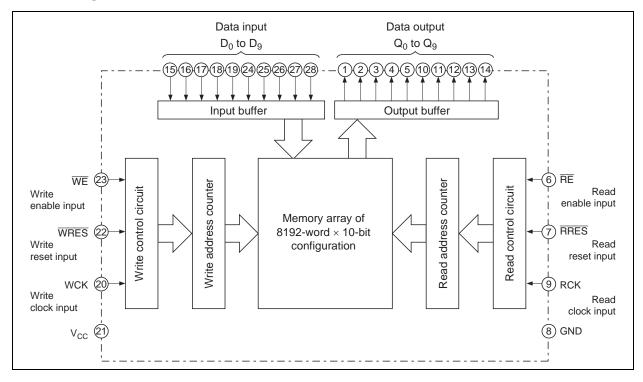
It has separate clock, enable and reset signals for write and read, and is most suitable as a buffer memory between devices with different data processing throughput.

Features

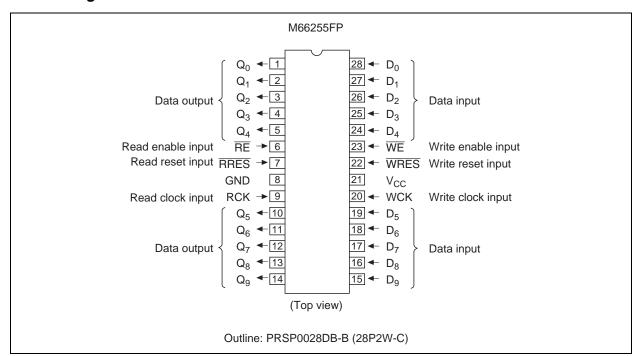
Memory configuration: 8192 words × 10 bits (dynamic memory)

High-speed cycle: 30 ns (Min)
High-speed access: 25 ns (Max)
Output hold: 5 ns (Min)

Fully independent, asynchronous write and read operations


• Variable length delay bit

• Output: 3 states


Application

Digital photocopiers, high-speed facsimile, laser beam printers.

Block Diagram

Pin Arrangement

Absolute Maximum Ratings

(Ta = 0 to 70° C, unless otherwise noted)

Item	Symbol	Ratings	Unit	Conditions	
Supply voltage	V _{CC}	-0.5 to +7.0 V		A value based on GND pin	
Input voltage	VI	-0.5 to V_{CC} + 0.5	V		
Output voltage	Vo	-0.5 to V_{CC} + 0.5	V		
Power dissipation	Pd	825*	mW	Ta = 25°C	
Storage temperature	Tstg	-65 to 150	°C		

Note: * Ta \geq 40°C are derated at -9.7 mW / °C

Recommended Operating Conditions

Item	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{CC}	4.5	5	5.5	V
Supply voltage	GND	_	0	_	V
Operating ambient temperature	Topr	0	_	70	°C

Electrical Characteristics

 $(Ta = 0 \text{ to } 70^{\circ}\text{C}, V_{CC} = 5 \text{ V} \pm 10\%, \text{ GND} = 0 \text{ V})$

Item	Symbol	Min	Тур	Max	Unit	Tes	st Conditions
"H" input voltage	V _{IH}	2.0	_		V		
"L" input voltage	V _{IL}	_	_	8.0	V		
"H" output voltage	V _{OH}	V _{CC} - 0.8	_	_	V	$I_{OH} = -4 \text{ m}$	A
"L" output voltage	V _{OL}	_	_	0.55	V	$I_{OL} = 4 \text{ mA}$	
"H" input current	I _{IH}		_	1.0	μА	V _I = V _{CC}	$\overline{\text{WE}}$, $\overline{\text{WRES}}$, WCK, $\overline{\text{RE}}$, $\overline{\text{RRES}}$, RCK, D_0 to D_9
"L" input current	I _{IL}		_	-1.0	μΑ	V _I = GND	$\overline{\text{WE}}$, $\overline{\text{WRES}}$, WCK, RE, RRES, RCK, D ₀ to D ₉
Off state "H" output current	l _{OZH}	_	_	5.0	μΑ	$V_O = V_{CC}$	
Off state "L" output current	I _{OZL}	_	_	-5.0	μΑ	$V_0 = GND$	
Operating mean current dissipation	I _{CC}	_	_	150	mA	$V_1 = V_{CC}$, GND, Output open t_{WCK} , $t_{RCK} = 30$ ns	
Input capacitance	Cı	_	_	10	pF	f = 1 MHz	
Off state output capacitance	Co	_	_	15	pF	f = 1 MHz	

Function

When write enable input \overline{WE} is "L", the contents of data inputs D_0 to D_9 are written into memory in synchronization with rise edge of write clock input WCK. At this time, the write address counter is also incremented simultaneously.

The write functions given below are also performed in synchronization with rise edge of WCK.

When \overline{WE} is "H", a write operation to memory is inhibited and the write address counter is stopped.

When write reset input \overline{WRES} is "L", the write address counter is initialized.

When read enable input \overline{RE} is "L", the contents of memory are output to data outputs Q_0 to Q_9 in synchronization with rise edge of read clock input RCK. At this time, the read address counter is also incremented simultaneously.

The read functions given below are also performed in synchronization with rise edge of RCK.

When \overline{RE} is "H", a read operation from memory is inhibited and the read address counter is stopped. The outputs are in the high impedance state.

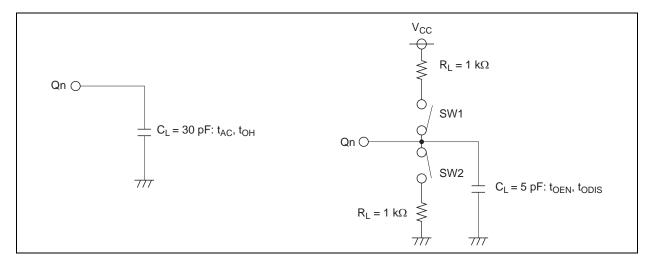
When read reset input \overline{RRES} is "L", the read address counter is initialized.

Switching Characteristics

 $(Ta = 0 \text{ to } 70^{\circ}\text{C}, V_{CC} = 5 \text{ V} \pm 10\%, \text{ GND} = 0 \text{ V})$

Item	Symbol	Min	Тур	Max	Unit
Access time	t _{AC}			25	ns
Output hold time	t _{OH}	5	_	_	ns
Output enable time	t _{OEN}	5	_	25	ns
Output disable time	t _{ODIS}	5		25	ns

Timing Conditions


(Ta = 0 to 70°C, V_{CC} = 5 V \pm 10%, GND = 0 V, unless otherwise noted)

Item	Symbol	Min	Тур	Max	Unit
Write clock (WCK) cycle	twck	30	_	_	ns
Write clock (WCK) "H" pulse width	t _{WCKH}	12		_	ns
Write clock (WCK) "L" pulse width	t _{WCKL}	12			ns
Read clock (RCK) cycle	t _{RCK}	30			ns
Read clock (RCK) "H" pulse width	t _{RCKH}	12			ns
Read clock (RCK) "L" pulse width	t _{RCKL}	12			ns
Input data setup time to WCK	t _{DS}	5			ns
Input data hold time to WCK	t _{DH}	5			ns
Reset setup time to WCK or RCK	t _{RESS}	5	_	_	ns
Reset hold time to WCK or RCK	t _{RESH}	5		_	ns
Reset nonselect setup time to WCK or RCK	t _{NRESS}	5			ns
Reset nonselect hold time to WCK or RCK	t _{NRESH}	5			ns
WE setup time to WCK	t _{WES}	5		_	ns
WE hold time to WCK	t _{WEH}	5	_	_	ns
WE nonselect setup time to WCK	t _{NWES}	5	_	_	ns
WE nonselect hold time to WCK	t _{NWEH}	5		_	ns
RE setup time to RCK	t _{RES}	5			ns
RE hold time to RCK	t _{REH}	5	_	_	ns
RE nonselect setup time to RCK	t _{NRES}	5			ns
RE nonselect hold time to RCK	t _{NREH}	5			ns
Input pulse rise/fall time	tr, tf	_	_	20	ns
Data hold time*	t _H	_	_	20	ms

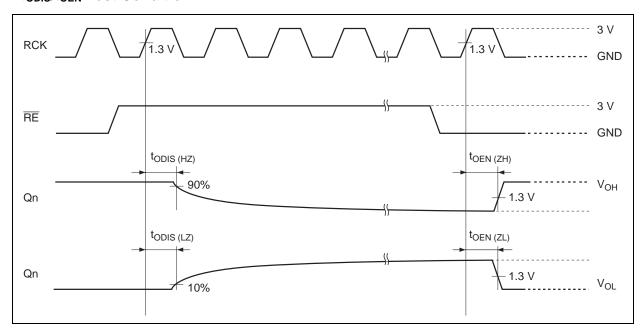
Notes: Perform reset operation after turning on power supply.

^{*} For 1-line access, the following should be satisfied: $\overline{\text{WE}} \text{ "H" level period} \leq 20 \text{ ms} - 8192 \text{ t}_{\text{WCK}} - \overline{\text{WRES}} \text{ "L" level period} \\ \overline{\text{RE}} \text{ "H" level period} \leq 20 \text{ ms} - 8192 \text{ t}_{\text{RCK}} - \overline{\text{RRES}} \text{ "L" level period}$

Test Circuit

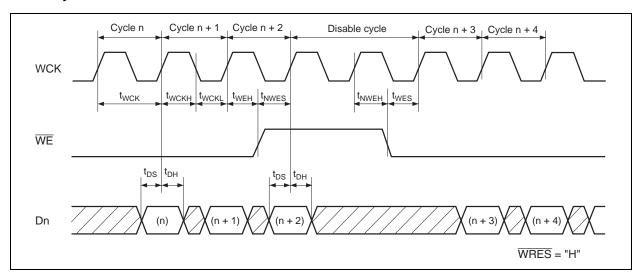
Input pulse level: 0 to 3 V

Input pulse rise/fall time: 3 ns Decision voltage input: 1.3 V

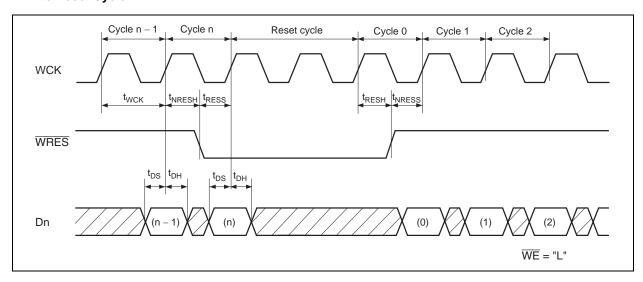

Decision voltage output: 1.3 V (However, $t_{ODIS\,(LZ)}$ is 10% of output amplitude and $t_{ODIS\,(HZ)}$ is 90% of that for

decision)

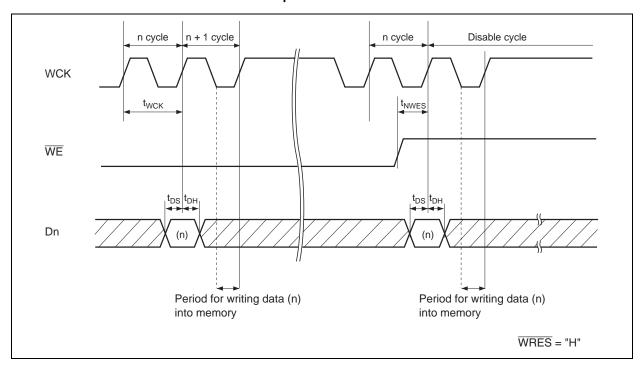
The load capacitance C_L includes the floating capacitance of connection and the input capacitance of probe.


Parameter	SW1	SW2		
todis (LZ)	Closed	Open		
todis (HZ)	Open	Closed		
toen (ZL)	Closed	Open		
t _{OEN (ZH)}	Open	Closed		

todis/toen Test Condition

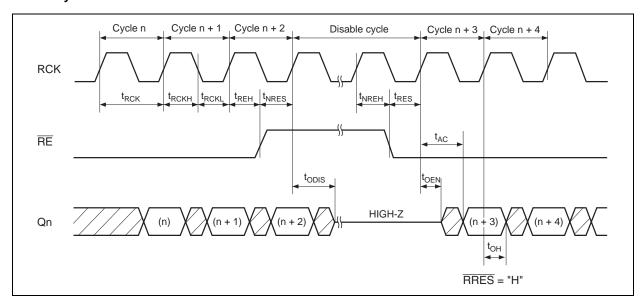


Operating Timing

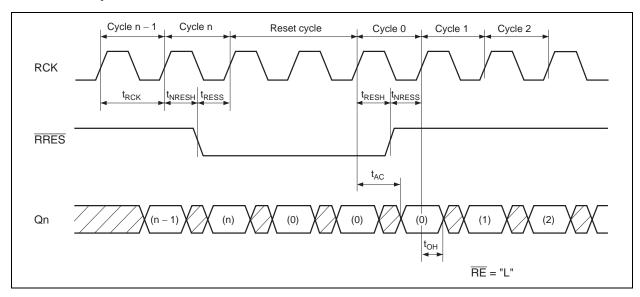

Write Cycle

Write Reset Cycle

Matters that Needs Attention when WCK Stops

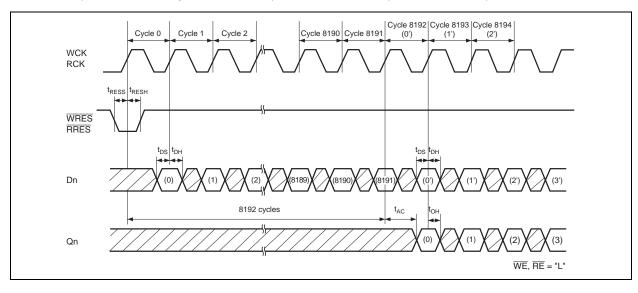


Input data of n cycle is read at the rising edge after WCK of n cycle and writing operation starts in the WCK low-level period of n+1 cycle. The writing operation is complete at the falling edge after n+1 cycle.

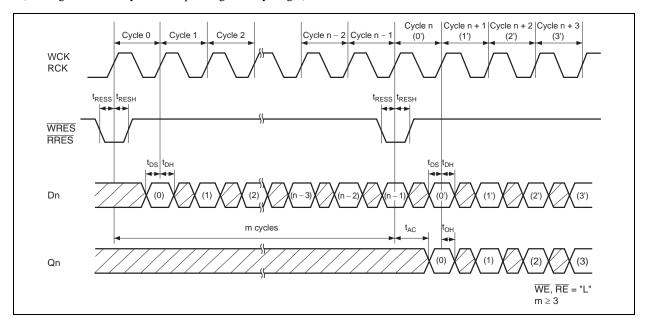

To stop reading write data at n cycle, enter WCK before the rising edge after n+1 cycle.

When the cycle next to n cycle is a disable cycle, WCK for a cycle requires to be entered after the disable cycle as well.

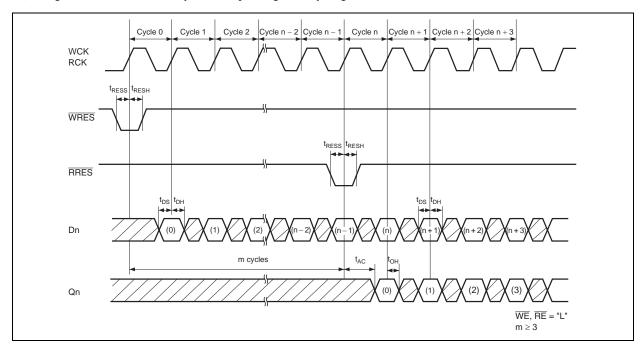
Read Cycle


Read Reset Cycle

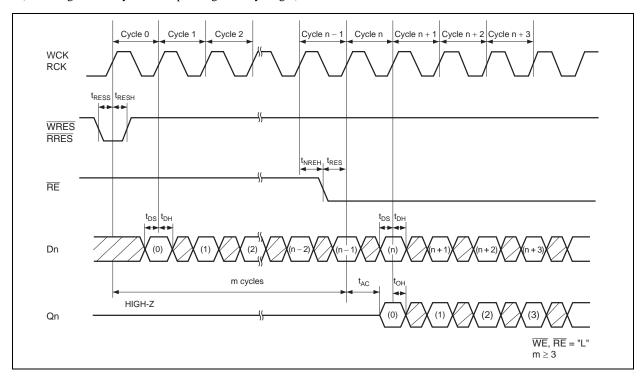
Variable Length Delay Bits


1-line (8192 Bits) Delay

A write input data is written into memory at the second rise edge of WCK in the cycle, and a read output data is output from memory at the first rise edge of RCK in the cycle, so that 1-line delay can be made easily.


N-bit Delay Bit

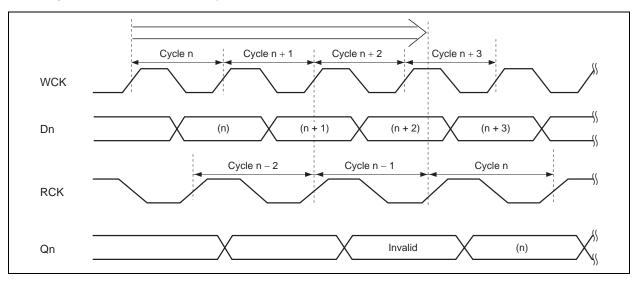
(Making a reset at a cycle corresponding to delay length)


N-bit Delay 2

(Sliding \overline{WRES} and \overline{RRES} at a cycle corresponding to delay length)

N-bit Delay 3

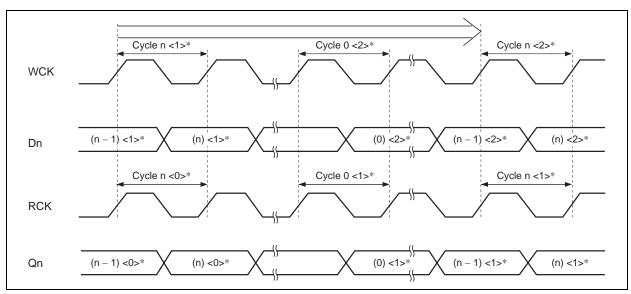
(Disabling \overline{RE} at a cycle corresponding to delay length)



Shortest Read of Data "n" Written in Cycle n

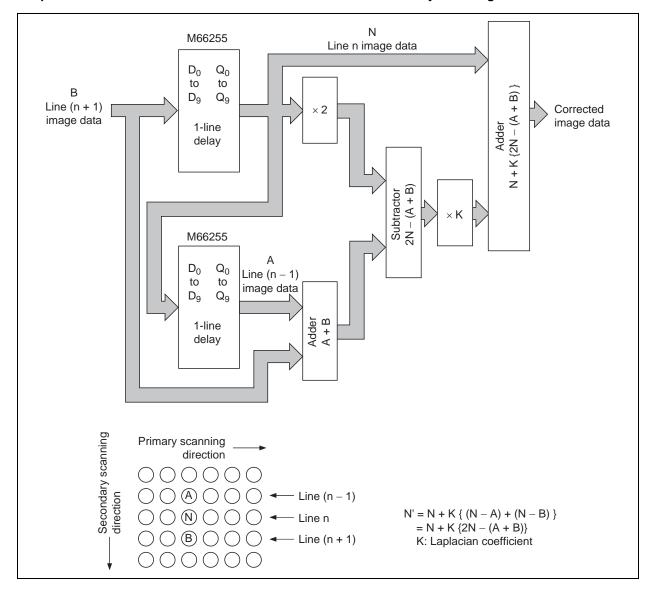
(Cycle n-1 on read side should be started after end of cycle n+1 on write side)

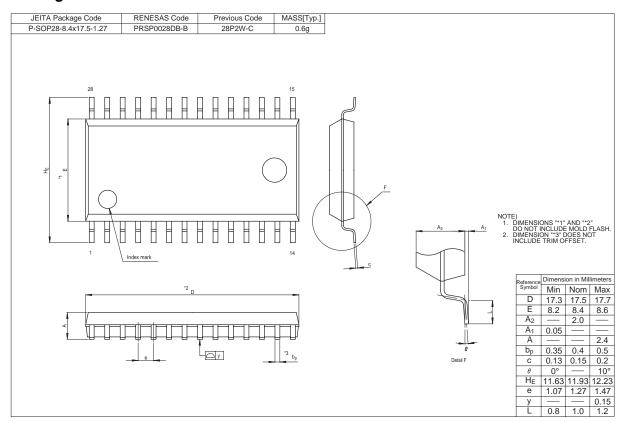
When the start of cycle n-1 on read side is earlier than the end of cycle n+1 on write side, output Qn of cycle n becomes invalid.


In the figure shown below, the read of cycle n-1 is invalid.

Longest Read of Data "n" Written in Cycle n: 1-line Delay

(Cycle n <1>* on read side should be started when cycle n <2>* on write is started)


Output Qn of n cycle <1>* can be read until the start of reading side n cycle <1>* and the start of writing side n cycle <2>* overlap each other.


Note: <0>*, <1>* and <2>* indicates a line value.

Application Example

Laplacian Filter Circuit for Correction of Resolution in the Secondary Scanning Direction

Package Dimensions

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

 Notes:

 1. This document is provided for reference purposes only so that Penesas customers may select the appropriate Renesas products for their use. Renesas neither makes in the respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.

 2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of waspons of mass and included in this document such as product data, diagrams, and regulations, and procedures required by such law and regulations and procedures required by such law and regulations and procedures required by such law and regulations, and procedures required by such law and regulations and procedures required by such law and regulations and procedures required by such law and regulations and procedures required by such law and regulations, and procedures required to such as a factor of the regulations, and procedures required to such as a factor of the regulations, and procedures are required to such as a factor of the regulations and regulations, and reg

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd.10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510