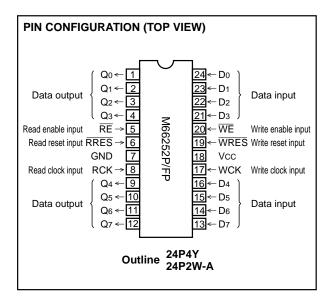
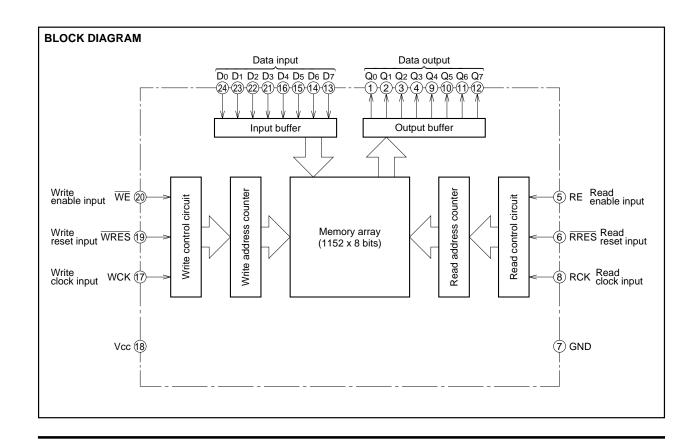
1152 x 8-BIT LINE MEMORY (FIFO)

DESCRIPTION

The M66252P/FP is a high-speed line memory with a FIFO (First In First Out) structure of 1152-word \times 8-bit configuration which uses high-performance silicon gate CMOS process technology.


It has separate clock, enable and reset signals for write and read and is most suitable as a buffer memory between devices with different data processing throughput.


FEATURES

Memory construction	
1152words x 8bits	
High-speed cycle	50ns (min.)
High-speed access	40ns (max.)
Output hold	5ns (min.)
· Fully independent, asynchronous write	and read opera-
tions	
 Variable-length delay bit 	
• Output	3-state

APPLICATION

Digital photocopiers, high-speed facsimiles, laser beam printers.

M66252P/FP

1152 x 8-BIT LINE MEMORY (FIFO)

FUNCTION

When the status of write enable input \overline{WE} is "L," data on Do thru D7 are written on the memory synchronously with write clock input WCK rise edges. At this time, write address counter executes counting.

The following write-related operations are also performed synchronously with WCK rise edges.

When $\overline{\text{WE}}$ is "H," writing on memory is inhibited, and write address counter stops counting.

When write reset input $\overline{\text{WRES}}$ is "L," write address counter is initialized.

When read enable input \overline{RE} is "L," data on memory are output to Q0 thru Q7 synchronously with read clock input RCK rise edges. At this time, read address counter executes counting.

The following read-related operations are also performed synchronously with RCK rise edges.

When \overline{RE} is "H," reading from memory is inhibited, and read address counter stops counting. The status of Qo thru Q7 becomes high-impedance.

When read reset input RRES is "L," read address counter is initialized.

ABSOLUTE MAXIMUM RATINGS (Ta = -20 ~ 70°C unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		−0.5 ~ + 7.0	V
VI	Input voltage	Reference pin: GND	-0.5 ~ Vcc + 0.5	V
Vo	Output voltage		-0.5 ~ Vcc + 0.5	V
Pd	Power dissipation	Ta = 25°C	550 (Note 1)	mW
Tstg	Storage temperature		−65 ~ 150	°C

Note 1: Ta \geq 62°C are derated at -8.8mW/°C (24P4Y) Ta \geq 51°C are derated at -7.5mW/°C (24P2W)

RECOMMENDED OPERATIONAL CONDITIONS

Cymbol	Dorometer		l lmit			
Symbol Parameter		Min.	Тур.	Max.	Unit	
Vcc	Supply voltage	4.5	5	5.5	V	
GND	Supply voltage		0		V	
Topr	Ambient temperature	-20		70	°C	

ELECTRICAL CHARACTERISTICS (Ta = $-20 \sim 70$ °C, Vcc = $5V\pm10\%$, GND = 0V)

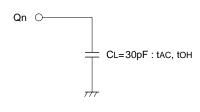
Cumah al	Daramatar	Test conditions -		Limits			1.124
Symbol	Parameter			Min.	Тур.	Max.	Unit
VIH	"H" input voltage			2.0			V
VIL	"L" input voltage					0.8	V
Voн	"H" output voltage	IOH = -4m	ıΑ	Vcc - 0.8			V
Vol	"L" output voltage	IOL = 4mA	ı			0.55	V
Іін	"H" input current	VI = VCC	WE, WRES, WCK, RE, RRES, RCK D0~D7			1.0	μА
lıL	"L" input current	Vı = GND	WE, WRES, WCK, RE, RRES, RCK D0~D7			-1.0	μА
lozh	"H" output current under "off" condition	Vo = Vcc				5.0	μΑ
lozL	"L" output current under "off" condition	Vo = GND				-5.0	μΑ
Icc	Average supply current during operation	VI = VIH, VIL, Outputs are open twck, tRck = 100ns				100	mA
Сі	Input capacitance	f = 1MHz				10	pF
Со	Output capacitance under "off" condition	f = 1MHz				15	pF

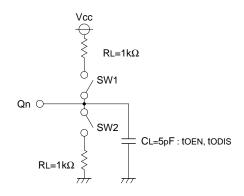
1152 x 8-BIT LINE MEMORY (FIFO)

SWITCHING CHARACTERISTICS (Ta = -20 ~ 70°C, Vcc = 5V±10%, GND = 0V)

Symbol	Parameter	Limits			Unit
		Min.	Тур.	Max.	Unit
tAC	Access time			40	ns
tон	Output hold time	5			ns
toen	Output enable time	5		40	ns
todis	Output disable time	5		40	ns

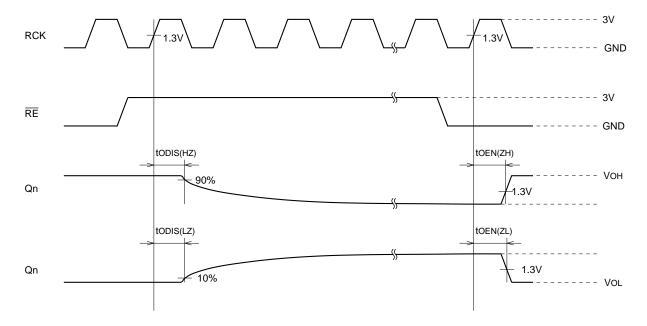
TIMING CHARACTERISTICS ($Ta = -20 \sim 70^{\circ}C$, $Vcc = 5V\pm10\%$, GND = 0V)


Cumbal	Devenuetes		Limits		
Symbol	Parameter	Min.	Тур.	Max.	Unit
twcĸ	Write clock (WCK) cycle time	50			ns
twckh	Write clock (WCK) "H" pulse width	25			ns
twckl	Write clock (WCK) "L" pulse width	25			ns
trck	Read clock (RCK) cycle time	50			ns
trckh	Read clock (RCK) "H" pulse width	25			ns
trckl	Read clock (RCK) "L" pulse width	25			ns
tDS	Input data setup time (in response to WCK)	15			ns
tDH	Input data hold time (in response to WCK)	5			ns
tress	Reset setup time (in response to WCK and RCK)	15			ns
tresh	Reset hold time (in response to WCK and RCK)	5			ns
tNRESS	Reset non-select setup time (in response to WCK and RCK)	15			ns
tNRESH	Reset non-select hold time (in response to WCK and RCK)	5			ns
twes	WE setup time (in response to WCK)	15			ns
tWEH	WE hold time (in response to WCK)	5			ns
tnwes	WE non-select setup time (in response to WCK)	15			ns
tnweh	WE non-select hold time (in response to WCK)	5			ns
tres	RE setup time (in response to RCK)	15			ns
treh	RE hold time (in response to RCK)	5			ns
tnres	RE non-select setup time (in response to RCK)	15			ns
tnreh	RE non-select hold time (in response to RCK)	5			ns
tr, tf	Input pulse rise time and fall time			35	ns
tH	Data hold time (Note 1)			20	ms


Note 1. The following conditions should be met for each line access:

| WE "H" level period ≤ 20ms - 1152 · twck - WRES "L" level period RE "H" level period ≥ 20ms - 1152 · trck - RRES "L" level period 2. Perform reset operation after turning on power supply.

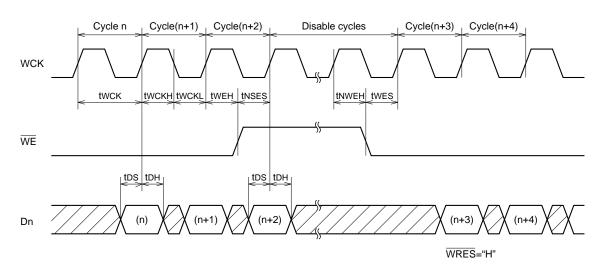
TEST CIRCUIT

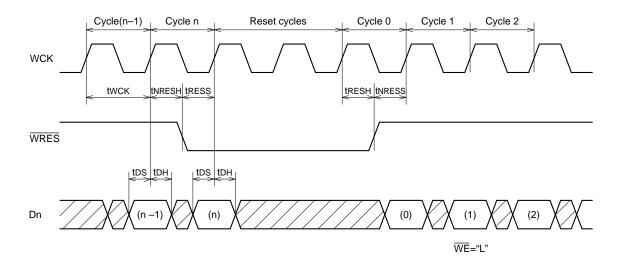

Input pulse level: $0 \sim 3V$ Input pulse rise time and fall time: 3ns Measurement reference level, input: 1.3V

Measurement reference level, output: 1.3V (Note: todis (LZ) is tested at 10% output amplitude, and todis (HZ) is tested at 90% output amplitude.)

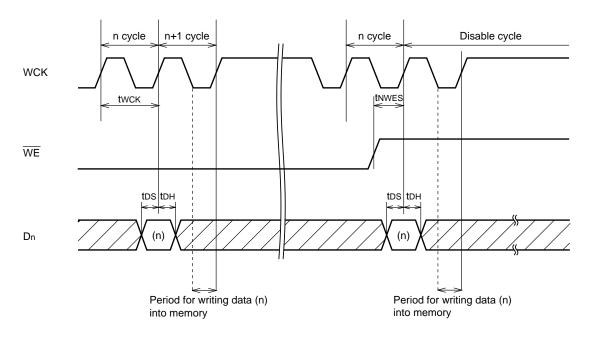
Load capacitance CL includes floating capacitance and probe input capacitance.

Parameter	SW1	SW2
todis(LZ)	Closed	Open
tODIS(HZ)	Open	Closed
tOEN(ZL)	Closed	Open
tOEN(ZH)	Open	Closed


TEST CONDITIONS FOR OUTPUT DISABLE TIME tODIS AND OUTPUT ENABLE TIME TOEN



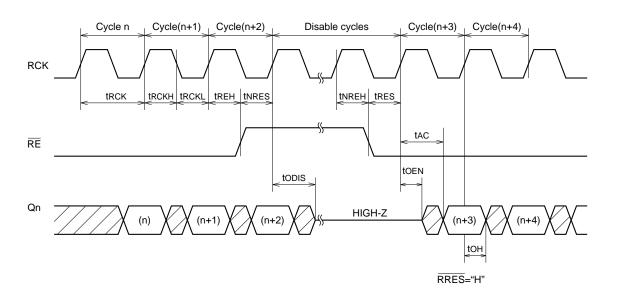
TIMING CHARTS


• Write Cycles

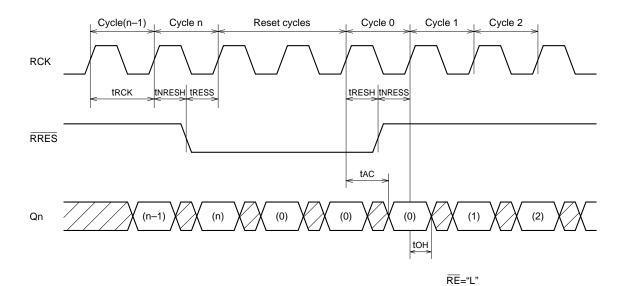
• Write Reset Cycles

• Matters that needs attention when WCK stops

WRES = "H"

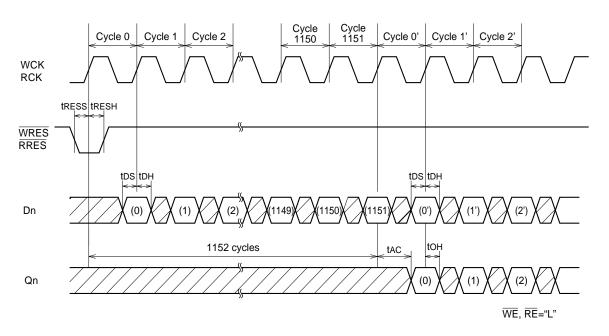

Input data of n cycle is read at the rising edge after WCK of n cycle and writing operation starts in the WCK low-level period of n+1 cycle. The writing operation is complete at the falling edge after n+1 cycle.

To stop reading write data at n cycle, enter WCK before the rising edge after n+1 cycle.

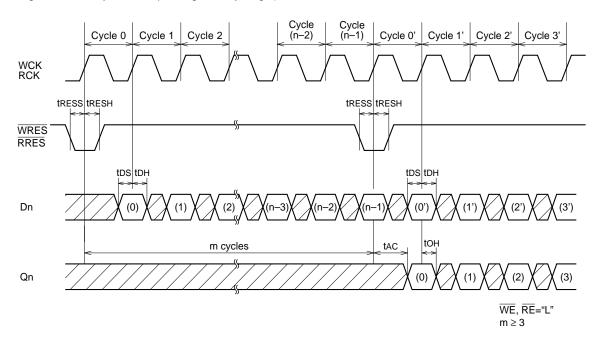

When the cycle next to n cycle is a disable cycle, WCK for a cycle requires to be entered after the disable cycle as well.

• Read Cycles

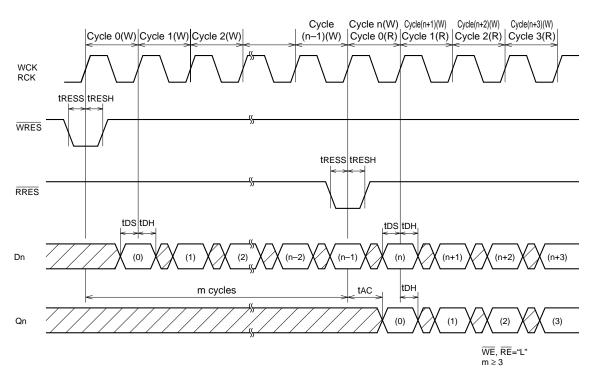
• Read Reset Cycles

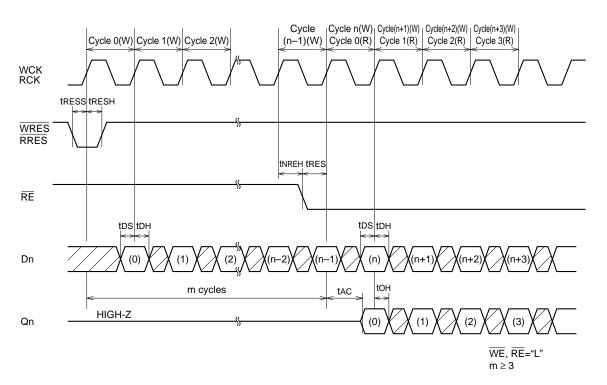


MITSUBISHI ELECTRIC

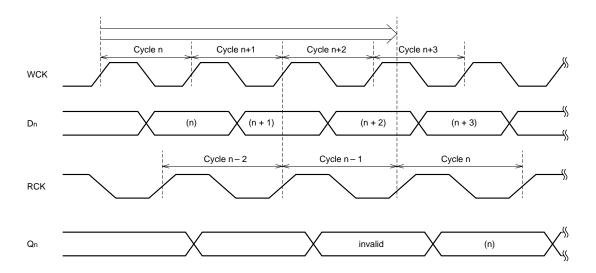

VARIABLE-LENGTH DELAY BITS

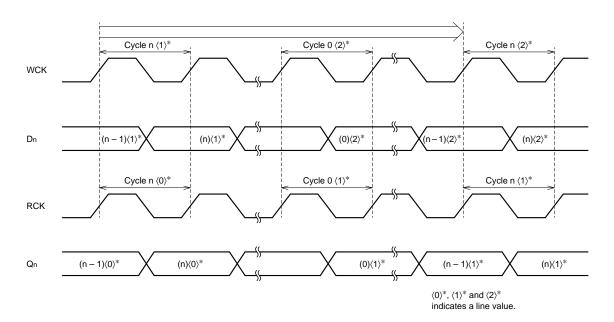
• 1-line (1152-bit) delay


A write input data is written into memory at the second rise edge of WCK in the cycle, and a read output data is output from memory at the first rise edge of RCK in the cycle, so that 1-line delay can be made easily.


n-bit delay 1
 (Making a reset at a cycle corresponding to delay length)

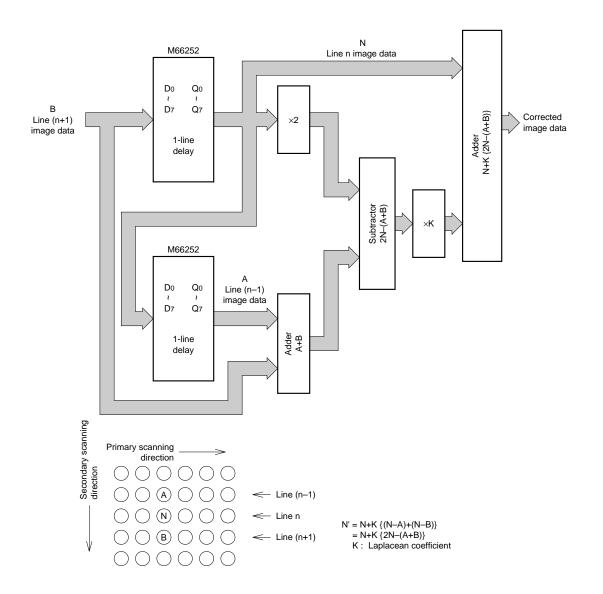
 n-bit delay 2 (Sliding WRES and RRES at a cycle corresponding to delay length)


n-bit delay 3
 (Disabling RE at a cycle corresponding to delay length)


• Shortest read of data "n" written in cycle n

Cycle n-1 on read side should be started after end of cycle n+1 on write side

When the start of cycle n-1 on read side is earlier than the end of cycle n+1 on write side, output Qn of cycle n becomes invalid. In the figure shown below, the read of cycle n-1 is invalid.



Longest read of data "n" written in cycle n: 1-line delay
 Cycle n <1>* on read side should be started when cycle n <2>* on write is started
 Output Qn of n cycle <1>* can be read until the start of reading side n cycle <1>* and the start of writing side n cycle <2>* overlap each other.

APPLICATION EXAMPLE

Laplacian Filter Circuit for Correction of Resolution in the Secondary Scanning Direction.

