

PCA8533 Universal LCD driver for low multiplex rates Rev. 1 – 27 April 2011

Product data sheet

1. General description

The PCA8533 is a peripheral device which interfaces to almost any LCD¹ with low multiplex rates. It generates the drive signals for any static or multiplexed LCD containing up to four backplanes and up to 80 segments and can easily be cascaded for larger LCD applications. The PCA8533 is compatible with most microcontrollers and communicates via the two-line bidirectional I²C-bus. Communication overheads are minimized by a display RAM with auto-incremental addressing, by hardware subaddressing and by display memory switching (static and duplex drive modes).

2. Features and benefits

- Single-chip LCD controller and driver
- Selectable backplane drive configuration: static, 2, 3, or 4 backplane multiplexing
- Selectable display bias configuration: static, ¹/₂, or ¹/₃
- Internal LCD bias generation with voltage follower buffers
- 80 segment outputs allowing to drive:
 - ◆ 35 7-segment alphanumeric characters
 - 20 14-segment alphanumeric characters
 - Any graphics of up to 320 elements
- 80 × 4 bit RAM for display data storage
- Auto-incremental display data loading across device subaddress boundaries
- Display memory bank switching in static and duplex drive modes
- Versatile blinking modes
- Independent supplies possible for LCD and logic voltages
- Wide power supply range: from 1.8 V to 5.5 V
- Wide LCD supply range: from 2.5 V for low threshold LCDs up to 6.5 V for high threshold twisted nematic LCDs
- Low power consumption
- 400 kHz l²C-bus interface
- CMOS compatible
- May be cascaded for large LCD applications (up to 5120 elements possible)
- No external components required
- Compatible with Chip-On-Glass (COG) technology
- Manufactured using silicon gate CMOS process

^{1.} The definition of the abbreviations and acronyms used in this data sheet can be found in Section 17.

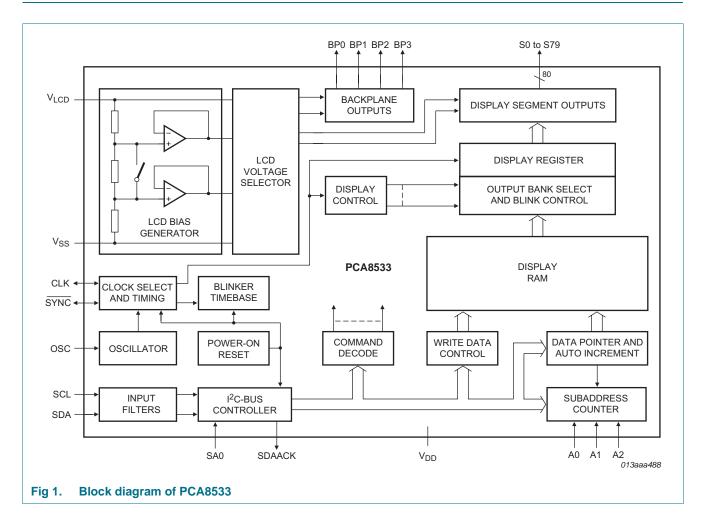
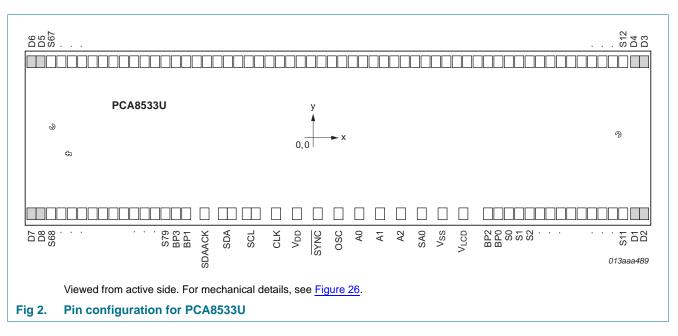

3. Ordering information

Table 1. Ordering information							
Type number Package							
	Name	Description	Delivery form	Version			
PCA8533U/2DD/2	bare die	99 bumps; 5.28 x 1.4 x 0.38 mm	chip with bumps in tray	PCA8533-2			

4. Marking


Table 2.	Marking codes	
Type num	iber	Marking code
PCA8533	U/2DD/2	PC8533-2

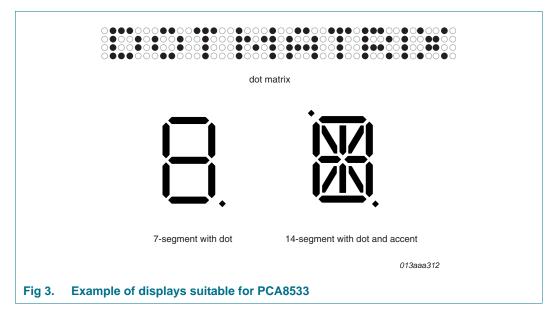
5. Block diagram

Pinning information 6.

6.1 Pinning

6.2 Pin description

Table 3. Pin descript	ion overview		
Symbol	Pin	Туре	Description
SDAACK	1	output	I ² C-bus acknowledge
SDA	2 and 3	input/output	I ² C-bus serial data
SCL	4 and 5	input	I ² C-bus serial clock
CLK	6	input/output	clock input/output
V _{DD}	7	supply	supply voltage
SYNC	8	input/output	cascade synchronization
OSC	9	input	oscillator select
A0, A1 and A2	10 to 12	input	subaddress
SA0	13	input	I ² C-bus slave address
V _{SS}	14	supply	ground supply voltage
V _{LCD}	15	supply	LCD supply voltage
BP0, BP1, BP2 and BP3	17, 99, 16 and 98	output	LCD backplane output
S0 to S79	18 to 97	output	LCD segment output
D1, D2, D3, D4, D5, D6, D7, D8		-	dummy pins


PCA8533

7. Functional description

The PCA8533 is a versatile peripheral device designed to interface between any microcontroller to a wide variety of LCD segment or dot matrix displays (see Figure 3). It can directly drive any static or multiplexed LCD containing up to four backplanes and up to 80 segments.

The display configurations possible with the PCA8533 depend on the required number of active backplane outputs. A selection of display configurations is given in <u>Table 4</u>.

All of the display configurations given in <u>Table 4</u> can be implemented in a typical system as shown in <u>Figure 4</u>.

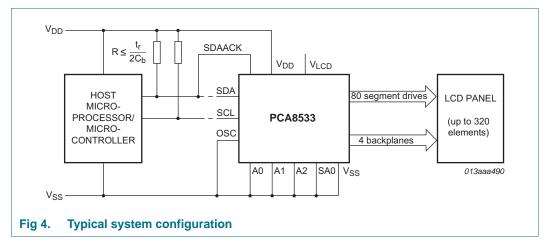


Table 4. Selection of possible display configurations

Number of						
Backplanes	Icons	Digits/Charact	Dot matrix/			
		7-segment	14-segment	Elements		
4	320	35	20	320 (4 × 80)		
3	240	26	15	240 (3 × 80)		
2	160	17	10	160 (2 × 80)		
1	80	8	5	80 (1 × 80)		

PCA8533 Product data sheet

Universal LCD driver for low multiplex rates

The host microcontroller maintains the 2-line I^2 C-bus communication channel with the PCA8533.

Biasing voltages for the multiplexed LCD waveforms are generated internally, removing the need for an external bias generator. The internal oscillator is selected by connecting pin OSC to V_{SS} . The only other connections required to complete the system are the power supplies (pins V_{DD} , V_{SS} and V_{LCD}) and the LCD panel selected for the application.

7.1 Power-On Reset (POR)

At power-on the PCA8533 resets to the following starting conditions:

- 1. All backplane outputs are set to V_{LCD} .
- 2. All segment outputs are set to V_{LCD} .
- 3. The selected drive mode is: 1:4 multiplex with $\frac{1}{3}$ bias.
- 4. Blinking is switched off.
- 5. Input and output bank selectors are reset.
- 6. The I²C-bus interface is initialized.
- 7. The data pointer and the subaddress counter are cleared (set to logic 0).
- 8. The display is disabled.

Remark: Do not transfer data on the I^2C -bus for at least 1 ms after a power-on to allow the reset action to complete.

7.2 LCD bias generator

Fractional LCD biasing voltages are obtained from an internal voltage divider of three series resistors connected between pins V_{LCD} and V_{SS} . The center resistor is bypassed by switch if the $1/_2$ bias voltage level for the 1:2 multiplex drive mode configuration is selected.

7.3 LCD voltage selector

The LCD voltage selector coordinates the multiplexing of the LCD in accordance with the selected LCD drive configuration. The operation of the voltage selector is controlled by the mode-set command from the command decoder. The biasing configurations that apply to the preferred modes of operation, together with the biasing characteristics as functions of V_{LCD} and the resulting discrimination ratios (D) are given in Table 5.

Discrimination is a term which is defined as the ratio of the on and off RMS voltage across a segment. It can be thought of as a measurement of contrast.

LCD drive			LCD bias	V _{off(RMS)}	V _{on(RMS)}	$D = \frac{V_{on(RMS)}}{V_{on(RMS)}}$
mode	Backplanes	Levels	configuration	V _{LCD}	V _{LCD}	$D = \frac{1}{V_{off(RMS)}}$
static	1	2	static	0	1	00
1:2 multiplex	2	3	1/2	0.354	0.791	2.236
1:2 multiplex	2	4	1/3	0.333	0.745	2.236
1:3 multiplex	3	4	1/3	0.333	0.638	1.915
1:4 multiplex	4	4	1/3	0.333	0.577	1.732

Table 5.Biasing characteristics

A practical value for V_{LCD} is determined by equating V_{off(RMS)} with a defined LCD threshold voltage (V_{th}), typically when the LCD exhibits approximately 10 % contrast. In the static drive mode a suitable choice is $V_{LCD} > 3V_{th}$.

Multiplex drive modes of 1:3 and 1:4 with $\frac{1}{2}$ bias are possible but the discrimination and hence the contrast ratios are smaller.

Bias is calculated by $\frac{1}{1+a}$, where the values for a are

a = 1 for $\frac{1}{2}$ bias

a = 2 for $\frac{1}{3}$ bias

The RMS on-state voltage (Von(RMS)) for the LCD is calculated with Equation 1:

$$V_{on(RMS)} = V_{LCD} \sqrt{\frac{a^2 + 2a + n}{n \times (1 + a)^2}}$$
(1)

where the values for n are

- n = 1 for static drive mode
- n = 2 for 1:2 multiplex drive mode
- n = 3 for 1:3 multiplex drive mode
- n = 4 for 1:4 multiplex drive mode

The RMS off-state voltage (V_{off(RMS)}) for the LCD is calculated with Equation 2:

$$V_{off(RMS)} = V_{LCD} \sqrt{\frac{a^2 - 2a + n}{n \times (1 + a)^2}}$$
 (2)

Discrimination is the ratio of $V_{on(RMS)}$ to $V_{off(RMS)}$ and is determined from Equation 3:

PCA8533

PCA8533

$$D = \frac{V_{on(RMS)}}{V_{off(RMS)}} = \sqrt{\frac{(a+1)^2 + (n-1)}{(a-1)^2 + (n-1)}}$$
(3)

Using Equation 3, the discrimination for an LCD drive mode of 1:3 multiplex with $\frac{1}{2}$ bias is $\sqrt{3} = 1.732$ and the discrimination for an LCD drive mode of 1:4 multiplex with $\frac{1}{2}$ bias is $\frac{\sqrt{21}}{3} = 1.528$.

The advantage of these LCD drive modes is a reduction of the LCD full scale voltage V_{LCD} as follows:

- 1:3 multiplex ($\frac{1}{2}$ bias): $V_{LCD} = \sqrt{6} \times V_{off(RMS)} = 2.449 V_{off(RMS)}$
- 1:4 multiplex (¹/₂ bias): $V_{LCD} = \left[\frac{(4 \times \sqrt{3})}{3}\right] = 2.309 V_{off(RMS)}$

These compare with $V_{LCD} = 3V_{off(RMS)}$ when $\frac{1}{3}$ bias is used.

It should be noted that V_{LCD} is sometimes referred as the LCD operating voltage.

7.3.1 Electro-optical performance

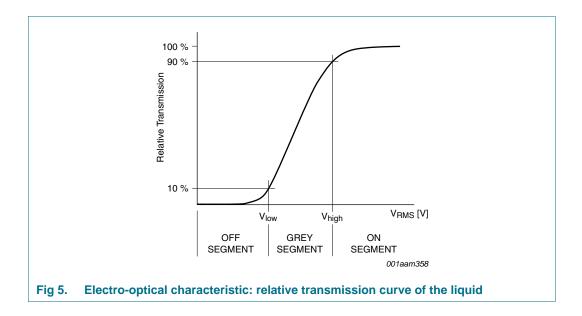
Suitable values for $V_{on(RMS)}$ and $V_{off(RMS)}$ are dependent on the LCD liquid used. The RMS voltage, at which a pixel will be switched on or off, determine the transmissibility of the pixel.

For any given liquid, there are two threshold values defined. One point is at 10 % relative transmission (at V_{low}) and the other at 90 % relative transmission (at V_{high}), see Figure 5. For a good contrast performance, the following rules should be followed:

$$V_{on(RMS)} \ge V_{high} \tag{4}$$

 $V_{off(RMS)} \le V_{low}$

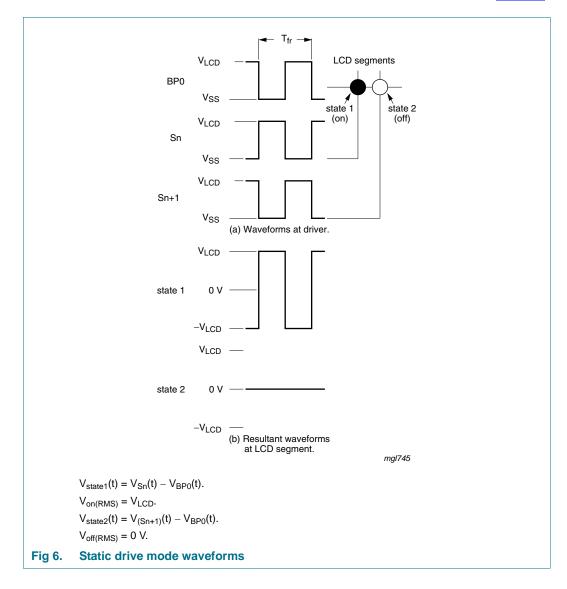
 $V_{on(RMS)}$ and $V_{off(RMS)}$ are properties of the display driver and are affected by the selection of a, n (see <u>Equation 1</u> to <u>Equation 3</u>) and the V_{LCD} voltage.


 V_{low} and V_{high} are properties of the LCD liquid and can be provided by the module manufacturer.

It is important to match the module properties to those of the driver in order to achieve optimum performance.

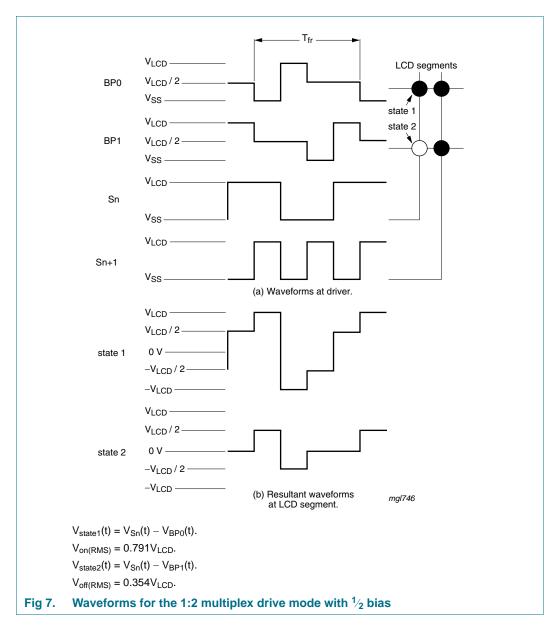
PCA8533

(5)


Universal LCD driver for low multiplex rates

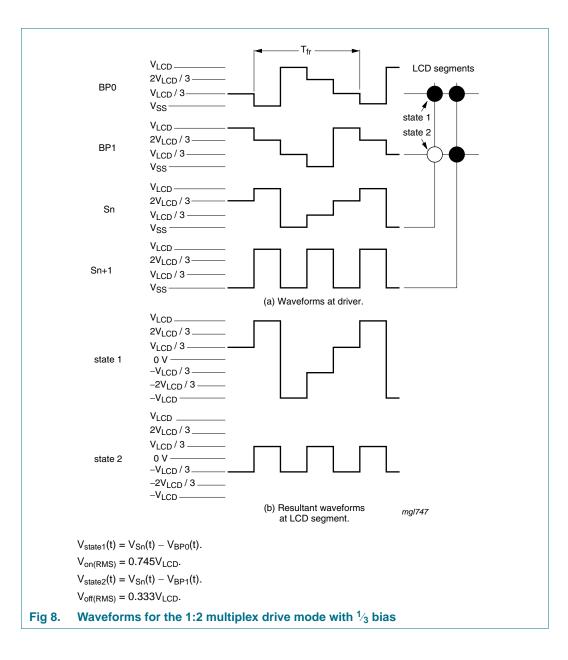
7.4 LCD drive mode waveforms

7.4.1 Static drive mode


The static LCD drive mode is used when a single backplane is provided in the LCD. The backplane (BPn) and segment drive (Sn) waveforms for this mode are shown in Figure 6.

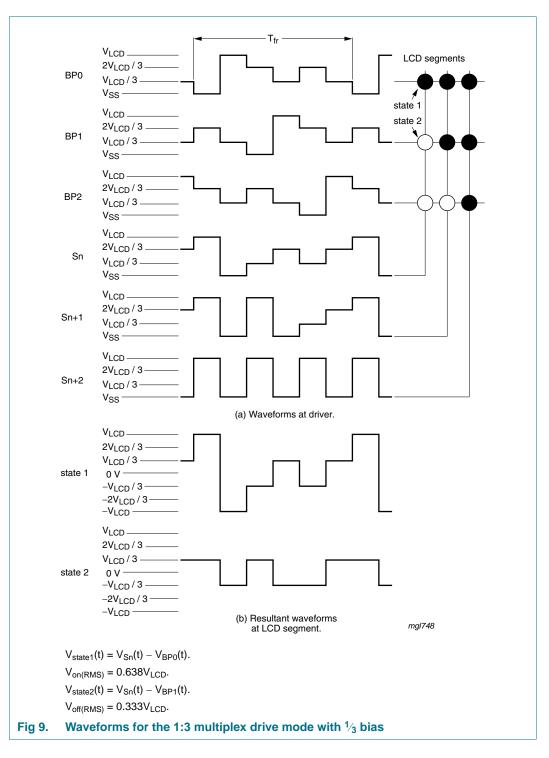
Universal LCD driver for low multiplex rates

7.4.2 1:2 multiplex drive mode

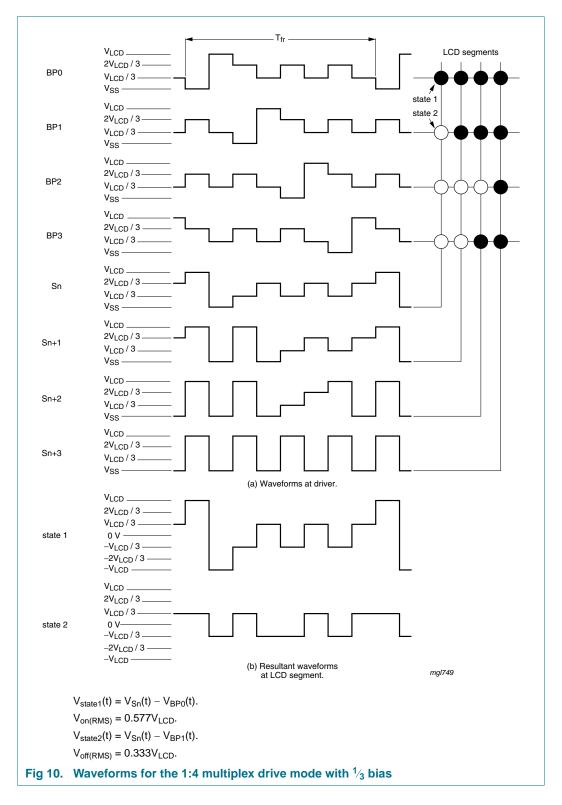

The 1:2 multiplex drive mode is used when two backplanes are provided in the LCD. This mode allows fractional LCD bias voltages of $\frac{1}{2}$ bias or $\frac{1}{3}$ bias as shown in Figure 7 and Figure 8.

NXP Semiconductors

PCA8533


Universal LCD driver for low multiplex rates

PCA8533 Product data sheet


7.4.3 1:3 multiplex drive mode

The 1:3 multiplex drive mode is used when three backplanes are provided in the LCD as shown in Figure 9.

7.4.4 1:4 multiplex drive mode

The 1:4 multiplex drive mode is used when four backplanes are provided in the LCD as shown in Figure 10.

PCA8533

7.5 Oscillator

The internal logic and the LCD drive signals of the PCA8533 are timed by a frequency f_{clk} , which either is derived from the built-in oscillator frequency f_{osc} or equals an external clock frequency $f_{clk(ext)}$.

$$f_{clk} = \frac{f_{osc}}{64}$$

The clock frequency f_{clk} determines the LCD frame frequency f_{fr} (see <u>Table 6</u>) and is calculated as follows:

$$f_{fr} = \frac{f_{clk}}{24}$$

 Table 6.
 LCD frame frequency

Nominal clock frequency (Hz)	LCD frame frequency (Hz)
1536	64

7.5.1 Internal clock

The internal oscillator is enabled by connecting pin OSC to V_{SS} . In this case the output from pin CLK provides the clock signal for cascaded PCA8533 in the system.

7.5.2 External clock

Pin CLK is enabled as an external clock input by connecting pin OSC to V_{DD}.

A clock signal must always be supplied to the device; removing the clock may freeze the LCD in a DC state, which is not suitable for the liquid crystal.

7.6 Timing

The PCA8533 timing controls the internal data flow of the device. This includes the transfer of display data from the display RAM to the display segment outputs. In cascaded applications, the synchronization signal (SYNC) maintains the correct timing relationship between all PCA8533 in the system. The timing also generates the LCD frame signal (f_{fr}) whose frequency is derived as an integer division of the clock frequency f_{clk} (see <u>Table 6</u>), applied to pin CLK from either the internal or an external clock.

7.7 Display register

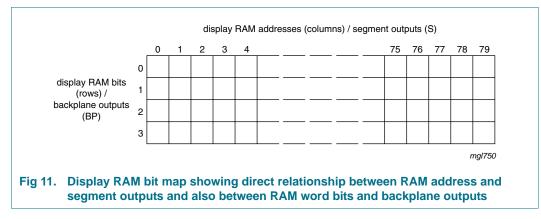
The display register holds the display data while the corresponding multiplex signals are generated. There is a one-to-one relationship between the data in the display register, the LCD segment outputs and each column of the display RAM.

7.8 Segment outputs

The LCD drive section includes 80 segment outputs (S0 to S79) which must be connected directly to the LCD. The segment output signals are generated in accordance with the multiplexed backplane signals and with data residing in the display register. If less than 80 segment outputs are required, the unused segment outputs must be left open-circuit.

7.9 Backplane outputs

The LCD drive section includes four backplane outputs: BP0 to BP3. The backplane output signals are generated based on the selected LCD drive mode.


• In 1:4 multiplex drive mode: BP0 to BP3 must be connected directly to the LCD.

If less than four backplane outputs are required, the unused outputs can be left open-circuit.

- In 1:3 multiplex drive mode: BP3 carries the same signal as BP1, therefore these two adjacent outputs can be tied together to give enhanced drive capabilities.
- In 1:2 multiplex drive mode: BP0 and BP2, BP1 and BP3 respectively carry the same signals and can also be paired to increase the drive capabilities.
- In static drive mode: The same signal is carried by all four backplane outputs; and they can be connected in parallel for very high drive requirements.

7.10 Display RAM

The display RAM is a static 80×4 bit RAM which stores LCD data. A logic 1 in the RAM bit map indicates the on-state of the corresponding LCD element; similarly, a logic 0 indicates the off state. There is a one-to-one correspondence between the RAM addresses and the segment outputs and between the individual bits of a RAM word and the backplane outputs. The display RAM bit map Figure 11 shows rows 0 to 3 which correspond with the backplane outputs BP0 to BP3, and columns 0 to 79 which correspond with the segment outputs S0 to S79. In multiplexed LCD applications the segment data of the first, second, third and fourth row of the display RAM are time-multiplexed with BP0, BP1, BP2, and BP3 respectively.

When display data is transmitted to the PCA8533, the received display bytes are stored in the display RAM in accordance with the selected LCD drive mode. The data is stored as it arrives and does not wait for the acknowledge cycle as with the commands. Depending on the current multiplex drive mode, data is stored singularly, in pairs, triples or quadruples. To illustrate the filling order, an example of a 8-segment numeric display showing all drive modes is given in Figure 12; the RAM filling organization depicted applies equally to other LCD types.

PCA8533 Product data sheet

All information provided in this document is subject to legal disclaimers
Rev. 1 — 27 April 2011

© NXP B.V. 2011. All rights reserved. 16 of 48

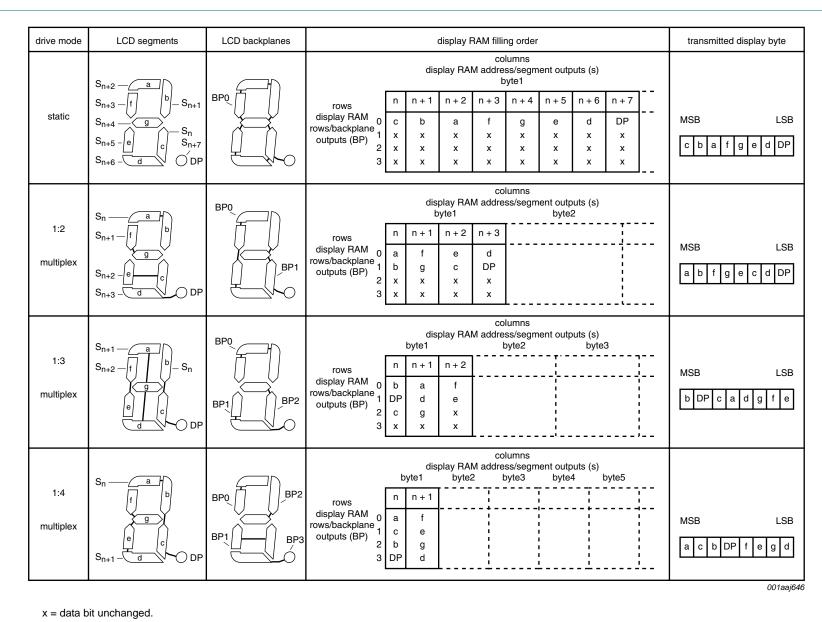


Fig 12. Relationship between LCD layout, drive mode, display RAM storage order and display data transmitted over the I²C-bus

g d 001aaj646 Universal LCD driver for low multiplex rates

τ

CA8533

The following applies to Figure 12:

- In the static drive mode, the eight transmitted data bits are placed in row 0 of eight successive 4-bit RAM words.
- In the 1:2 multiplex mode, the eight transmitted data bits are placed in pairs into row 0 and 1 of four successive 4-bit RAM words.
- In the 1:3 multiplex mode, the eight bits are placed in triples into row 0, 1 and 2 to three successive 4-bit RAM words, with row 2 of the third address left unchanged. It is not recommended to use this bit in a display because of the difficult addressing. This last bit may, if necessary, be controlled by an additional transfer to this address but care should be taken to avoid overwriting adjacent data because always full bytes are transmitted.
- In the 1:4 multiplex mode, the eight transmitted data bits are placed in quadruples into row 0, 1, 2 and 3 of two successive 4-bit RAM words.

7.11 Data pointer

The addressing mechanism for the display RAM is realized using the data pointer. This allows the loading of an individual display data byte, or a series of display data bytes, into any location of the display RAM. The sequence commences with the initialization of the data pointer by the load-data-pointer command (see <u>Table 12</u>). Following this command, an arriving data byte is stored at the display RAM address indicated by the data pointer. The filling order is shown in <u>Figure 12</u>. After each byte is stored, the content of the data pointer is automatically incremented by a value dependent on the selected LCD drive mode:

- In static drive mode by eight.
- In 1:2 multiplex drive mode by four.
- In 1:3 multiplex drive mode by three.
- In 1:4 multiplex drive mode by two.

If an I²C-bus data access terminates early, the state of the data pointer is unknown. Consequently, the data pointer must be rewritten prior to further RAM accesses.

7.12 Subaddress counter

The storage of display data is conditioned by the content of the subaddress counter. Storage is allowed only when the content of the subaddress counter match with the hardware subaddress applied to A0, A1, and A2. The subaddress counter value is defined by the device-select command (see <u>Table 13</u>). If the content of the subaddress counter and the hardware subaddress do not match, then data storage is inhibited but the data pointer is incremented as if data storage had taken place. The subaddress counter is also incremented when the data pointer overflows.

In cascaded applications each PCA8533 in the cascade must be addressed separately. Initially, the first PCA8533 is selected by sending the device-select command matching the first device's hardware subaddress. Then the data pointer is set to the preferred display RAM address by sending the load-data-pointer command.

Once the display RAM of the first PCA8533 has been written, the second PCA8533 is selected by sending the device-select command again. This time however the command matches the second device's hardware subaddress. Next the load-data-pointer command is sent to select the preferred display RAM address of the second PCA8533.

This last step is very important because during writing data to the first PCA8533, the data pointer of the second PCA8533 is incremented. In addition, the hardware subaddress should not be changed whilst the device is being accessed on the I²C-bus interface.

7.13 Output bank selector

The output bank selector (see <u>Table 14</u>) selects one of the four rows per display RAM address for transfer to the display register. The actual row selected depends on the particular LCD drive mode in operation and on the instant in the multiplex sequence.

- In 1:4 multiplex mode, all RAM addresses of row 0 are selected, these are followed by the contents of row 1, 2, and then 3
- In 1:3 multiplex mode, rows 0, 1, and 2 are selected sequentially
- In 1:2 multiplex mode, rows 0 and 1 are selected
- In static mode, row 0 is selected

The SYNC signal resets these sequences to the following starting points: row 3 for 1:4 multiplex, row 2 for 1:3 multiplex, row 1 for 1:2 multiplex and row 0 for static mode.

The PCA8533 includes a RAM bank switching feature in the static and 1:2 multiplex drive modes. In the static drive mode, the bank-select command may request the contents of row 2 to be selected for display instead of the contents of row 0. In the 1:2 mode, the contents of rows 2 and 3 may be selected instead of rows 0 and 1. This gives the provision for preparing display information in an alternative bank and to be able to switch to it, once it is assembled.

7.14 Input bank selector

The input bank selector loads display data into the display RAM in accordance with the selected LCD drive configuration. Display data can be loaded in row 2 in static drive mode or in rows 2 and 3 in 1:2 multiplex drive mode by using the bank-select command. The input bank selector functions independently to the output bank selector.

7.15 Blinking

The PCA8533 has a very versatile display blinking capability. The whole display can blink at a frequency selected by the blink-select command. Each blink frequency is a fraction of the clock frequency. The ratio between the clock frequency and blink frequency depends on the blink mode selected, as shown in <u>Table 7</u>.

The entire display can be blinked at a frequency other than the nominal blink frequency by sequentially resetting and setting the display enable bit E at the required rate using the mode-set command (see <u>Table 11</u>).

An additional feature allows an arbitrary selection of LCD segments to be blinked in the static and 1:2 drive modes. This is implemented without any communication overheads by the output bank selector which alternates the displayed data between the data in the display RAM bank and the data in an alternative RAM bank at the blink frequency. This mode can also be implemented by the blink-select command (see <u>Table 15</u>).

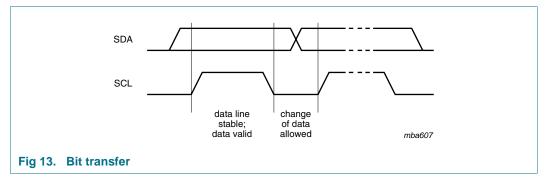
In the 1:3 and 1:4 drive modes, where no alternate RAM bank is available, groups of LCD elements can be blinked by selectively changing the display RAM data at fixed time intervals.

Blink mode	Normal operating mode ratio	Nominal blink frequency of f _{clk} (typical f _{clk} = 1.536 kHz)	Unit
Off	-	blinking off	Hz
1	$\frac{f_{clk}}{768}$	2	Hz
2	$\frac{f_{clk}}{1536}$	1	Hz
3	$\frac{f_{clk}}{3072}$	0.5	Hz

Table 7.Blink frequencies

8. I²C-bus interface

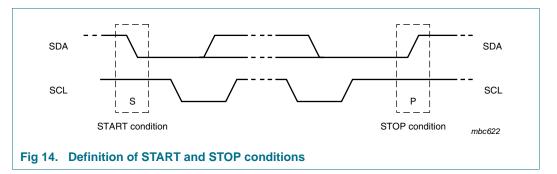
8.1 Characteristics of the I²C-bus


The I²C-bus is for bidirectional, two-line communication between different ICs or modules. The two lines are a Serial DAta line (SDA) and a Serial CLock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

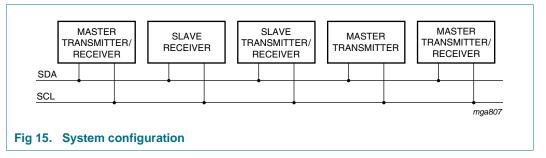
By connecting pin SDAACK to pin SDA on the PCA8533, the SDA line becomes fully I²C-bus compatible. Having the acknowledge output separated from the serial data line is advantageous in Chip-On-Glass (COG) applications. In COG applications where the track resistance from the SDAACK pin to the system SDA line can be significant, a potential divider is generated by the bus pull-up resistor and the Indium Tin Oxide (ITO) track resistance. It is possible that during the acknowledge cycle the PCA8533 will not be able to create a valid logic 0 level. By separating the SDA input from the output the device could be used in a mode that ignores the acknowledge bit. In COG applications where the acknowledge cycle is required, it is necessary to minimize the track resistance from the SDAACK pin to the system SDA line to guarantee a valid LOW level.

The following definition assumes SDA and SDAACK are connected and refers to the pair as SDA.

8.1.1 Bit transfer


One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as a control signal; see Figure 13.

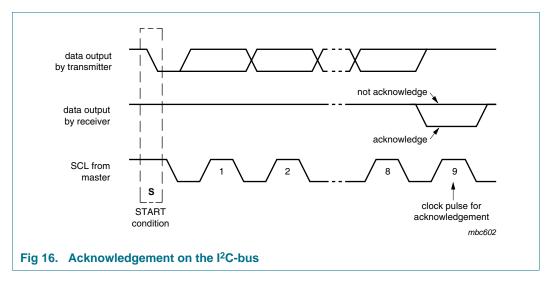
8.1.1.1 START and STOP conditions


Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line while the clock is HIGH is defined as the START condition (S); see <u>Figure 14</u>. A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP condition (P).

PCA8533

8.1.2 System configuration

A device generating a message is a transmitter; a device receiving a message is a receiver. The device that controls the message is the master and the devices which are controlled by the master are the slaves; see <u>Figure 15</u>.


8.1.3 Acknowledge

The number of data bytes transferred between the START and STOP conditions from transmitter to receiver is unlimited. Each byte of eight bits is followed by an acknowledge cycle.

- A slave receiver, which is addressed, must generate an acknowledge after the reception of each byte.
- A master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter.
- The device that acknowledges must pull-down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration).
- A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event, the transmitter must leave the data line HIGH to enable the master to generate a STOP condition.

Acknowledgement on the I^2C -bus is illustrated in Figure 16.

Universal LCD driver for low multiplex rates

8.1.4 I²C-bus controller

The PCA8533 acts as an I²C-bus slave receiver. It does not initiate I²C-bus transfers or transmit data to an I²C-bus master receiver. The only data output from the PCA8533 are the acknowledge signals of the selected devices. Device selection depends on the I²C-bus slave address, the transferred command data and the hardware subaddress.

In single device applications, the hardware subaddress inputs A0, A1, and A2 are normally tied to V_{SS} which defines the hardware subaddress 0. In multiple device applications A0, A1, and A2 are tied to V_{SS} or V_{DD} using a binary coding scheme, so that no two devices with a common I²C-bus slave address have the same hardware subaddress.

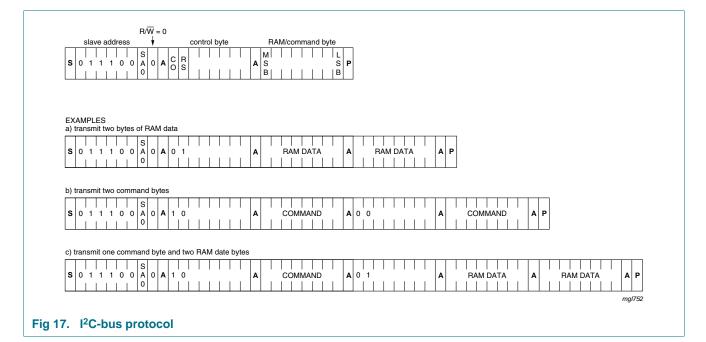
8.1.5 Input filters

To enhance noise immunity in electrically adverse environments, RC low-pass filters are provided on the SDA and SCL lines.

8.1.6 I²C-bus protocol

Two I²C-bus slave addresses (0111 000 and 0111 001) are reserved for the PCA8533.

The PCA8533 slave address is illustrated in Table 8.


Table 8.	I ² C slave	I ² C slave address byte							
	Slave add	Slave address							
Bit	7	6	5	4	3	2	1	0	
	MSB							LSB	
	0	1	1	1	0	0	SA0	R/W	

The least significant bit of the slave address that a PCA8533 will respond to is defined by the level tied to its SA0 input. The PCA8533 is a write-only device and will not respond to a read access. Having two reserved slave addresses allows the following on the same I²C-bus:

- Up to 16 PCA8533 for very large LCD applications
- The use of two types of LCD multiplex drive modes.

PCA8533

The I²C-bus protocol is shown in <u>Figure 17</u>. The sequence is initiated with a START condition (S) from the I²C-bus master which is followed by one of two possible PCA8533 slave addresses available. All PCA8533 whose SA0 inputs correspond to bit 0 of the slave address respond by asserting an acknowledge in parallel. This I²C-bus transfer is ignored by all PCA8533 whose SA0 inputs are set to the alternative level.

After acknowledgement, the control byte is sent defining if the next byte is a RAM or command information. The control byte also defines if the next byte is a control byte or further RAM or command data (see <u>Figure 18</u> and <u>Table 9</u>). In this way it is possible to configure the device and then fill the display RAM with little overhead.

Table 9.	Control b	oyte descrij	yte description					
Bit	Symbol	Value	Description					
7	CO		continue bit					
	0	last control byte						
		1	control bytes continue					
6	RS		register selection					
		0	command register					
		1	data register					
5 to 0	-		not relevant					
-								

The command bytes and control bytes are also acknowledged by all addressed PCA8533 connected to the bus.

The display bytes are stored in the display RAM at the address specified by the data pointer and the subaddress counter; see Section 7.11 and Section 7.12.

The acknowledgement after each byte is made only by the (A0, A1, and A2) addressed PCA8533. After the last (display) byte, the l^2C -bus master asserts a STOP condition (P). Alternatively a START may be asserted to RESTART an l^2C -bus access.

8.2 Command decoder

The command decoder identifies command bytes that arrive on the I^2 C-bus. The five commands available to the PCA8533 are defined in <u>Table 10</u>.

Table 10. Definition of commands

Command	Оре	ration	code						Reference
mode-set	1	1	0	0	Е	В	M[1:	:0]	Table 11
load-data-pointer	0	P[6:	0]						Table 12
device-select	1	1	1	0	0	A[2:0]		Table 13
bank-select	1	1	1	1	1	0	Ι	0	Table 14
blink-select	1	1	1	1	0	AB	BF[′	1:0]	Table 15

Bit	Symbol	Value	Description				
7 to 4	-	1100	fixed value				
3	Е		display status				
			the possibility to disable the display allows implementation of blinking under external control				
		0	disabled (blank) ^[1]				
		1	enabled				
2	В		LCD bias configuration ^[2]				
		0	$\frac{1}{3}$ bias				
		1	$\frac{1}{2}$ bias				
1 to 0	M[1:0]		LCD drive mode selection				
		01	static; 1 backplane				
		10	1:2 multiplex; 2 backplanes				
		11	1:3 multiplex; 3 backplanes				
		00	1:4 multiplex; 4 backplanes				

Table 11. Mode-set command bit description

[1] The possibility to disable the display allows implementation of blinking under external control.

[2] Not applicable for static drive mode.

PCA8533

Table 12. Load-data-pointer command bit description

See <u>Section 7.11</u> .						
Bit	Symbol	Value	Description			
7	-	0	fixed value			
6 to 0	P[6:0]	0000000 to 1001111	7-bit binary value of 0 to 79, transferred to the data pointer to define one of 80 display RAM addresses			

Table 13. Device-select command bit description See Section 7.12.

Bit	Symbol	Value	Description
7 to 3	-	11100	fixed value
2 to 0	A[2:0]	000 to 111	3-bit binary value of 0 to 7, transferred to the subaddress counter to define one of 8 hardware subaddresses

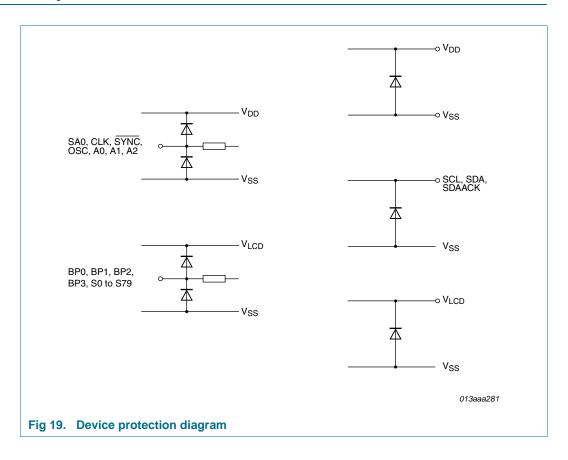
Table 14. Bank-select command bit description^[1] See Section 7.10, Section 7.11, Section 7.13, Section 7.14 and Section 7.12.

Bit	Symbol	Value	Description					
			Static	1:2 multiplex				
7 to 2	-	111110	fixed value					
1	I		Input bank selection:	storage of arriving display data				
		0	RAM bit 0	RAM bits 0 and 1				
		1	RAM bit 2	RAM bits 2 and 3				
0	0		Output bank selectio	n: retrieval of LCD display data				
		0	RAM bit 0	RAM bits 0 and 1				
		1	RAM bit 2	RAM bits 2 and 3				

[1] The bank-select command has no effect in 1:3 or 1:4 multiplex drive modes.

Table 15. Blink-select command bit description See Section 7.15

<u>on 7.15</u> .		
Symbol	Value	Description
-	11110	fixed value
AB		blink mode selection ^[1]
	0	normal blinking
	1	blinking by alternating display RAM banks
BF[1:0]		blink mode selection ^[2]
	00	off
	01	1
	10	2
	11	3
	Symbol - AB	Symbol Value - 11110 AB 0 BF[1:0] 1 BF[1:0] 00 10 10


[1] Only normal blinking can be selected in multiplexer 1:3 or 1:4 drive modes.

[2] For the blink frequency see Table 7

8.3 Display controller

The display controller executes the commands identified by the command decoder. It contains the device's status registers and co-ordinates their effects. The display controller is also responsible for loading display data into the display RAM as required by the filling order.

9. Internal circuitry

10. Limiting values

CAUTION

Static voltages across the liquid crystal display can build up when the LCD supply voltage (V_{LCD}) is on while the IC supply voltage (V_{DD}) is off, or vice versa. This may cause unwanted display artifacts. To avoid such artifacts, V_{LCD} and V_{DD} must be applied or removed together.

Table 16. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{DD}	supply voltage			-0.5	+6.5	V
V _{LCD}	LCD supply voltage			-0.5	+7.5	V
V _{i(n)}	voltage on any input	V _{DD} related inputs		-0.5	+6.5	V
V _{o(n)}	voltage on any output	V_{LCD} related outputs		-0.5	+7.5	V
l _l	input current			-10	+10	mA
lo	output current			-10	+10	mA
I _{DD}	supply current			-50	+50	mA
I _{SS}	ground supply current			-50	+50	mA
I _{DD(LCD)}	LCD supply current			-50	+50	mA
P _{tot}	total power dissipation			-	400	mW
P/out	power dissipation per output			-	100	mW
V _{ESD}	electrostatic discharge voltage	HBM	[1]	-	± 5000	V
		MM	[2]	-	±200	V
l _{lu}	latch-up current		[3]	-	200	mA
T _{stg}	storage temperature		[4]	-65	+150	°C
T _{amb}	ambient temperature	operating device		-40	+85	°C

[1] Pass level; Human Body Model (HBM), according to Ref. 6 "JESD22-A114"

[2] Pass level; Machine Model (MM), according to Ref. 7 "JESD22-A115".

[3] Pass level; latch-up testing according to Ref. 8 "JESD78" at maximum ambient temperature (T_{amb(max)}).

[4] According to the NXP store and transport requirements (see <u>Ref. 10 "NX3-00092"</u>) the devices have to be stored at a temperature of +8 °C to +45 °C and a humidity of 25 % to 75 %. For long term storage products deviant conditions are described in that document.

11. Static characteristics

Table 17. Static characteristics

 V_{DD} = 1.8 V to 5.5 V; V_{SS} = 0 V; V_{LCD} = 2.5 V to 6.5 V; T_{amb} = -40 °C to +85 °C; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Supplies	5						
V _{DD}	supply voltage			1.8	-	5.5	V
V _{LCD}	LCD supply voltage			2.5	-	6.5	V
V _{POR}	power-on reset voltage			1.0	1.3	1.6	V
I _{DD}	supply current	f _{clk(ext)} = 1536 Hz	[1][2]	-	-	20	μA
I _{DD(LCD)}	LCD supply current	$f_{clk(ext)} = 1536 \text{ Hz}$	[1][3]	-	-	60	μΑ
Logic							
Vi	input voltage			$V_{\text{SS}}-0.5$	-	V _{DD} + 0.5	V
VIL	LOW-level input voltage	on pins CLK, SYNC, OSC, A0 to A2, SA0		V_{SS}	-	0.3V _{DD}	V
V _{IH}	HIGH-level input voltage	on pins CLK, <u>SYNC</u> , OSC, A0 to A2, SA0		$0.7V_{DD}$	-	V _{DD}	V
Vo	output voltage			-0.5	-	V _{DD} + 0.5	V
V _{он}	HIGH-level output voltage			$0.8V_{DD}$	-	-	V
V _{OL}	LOW-level output voltage			-	-	$0.2V_{DD}$	V
IL	leakage current	on pins OSC, CLK, SCL, SDA, A0 to A2, SA0; $V_I = V_{DD}$ or V_{SS}		-1	-	+1	μA
OL	LOW-level output current	output sink current; on pins CLK, \overline{SYNC} ; V _{OL} = 0.4 V; V _{DD} = 5 V		1	-	-	mA
I _{OH}	HIGH-level output current	output source current; on pin CLK; V_{OH} = 4.6 V; V_{DD} = 5 V		1	-	-	mA
CI	input capacitance		<u>[4]</u>	-	-	7	pF
l ² C-bus							
OL(SDA)	LOW-level output current on pin SDA	V_{OL} = 0.4 V; V_{DD} = 5 V		3	-	-	mA
Input on	pins SDA and SCL						
VI	input voltage		<u>[5]</u>	$V_{\text{SS}}-0.5$	-	5.5	V
V _{IL}	LOW-level input voltage			V _{SS}	-	$0.3V_{DD}$	V
V _{IH}	HIGH-level input voltage			$0.7V_{DD}$	-	5.5	V
I _{LI}	input leakage current	$V_{I} = V_{DD} \text{ or } V_{SS}$		-1	-	+1	μA
Cı	input capacitance		<u>[4]</u>	-	-	7	pF

Universal LCD driver for low multiplex rates

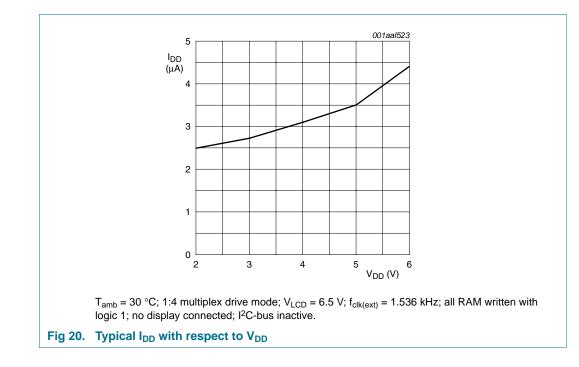
Symbo	ol Parameter	Conditions	Ν	Min	Тур	Max	Unit
LCD o	utputs						
Output	pins BP0 to BP3 and S0 to S79)					
ΔV_{O}	output voltage variation	on pins BP0 to BP3; C _{bpl} = 35 nF	<u>[6]</u> _	-100	-	+100	mV
		on pins S0 to S79; C _{sgm} = 5 nF	<u>[7]</u> _	-100	-	+100	mV
R _O	output resistance	$V_{LCD} = 5 V$					
		on pins BP0 to BP3	[8] _		1.5	10	kΩ
		on pins S0 to S79	[8] _		6.0	13.5	kΩ

Table 17. Static characteristics ...continued

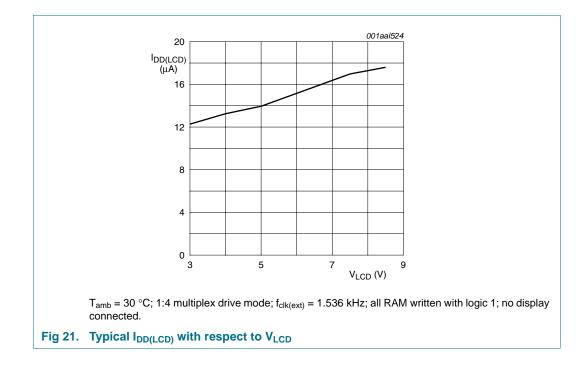
[1] LCD outputs are open-circuit; inputs at V_{SS} or V_{DD}; external clock with 50 % duty factor; I²C-bus inactive.

[2] For typical values, see Figure 20.

[3] For typical values, see Figure 21.


[4] Not tested, design specification only.

[5] The I²C-bus interface of PCA8533 is 5 V tolerant.


[6] C_{bpl} = backplane capacitance.

[7] C_{sgm} = segment capacitance.

[8] Outputs measured individually and sequentially.

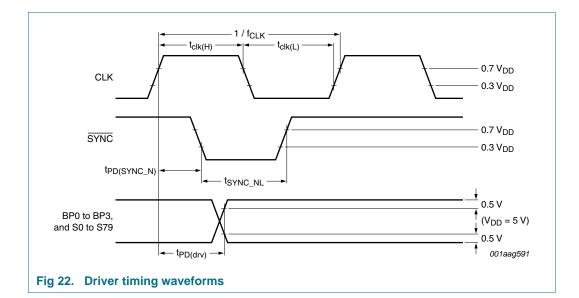
Universal LCD driver for low multiplex rates

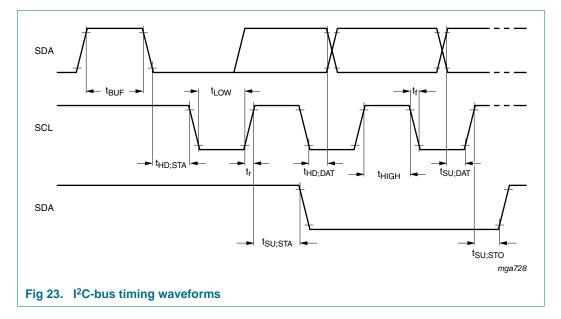
12. Dynamic characteristics

Table 18. Dynamic characteristics

 V_{DD} = 1.8 V to 5.5 V; V_{SS} = 0 V; V_{LCD} = 2.5 V to 6.5 V; T_{amb} = -40 °C to +85 °C; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Clock							
f _{clk(int)}	internal clock frequency		<u>[1][2]</u>	960	1536	3046	Hz
f _{clk(ext)}	external clock frequency		<u>[1][2]</u>	797	1536	3046	Hz
t _{clk(H)}	HIGH-level clock time			130	-	-	μS
t _{clk(L)}	LOW-level clock time			130	-	-	μs
t _r	rise time			-	-	-	ns
t _f	fall time			-	-	-	ns
Synchroni	zation: input pin SYNC						
t _{PD(SYNC_N)}	SYNC propagation delay			-	30	-	ns
t _{SYNC_NL}	SYNC LOW time			1	-	-	μS
Outputs: p	ins BP0 to BP3 and S0 to S79						
t _{PD(drv)}	driver propagation delay	$V_{LCD} = 5 V$		-	-	30	μS
l ² C-bus: tir	ning <u>^[3];</u> see <u>Figure 23</u>						
Pin SCL							
f _{SCL}	SCL clock frequency			-	-	400	kHz
t _{LOW}	LOW period of the SCL clock			1.3	-	-	μS
t _{HIGH}	HIGH period of the SCL clock			0.6	-	-	μS
Pin SDA							
t _{SU;DAT}	data set-up time			100	-	-	ns
t _{HD;DAT}	data hold time			0	-	-	ns
Pins SCL a	nd SDA						
t _{BUF}	bus free time between a STOP and START condition			1.3	-	-	μS
t _{SU;STO}	set-up time for STOP condition			0.6	-	-	μS
t _{HD;STA}	hold time (repeated) START condition			0.6	-	-	μS
t _{SU;STA}	set-up time for a repeated START condition			0.6	-	-	μS
t _r	rise time of both SDA and SCL signals			-	-	0.3	μS
t _f	fall time of both SDA and SCL signals			-	-	0.3	μS
C _b	capacitive load for each bus line			-	-	400	pF
t _{w(spike)}	spike pulse width	on bus		-	-	50	ns


[1] Typical output duty cycle of 50 %.


[2] The corresponding frame frequency is $f_{fr} = f_{clk}/24$.

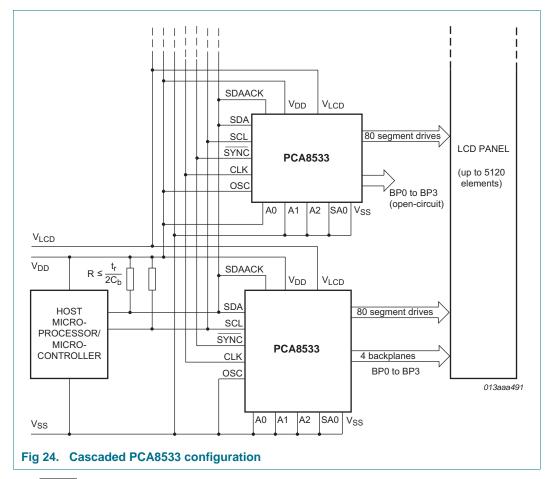
[3] All timing values are valid within the operating supply voltage and ambient temperature range and are referenced to V_{IL} and V_{IH} with an input voltage swing of V_{SS} to V_{DD}.

31 of 48

Universal LCD driver for low multiplex rates

13. Application information

13.1 Cascaded operation

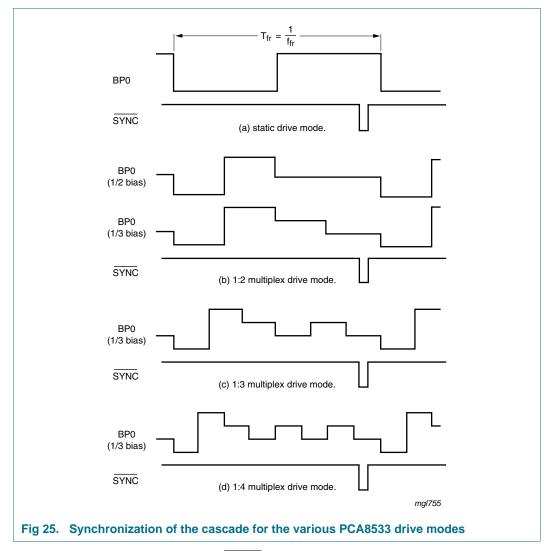

Large display configurations of up to sixteen PCA8533 can be recognized on the same I^2C -bus by using the 3-bit hardware subaddress (A0, A1 and A2) and the programmable I^2C -bus slave address (SA0).

Cluster	Bit SA0	Pin			Device
		A2	A1	A0	
1	0	0	0	0	0
		0	0	1	1
		0	1	0	2
		0	1	1	3
		1	0	0	4
		1	0	1	5
		1	1	0	6
		1	1	1	7
2	1	0	0	0	8
		0	0	1	9
		0	1	0	10
		0	1	1	11
		1	0	0	12
		1	0	1	13
		1	1	0	14
		1	1	1	15

Table 19. Addressing cascaded PCA8533

Cascaded PCA8533 are synchronized. They can share the backplane signals from one of the devices in the cascade. Such an arrangement is cost-effective in large LCD applications since the backplane outputs of only one device need to be through-plated to the backplane electrodes of the display. The other PCA8533 of the cascade contribute additional segment outputs but their backplane outputs are left open-circuit (see Figure 24).

Universal LCD driver for low multiplex rates


The SYNC line is provided to maintain the correct synchronization between all cascaded PCA8533. This synchronization is guaranteed after the Power-On Reset (POR). The only time that SYNC is likely to be needed is if synchronization is accidentally lost (e.g. by noise in adverse electrical environments, or by the definition of a multiplex mode when PCA8533 with different SA0 levels are cascaded).

SYNC is organized as an input/output pin; the output selection being realized as an open-drain driver with an internal pull-up resistor. A PCA8533 asserts the SYNC line at the onset of its last active backplane signal and monitors the SYNC line at all other times. Should synchronization in the cascade be lost, it will be restored by the first PCA8533 to assert SYNC. The timing relationships between the backplane waveforms and the SYNC signal for the various drive modes of the PCA8533 are shown in Figure 25.

NXP Semiconductors

PCA8533

Universal LCD driver for low multiplex rates

The contact resistance between the SYNC pins of cascaded devices must be controlled. If the resistance is too high then the device will not be able to synchronize properly. This is particularly applicable to COG applications. <u>Table 20</u> shows the limiting values for contact resistance.

Table 20. SYNC contact resistance

Number of devices	Maximum contact resistance
2	6000 Ω
3 to 5	2200 Ω
6 to 10	1200 Ω
11 to 16	700 Ω

13.2 RAM writing in 1:3 multiplex drive mode

In 1:3 multiplex drive mode, the RAM is written as shown in <u>Table 21</u> (see <u>Figure 12</u> as well).

 Table 21.
 Standard RAM filling in 1:3 multiplex drive mode

Assumption: BP2/S2, BP2/S5, BP2/S8 etc. are not connected to any elements on the display.

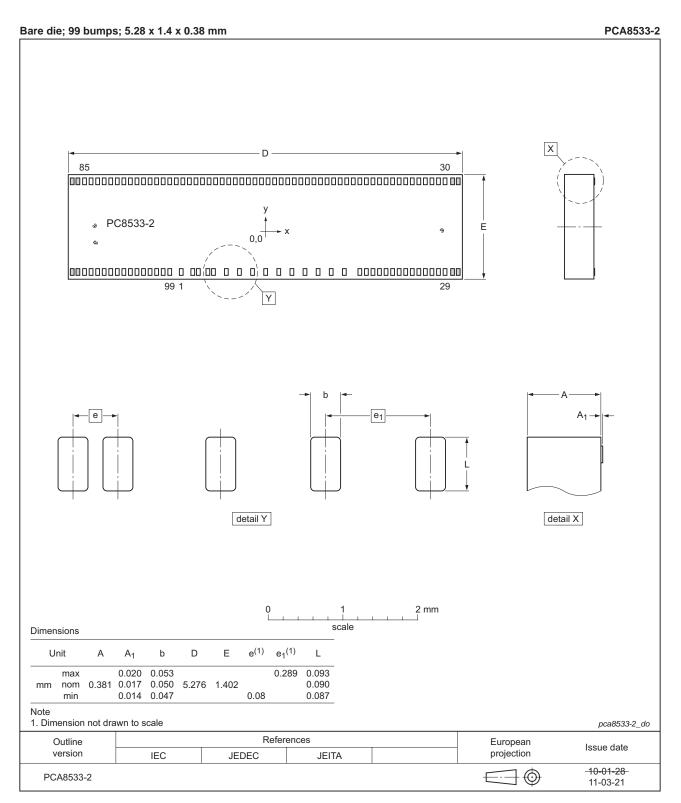
Display RAM	Displa	ay RAN	l addre	sses (o	column	s)/segr	nent ou	utputs	(Sn)		
bits (rows)/ backplane outputs (BPn)	0	1	2	3	4	5	6	7	8	9	:
0	a7	a4	a1	b7	b4	b1	c7	c4	c1	d7	:
1	a6	a3	a0	b6	b3	b0	c6	c3	c0	d6	:
2	a5	a2	-	b5	b2	-	c5	c2	-	d5	:
3	-	-	-	-	-	-	-	-	-	-	:

If the bit at position BP2/S2 would be written by a second byte transmitted, then the mapping of the segment bits would change as illustrated in Table 22.

 Table 22.
 Continuos RAM filling by rewriting in 1:3 multiplex drive mode

 Assumption: BP2/S2, BP2/S5, BP2/S8 etc. are connected to elements on the display.

Display RAM	Displa	ay RAN	l addre	sses (c	olumn	s)/segn	nent ou	tputs (Sn)		
bits (rows)/ backplane outputs (BPn)	0	1	2	3	4	5	6	7	8	9	:
0	a7	a4	a1/b7	b4	b1/c7	c4	c1/d7	d4	d1/e7	e4	:
1	a6	a3	a0/b6	b3	b0/c6	c3	c0/d6	d3	d0/e6	e3	:
2	a5	a2	b5	b2	c5	c2	d5	d2	e5	e2	:
3	-	-	-	-	-	-	-	-	-	-	:


In the case described in <u>Table 22</u> the RAM has to be written entirely and BP2/S2, BP2/S5, BP2/S8 etc. have to be connected to elements on the display. This can be achieved by a combination of writing and rewriting the RAM like follows:

- In the first write to the RAM, bits a7 to a0 are written.
- In the second write, bits b7 to b0 are written, overwriting bits a1 and a0 with bits b7 and b6.
- In the third write, bits c7 to c0 are written, overwriting bits b1 and b0 with bits c7 and c6.

Depending on the method of writing to the RAM (standard or continuous filling by rewriting), some elements remain unused or can be used, but it has to be considered in the module layout process as well as in the driver software design.

Universal LCD driver for low multiplex rates

14. Bare die outline

Fig 26. Bare die outline of PCA8533-2

All information provided in this document is subject to legal disclaimers.

PCA8533

Table 23. Bump locations

All x/y coordinates represent the position of the centre of each bump with respect to the center (x/y = 0) of the chip; see Figure 26.

Symbol	Bump	Χ (μ m)	Υ (μ m)		Description
SDAACK	1	-1079.20	-594.40	[1]	I ² C-bus acknowledge output
SDA	2	-839.20	-594.40	[1]	I ² C-bus serial data input
SDA	3	-759.20	-594.40	[1]	
SCL	4	-599.20	-594.40		I ² C-bus serial clock input
SCL	5	-519.20	-594.40		
CLK	6	-414.80	-594.40		clock input/output
V _{DD}	7	-284.80	-594.40		supply voltage
SYNC	8	4.20	-594.40		cascade synchronization input/output
OSC	9	119.20	-594.40		oscillator select
A0	10	249.20	-594.40		subaddress input
A1	11	379.20	-594.40		
A2	12	581.20	-594.40		
SA0	13	711.20	-594.40		I ² C-bus slave address input; bit 0
V _{SS}	14	841.20	-594.40		ground supply voltage
V _{LCD}	15	1099.60	-594.40		LCD supply voltage
BP2	16	1277.60	-594.40		LCD backplane output
BP0	17	1357.60	-594.40		
S0	18	1437.60	-594.40		LCD segment output
S1	19	1517.60	-594.40		
S2	20	1597.60	-594.40		
S3	21	1677.60	-594.40		
S4	22	1757.60	-594.40		
S5	23	1837.60	-594.40		
S6	24	1917.60	-594.40		
S7	25	1997.60	-594.40		
S8	26	2077.60	-594.40		
S9	27	2157.60	-594.40		
S10	28	2237.60	-594.40		
S11	29	2317.60	-594.40		
S12	30	2357.60	594.40		
S13	31	2277.60	594.40		
S14	32	2197.60	594.40		
S15	33	2117.60	594.40		
S16	34	2037.60	594.40		
S17	35	1957.60	594.40		
S18	36	1877.60	594.40		
S19	37	1797.60	594.40		
S20	38	1717.60	594.40		
S21	39	1637.60	594.40		

PCA8533 Product data sheet

Universal LCD driver for low multiplex rates

Table 23. Bump locations

All x/y coordinates represent the position of the centre of each bump with respect to the center (x/y = 0) of the chip; see Figure 26.

Symbol	Bump	Χ (μ m)	Υ (μm)	Description
S22	40	1557.60	594.40	LCD segment output
S23	41	1477.60	594.40	
S24	42	1317.60	594.40	
S25	43	1237.60	594.40	
S26	44	1157.60	594.40	
S27	45	1077.60	594.40	
S28	46	997.60	594.40	
S29	47	917.60	594.40	
S30	48	837.60	594.40	
S31	49	757.60	594.40	
S32	50	677.60	594.40	
S33	51	597.60	594.40	
S34	52	437.60	594.40	
S35	53	357.60	594.40	
S36	54	277.60	594.40	
S37	55	197.60	594.40	
S38	56	117.60	594.40	
S39	57	37.60	594.40	
S40	58	-42.40	594.40	
S41	59	-122.40	594.40	
S42	60	-202.40	594.40	
S43	61	-282.40	594.40	
S44	62	-362.40	594.40	
S45	63	-442.40	594.40	
S46	64	-602.40	594.40	
S47	65	-682.40	594.40	
S48	66	-762.40	594.40	
S49	67	-842.40	594.40	
S50	68	-922.40	594.40	
S51	69	-1002.40	594.40	
S52	70	-1082.40	594.40	
S53	71	-1162.40	594.40	
S54	72	-1242.40	594.40	
S55	73	-1322.40	594.40	
S56	74	-1402.40	594.40	
S57	75	-1562.40	594.40	
S58	76	-1642.40	594.40	
S59	77	-1722.40	594.40	
S60	78	-1802.40	594.40	

PCA8533

All information provided in this document is subject to legal disclaimers.

Universal LCD driver for low multiplex rates

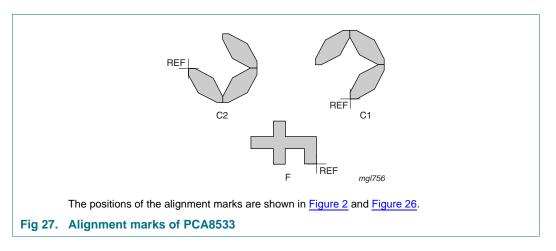
Symbol	Bump	Χ (μm)	Υ (μ m)		Description
S61	79	-1882.40	594.40		LCD segment output
S62	80	-1962.40	594.40		
S63	81	-2042.40	594.40		
S64	82	-2122.40	594.40		
S65	83	-2202.40	594.40		
S66	84	-2282.40	594.40		
S67	85	-2362.40	594.40		
S68	86	-2322.40	-594.40		
S69	87	-2242.40	-594.40		
S70	88	-2162.40	-594.40		
S71	89	-2082.40	-594.40		
S72	90	-2002.40	-594.40		
S73	91	-1922.40	-594.40		
S74	92	-1842.40	-594.40		
S75	93	-1762.40	-594.40		
S76	94	-1682.40	-594.40		
S77	95	-1602.40	-594.40		
S78	96	-1522.40	-594.40		
S79	97	-1442.40	-594.40		
BP3	98	-1362.40	-594.40		LCD backplane output
BP1	99	-1282.40	-594.40		
D1	-	2469.70	-594.40	[2]	dummy bump
D2	-	2549.70	-594.40		
D3	-	2517.60	594.40		
D4	-	2437.60	594.40		
D5	-	-2442.30	594.40		
D6	-	-2522.30	594.40	[2]	
D7	-	-2554.40	-594.40		
D8	-	-2474.40	-594.40		

Bump locations Table 23. -itian of the

-----. • • •

[1] For most applications SDA and SDAACK are shorted together; see <u>Section 8.1</u>.

[2] The dummy bumps are connected to the adjacent segments but are not tested.

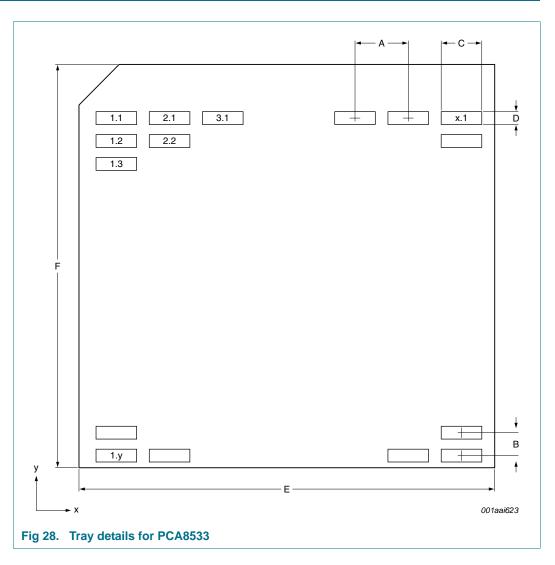

Table 24. Alignment mark locations

Symbol	Χ (μm)	Υ (μm)
C1	2300.5	55.0
C2	-2320.2	107.0
F	-2208.3	-165.4

PCA8533 **Product data sheet**

40 of 48

Universal LCD driver for low multiplex rates



15. Handling information

All input and output pins are protected against ElectroStatic Discharge (ESD) under normal handling. When handling Metal-Oxide Semiconductor (MOS) devices ensure that all normal precautions are taken as described in *JESD625-A*, *IEC 61340-5* or equivalent standards.

Universal LCD driver for low multiplex rates

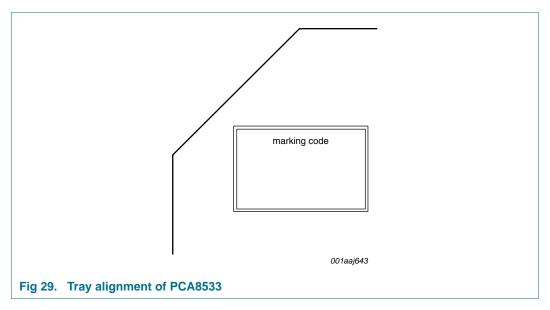

16. Packing information

Table 25.Tray dimensionsSee Figure 28.

<u> </u>					
Symbol	Description	Value			
A	pocket pitch in x direction	7.37 mm			
В	pocket pitch in y direction	3.68 mm			
С	pocket width in x direction	5.50 mm			
D	pocket width in y direction	1.60 mm			
E	tray width in x direction	50.8 mm			
F	tray width in y direction	50.8 mm			
Ν	number of pockets, x direction	6			
Μ	number of pockets, y direction	12			

Universal LCD driver for low multiplex rates

The orientation of the IC in a pocket is indicated by the position of the IC type name on the die surface with respect to the chamfer on the upper left corner of the tray. Refer to Figure 26 for the orientation and position of the type name on the die surface.

17. Abbreviations

Table 26.	Abbreviations
Acronym	Description
CMOS	Complementary Metal-Oxide Semiconductor
COG	Chip-On-Glass
DC	Direct Current
ESD	ElectroStatic Discharge
HBM	Human Body Model
l ² C	Inter-Integrated Circuit bus
IC	Integrated Circuit
ITO	Indium Tin Oxide
LCD	Liquid Crystal Display
LSB	Least Significant Bit
MM	Machine Model
MOS	Metal-Oxide Semiconductor
MSB	Most Significant Bit
POR	Power-On Reset
RC	Resistance-Capacitance
RAM	Random Access Memory
RMS	Root Mean Square
SCL	Serial CLock line
SDA	Serial DAta line

18. References

- [1] AN10170 Design guidelines for COG modules with NXP monochrome LCD drivers
- [2] AN10706 Handling bare die
- [3] AN10853 ESD and EMC sensitivity of IC
- [4] IEC 60134 Rating systems for electronic tubes and valves and analogous semiconductor devices
- [5] IEC 61340-5 Protection of electronic devices from electrostatic phenomena
- [6] JESD22-A114 Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)
- JESD22-A115 Electrostatic Discharge (ESD) Sensitivity Testing Machine Model (MM)
- [8] JESD78 IC Latch-Up Test
- [9] JESD625-A Requirements for Handling Electrostatic-Discharge-Sensitive (ESDS) Devices
- [10] NX3-00092 NXP store and transport requirements
- [11] UM10204 I²C-bus specification and user manual

19. Revision history

Table 27. Revision history						
Document ID	Release date	Data sheet status	Change notice	Supersedes		
PCA8533 v.1	20110427	Product data sheet	-	-		

20. Legal information

20.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

20.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

20.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

PCA8533

46 of 48

Universal LCD driver for low multiplex rates

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for and use of the product for automotive applications beyond NXP Semiconductors of the product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Bare die — All die are tested on compliance with their related technical specifications as stated in this data sheet up to the point of wafer sawing and are handled in accordance with the NXP Semiconductors storage and

21. Contact information

transportation conditions. If there are data sheet limits not guaranteed, these will be separately indicated in the data sheet. There are no post-packing tests performed on individual die or wafers.

NXP Semiconductors has no control of third party procedures in the sawing, handling, packing or assembly of the die. Accordingly, NXP Semiconductors assumes no liability for device functionality or performance of the die or systems after third party sawing, handling, packing or assembly of the die. It is the responsibility of the customer to test and qualify their application in which the die is used.

All die sales are conditioned upon and subject to the customer entering into a written die sale agreement with NXP Semiconductors through its legal department.

20.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I²C-bus — logo is a trademark of NXP B.V.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Universal LCD driver for low multiplex rates

22. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information 2
4	Marking
5	Block diagram 2
6	Pinning information 3
6.1	Pinning
6.2	Pin description
7	Functional description 4
7.1	Power-On Reset (POR) 5
7.2	LCD bias generator
7.3	LCD voltage selector 6
7.3.1	Electro-optical performance
7.4	LCD drive mode waveforms
7.4.1	Static drive mode 9
7.4.2	1:2 multiplex drive mode
7.4.3	1:3 multiplex drive mode
7.4.4	1:4 multiplex drive mode
7.5	Oscillator
7.5.1	Internal clock 14
7.5.2	External clock 14
7.6	Timing 14
7.7	Display register 14
7.8	Segment outputs 14
7.9	Backplane outputs 15
7.10	Display RAM 15
7.11	Data pointer 17
7.12	Subaddress counter 17
7.13	Output bank selector 18
7.14	Input bank selector
7.15	Blinking 18
8	I ² C-bus interface 20
8.1	Characteristics of the I ² C-bus
8.1.1	Bit transfer 20
8.1.1.1	START and STOP conditions 20
8.1.2	System configuration 21
8.1.3	Acknowledge 21
8.1.4	I ² C-bus controller 22
8.1.5	Input filters 22
8.1.6	I ² C-bus protocol 22
8.2	Command decoder 24
8.3	Display controller 26
9	Internal circuitry 26
10	Limiting values
11	Static characteristics
12	Dynamic characteristics 31

13	Application information	33
13.1	Cascaded operation	33
13.2	RAM writing in 1:3 multiplex drive mode	36
14	Bare die outline	37
15	Handling information	41
16	Packing information	42
17	Abbreviations	43
18	References	44
19	Revision history	45
20	Legal information	46
20.1	Data sheet status	46
20.2	Definitions	46
20.3	Disclaimers	46
20.4	Trademarks	47
21	Contact information	47
22	Contents	48

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2011.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 27 April 2011 Document identifier: PCA8533