

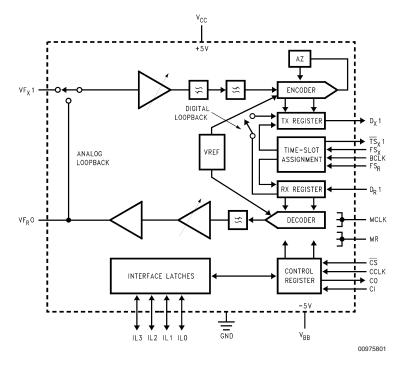
TP3076

COMBO® II Programmable PCM CODEC/Filter for ISDN and Digital Phone Applications

General Description

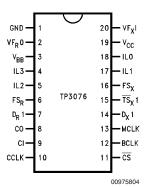
The TP3076 is a second-generation combined PCM CODEC and Filter devices optimized for digital switching applications on subscriber line and trunk cards and digital phone applications. Using advanced switched capacitor techniques, COMBO II combines transmit bandpass and receive low-pass channel filters with a companding PCM encoder and decoder. The devices are A-law and μ -law selectable and employ a conventional serial PCM interface capable of being clocked up to 4.096 MHz. A number of programmable functions may be controlled via a serial control port.

Channel gains are programmable over a 25.4 dB range in each direction.


To enable COMBO II to interface to the SLIC control leads, a number of programmable latches are included; each may be configured as either an input or an output. The TP3076 provides 4 latches.

Features

- Complete CODEC and Filter system including:
 - Transmit and receive PCM channel filters
 - μ-law or A-law companding coder and decoder
 - Receive power amplifier drives 300Ω
 - 4.096 MHz serial PCM data (max)
- Programmable functions:
 - Transmit gain: 25.4 dB range, 0.1 dB steps
 - Receive gain: 25.4 dB range, 0.1 dB steps
 - Time-slot assignment; to 64 slots/frame
 - 4 interface latches
 - A or µ-law
 - Analog loopback
 - Digital loopback
- Direct interface to solid-state SLICs
- Standard serial control interface
- 80 mW operating power (typ)
- 1.5 mW standby power (typ)
- Designed for CCITT and LSSGR specifications
- TTL and CMOS compatible digital interfaces


 Note: See also AN-614 COMBO II application guide.

Block Diagram

TRI-STATE® and COMBO® are registered trademarks of National Semiconductor Corporation MICROWIRE/PLUS™ is a trademark of National Semiconductor Corporation.

Connection Diagram

Order Number TP3076N-G See NS Package Number N20A

Pin Descriptions

Pin	Description
V _{cc}	+5V ±5% power supply.
V _{BB}	−5V ±5% power supply.
GND	Ground. All analog and digital signals are referenced to this pin.
FS _x	Transmit Frame Sync input. Normally a pulse or squarewave with an 8 kHz repetition rate is applied to this input to define the start of the transmit time slot assigned to this device (non-delayed data timing mode), or the start of the transmit frame (delayed data timing mode using the internal time-slot assignment counter).
FS _R	Receive Frame Sync input. Normally a pulse or squarewave with an 8 kHz repetition rate is applied to this input to define the start of the receive time slot assigned to this device (non-delayed data timing mode), or the start of the receive frame (delayed data timing mode using the internal time-slot assignment counter).
BCLK	Bit clock input used to shift PCM data into and out of the D _R and D _X pins. BCLK may vary from 64 kHz to 4.096 MHz in 8 kHz increments, and must be synchronous with MCLK.
MCLK	Master clock input used by the switched capacitor filters and the encoder and decoder sequencing logic. Must be 512 kHz, 1.536/1.544 MHz, 2.048 MHz or 4.096 MHz and synchronous with BCLK.
VF _x I	The Transmit analog high-impedance input. Voice frequency signals present on this input are encoded as an A-law or μ -law PCM bit stream and shifted out on the selected D_X pin.
VF _R O	The Receive analog power amplifier output, capable of driving load impedances as low as 300Ω (depending on the peak overload level required). PCM data received on the assigned D_R pin is decoded and appears at this output as voice frequency signals.
D _x 1	This transmit data TRI-STATE® output remains in the high impedance state except during the assigned transmit time slot on the assigned port, during which the transmit PCM data byte is shifted out on the rising edges of BCLK.
TS _x 1	Normally this open drain output is floating in a high impedance state except when a time-slot is active on the D_x output, when the \overline{TS}_x 1 output pulls low to enable a backplane line-driver.
D _R 1	This receive data input is inactive except during the assigned receive time slot of the assigned port when the receive PCM data is shifted in on the falling edges of BCLK.
CCLK	Control Clock input. This clock shifts serial control information into CI or out from CO when the $\overline{\text{CS}}$ input is low, depending on the current instruction. CCLK may be asynchronous with the other system clocks.
CI	Control Data Input pin. Serial control information is shifted into COMBO II on this pin when $\overline{\text{CS}}$ is low. Byte 1 of control information is always written into COMBO II, while the direction of byte 2 data is determined by bit 2 of byte 1, as defined in <i>Table 1</i>
СО	Control Data Output pin. Serial control or status information is shifted out of COMBO II on this pin when $\overline{\text{CS}}$ is low.

Pin Descriptions (Continued)

Pin	Description
CS	Chip Select input. When this pin is low, control information can be written to or read from COMBO II via CI or CO.
IL3-IL0	Each Interface Latch I/O pin may be individually programmed as an input or an output determined by the state of the corresponding bit in the Latch Direction Register (LDR). For pins configured as inputs, the logic state sensed on each input is latched into the Interface Latch Register (ILR) whenever control data is written to COMBO II, while CS is low, and the information is shifted out on the CO pin. When configured as outputs, control data written into the ILR appears at the corresponding IL pins.

Functional Description

POWER-ON INITIALIZATION

When power is first applied, power-on reset circuitry initializes the COMBO II and puts it into the power-down state. The gain control registers for the transmit and receive gain sections are programmed for no output, the power amp is disabled and the device is in the non-delayed timing mode. The Latch Direction Register (LDR) is pre-set with all IL pins programmed as inputs, placing the SLIC interface pins in a high impedance state. The CO pin is in TRI-STATE condition. Other initial states in the Control Register are indicated in Section 2.0.

The desired modes for all programmable functions may be initialized via the control port prior to a Power-up command.

POWER-DOWN STATE

Following a period of activity in the powered-up state the power-down state may be re-entered by writing any of the control instructions into the serial control port with the "P" bit set to "1" as indicated in *Table 1*. It is recommended that the chip be powered down before writing any additional instructions. In the power-down state, all non-essential circuitry is de-activated and the $\mathsf{D}_\mathsf{X} 1$ output is in the high impedance TRI-STATE condition.

The data stored in the Gain Control registers, the LDR and ILR, and all control bits remain unchanged in the power-down state unless changed by writing new data via the serial control port, which remains active. The outputs of the Interface Latches also remain active, maintaining the ability to monitor and control the SLIC.

TRANSMIT FILTER AND ENCODER

The Transmit section input, VF_XI , is a high impedance input. No external components are necessary to set the gain. Following this is a programmable gain/attenuation amplifier

which is controlled by the contents of the Transmit Gain Register (see Programmable Functions section). An active pre-filter then precedes the 3rd order high-pass and 5th order low-pass switched capacitor filters. The A/D converter has a compressing characteristic according to the standard CCITT A or μ255 coding laws, which must be selected by a control instruction during initialization (see *Table 1* and *Table 2*). A precision on-chip voltage reference ensures accurate and highly stable transmission levels. Any offset voltage arising in the gain-set amplifier, the filters or the comparator is canceled by an internal auto-zero circuit.

Each encode cycle begins immediately following the assigned Transmit time-slot. The total signal delay referenced to the start of the time-slot is approximately 165 μs (due to the Transmit Filter) plus 125 μs (due to encoding delay), which totals 290 μs . Data is shifted out on $D_\chi 1$ during the selected time slot on eight rising edges of BCLK.

DECODER AND RECEIVER FILTER

PCM data is shifted into the Decoder's Receive PCM Register via the $D_{R}1$ pin during the selected time-slot on the 8 falling edges of BCLK. The Decoder consists of an expanding DAC with either A or $\mu255$ law decoding characteristic, which is selected by the same control instruction used to select the Encode law during initialization. Following the Decoder is a 5th order low-pass switched capacitor filter with integral Sin x/x correction for the 8 kHz sample and hold. A programmable gain amplifier, which must be set by writing to the Receive Gain Register, is included, and finally a Power Amplifier capable of driving a 300Ω load to ±3.5 V, a 600Ω load to ±3.8 V or a 15 k Ω load to ±4.0 V at peak overload.

TABLE 1. Programmable F	Register	Instructions
-------------------------	----------	--------------

Function		Byte 1 (Notes 1, 2, 3)				Byte 2 (Note 1)										
	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
Single Byte Power-Up/Down	Р	Х	Х	Х	Х	Х	0	Х				No	ne			
Write Control Register	Р	0	0	0	0	0	1	Х				See 7	able 2	2		
Read-Back Control Register	Р	0	0	0	0	1	1	Х	See Table 2							
Write to Interface Latch Register	Р	0	0	0	1	0	1	Х	See Table 4							
Read Interface Latch Register	P	0	0	0	1	1	1	Х	See Table 4							
Write Latch Direction Register	Р	0	0	1	0	0	1	Х				See 7	able :	3		
Read Latch Direction Register	Р	0	0	1	0	1	1	Х	See Table 3							
Write Receive Gain Register	Р	0	1	0	0	0	1	Х	See Table 8							
Read Receive Gain Register	Р	0	1	0	0	1	1	Х				See 7	able a	8		

Functional Description (Continued)

TABLE 1. Programmable Register Instructions (Continued)

THE THE TOGETH HERE AND THE STATE OF THE																
Function			Byte	1 (No	tes 1,	2, 3)			Byte 2 (Note 1)							
	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
Write Transmit Gain Register	Р	0	1	0	1	0	1	Х				See 7	Table 7	7		
Read Transmit Gain Register	Р	0	1	0	1	1	1	Х				See 7	Table 7	7		
Write Receive Time-Slot/Port	Р	1	0	0	1	0	1	Х	See Table 6							
Read-Back Receive Time-Slot/Port	Р	1	0	0	1	1	1	Х				See 7	Table 6	6		
Write Transmit Time-Slot/Port	Р	1	0	1	0	0	1	Х				See 7	Table 6	3		
Read-Back Transmit Time-Slot/Port	Р	1	0	1	0	1	1	Х				See 7	Table 6	3		

Note 1: Bit 7 of bytes 1 and 2 is always the first bit clocked into or out from the CI or CO pin. X = don't care.

Note 2: "P" is the power-up/down control bit, see Power-up/Down Control section. ("0" = Power Up, "1" = Power Down)

Note 3: Other register address codes are invalid and should not be used.

A decode cycle begins immediately after the assigned receive timeslot, and 10 μs later the Decoder DAC output is updated. The total signal delay is 10 μs plus 120 μs (filter delay) plus 62.5 μs (½ frame) which gives approximately 190 μs .

PCM INTERFACE

The FS_X and FS_R frame sync inputs determine the beginning of the 8-bit transmit and receive time-slots respectively. They may have any duration from a single cycle of BCLK HIGH to one MCLK period LOW. Two different relationships may be established between the frame sync inputs and the actual time-slots on the PCM busses by setting bit 3 in the Control Register (see *Table 2*). Non-delayed data mode is similar to long-frame timing on the TP3050/60 series of devices (COMBO); time-slots begin nominally coincident with the rising edge of the appropriate FS input. The alternative is to use Delayed Data mode, which is similar to shortframe sync timing on COMBO, in which each FS input must be high at least a half-cycle of BCLK earlier than the timeslot. The Time-Slot Assignment circuit on the device can only be used with Delayed Data timing.

When using Time-Slot Assignment, the beginning of the first time-slot in a frame is identified by the appropriate FS input. The actual transmit and receive time-slots are then determined by the internal Time-Slot Assignment counters.

Transmit and Receive frames and time-slots may be skewed from each other by any number of BCLK cycles. During each assigned Transmit time-slot, the $D_\chi 1$ output shifts data out from the PCM register on the rising edges of BCLK. $\overline{TS}_\chi 1$ also pulls low for the first $71\!\!/_2$ bit times of the time-slot to control the TRI-STATE Enable of a backplane line-driver. Serial PCM data is shifted into the $D_R 1$ input during each assigned Receive time-slot on the falling edges of BCLK.

SERIAL CONTROL PORT

Control information and data are written into or read-back from COMBO II via the serial control port consisting of the control clock CCLK, the serial data input, CI, and output, CO, and the Chip Select input, $\overline{\text{CS}}$. All control instructions require 2 bytes, as listed *Table 1*, with the exception of a single byte power-up/down command. The Byte 1 bits are used as follows: bit 7 specifies power up or power down; bits 6, 5, 4 and 3 specify the register address, bit 2 specifies whether the instruction is read or write; bit 1 specifies a one or two byte instruction; and bit 0 is not used.

To shift control data into COMBO II, CCLK must be pulsed high 8 times while $\overline{\text{CS}}$ is low. Data on the CI input is shifted

into the serial input register on the falling edge of each CCLK pulse. After all data is shifted in, the contents of the input shift register are decoded, and may indicate that a 2nd byte of control data will follow. This second byte may either be defined by a second byte-wide \overline{CS} pulse or may follow the first contiguously, i.e, it is not mandatory for \overline{CS} to return high between the first and second control bytes. At the end of CCLK8 in the 2nd control byte the data is loaded into the appropriate programmable register. \overline{CS} may remain low continuously when programming successive registers, if desired. However, \overline{CS} must be set high when no data transfers are in progress.

To readback Interface Latch data or status information from COMBO II, the first byte of the appropriate instruction is strobed while $\overline{\text{CS}}$ is low, as defined in Table 1. $\overline{\text{CS}}$ must be kept low, or be taken low again for a further 8 CCLK cycles, during which the data is shifted onto the CO pin on the rising edges of CCLK. When $\overline{\text{CS}}$ is high the CO pin is in the high-impedance TRI-STATE, enabling the CI and CO pins of many devices to be multiplexed together.

If $\overline{\text{CS}}$ returns high during either byte 1 or byte 2 before all eight CCLK pulses of that byte occur, both the bit count and byte count are reset and register contents are not affected. This prevents loss of synchronization in the control interface as well as corruption of register data due to processor interrupt or other problem. When $\overline{\text{CS}}$ returns low again, the device will be ready to accept bit 1 of byte 1 of a new instruction.

Programmable Functions

POWER-UP/DOWN CONTROL

Following power-on initialization, power-up and power-down control may be accomplished by writing any of the control instructions listed in *Table 1* into COMBO II with the "P" bit set to "0" for power-up or "1" for power-down. Normally it is recommended that all programmable functions be initially programmed while the device is powered down. Power state control can then be included with the last programming instruction or the separate single-byte instruction. Any of the programmable registers may also be modified while the device is powered-up or down by setting the "P" bit as indicated. When the power-up or down control is entered as a single byte instruction, bit one (1) must be reset to a 0.

When a power-up command is given, all de-activated circuits are activated, but the TRI-STATE PCM output(s), D_X1 will remain in the high impedance state until the second FS_X pulse after power-up.

Programmable Functions (Continued)

CONTROL REGISTER INSTRUCTION

The first byte of a READ or WRITE instruction to the Control Register is as shown in *Table 1*. The second byte has the following bit functions:

TABLE 2. Control Register Byte 2 Functions

	Bit	Nur	mbe	r and	l Na	me		
7	6	5	4	3	2	1	0	Function
F ₁	F_0	MA	IA	DN	DL	AL	PP	
0	0							MCLK = 512 kHz
0	1							MCLK = 1.536 MHz
								or 1.544 MHz
1	0							MCLK = 2.048 MHz
								(Note 4)
1	1							MCLK = 4.096 MHz
		0	Х					Select µ255 Law
								(Note 4)
		1	0					A-Law, Including
								Even Bit
								Inversion
		1	1					A-Law, No Even Bit
								Inversion
				0				Delay Data Timing
				1				Non-Delayed
								Data Timing (Note
								4)
					0	0		Normal Operation
								(Note 4)
					1	Х		Digital Loopback
					0	1		Analog Loopback
							0	Power Amp
								Enabled in PDN
							1	Power Amp
								Disabled in PDN
								(Note 4)

Note 4: state at power-on initialization.

Master Clock Frequency Selection

A Master clock must be provided to COMBO II for operation of the filter and coding/decoding functions. The MCLK frequency must be either 512 kHz, 1.536 MHz, 1.544 MHz, 2.048 MHz, or 4.096 MHz and must be synchronous with BCLK. Bits $\rm F_1$ and $\rm F_0$ (see *Table 2*) must be set during initialization to select the correct internal divider.

Coding Law Selection

Bits "MA" and "IA" in *Table 2* permit the selection of μ 255 coding or A-law coding, with or without even bit inversion.

Analog Loopback

Analog Loopback mode is entered by setting the "AL" and "DL" bits in the Control Register as shown in *Table 2*. In the analog loopback mode, the Transmit input VF_xI is isolated

from the input pin and internally connected to the VF_RO output, forming a loop from the Receive PCM Register back to the Transmit PCM Register. The VF_RO pin remains active, and the programmed settings of the Transmit and Receive gains remain unchanged, thus care must be taken to ensure that overload levels are not exceeded anywhere in the loop.

Digital Loopback

Digital Loopback mode is entered by setting the "AL" and "DL" bits in the Control Register as shown in *Table 2*. This mode provides another stage of path verification by enabling data written into the Receive PCM Register to be read back from that register in any Transmit time-slot at D_X1 . PCM decoding continues and analog output appears at VF_R0 . The output can be disabled by programming 'No Output' in the Receive Gain Register (see *Table 8*).

INTERFACE LATCH DIRECTIONS

Immediately following power-on, all Interface Latches assume they are inputs, and therefore all IL pins are in a high impedance state. Each IL pin may be individually programmed as a logic input or output by writing the appropriate instruction to the LDR, see *Table 1* and *Table 3*. For minimum power dissipation, unconnected latch pins should be programmed as outputs. For the TP3076, bits 2 and 3 should always be programmed as "1" (outputs).

Bits L_3-L_0 must be set by writing the specific instruction to the LDR with the L bits in the second byte set as follows:

TABLE 3. Byte 2 Functions of Latch Direction Register

	Byte 2 Bit Number									
7	6	5	4	3	2	1	0			
L ₀	L ₁	L ₂	L ₃	1	1	Χ	Х			
	L _n	Bit		IL Direction						
	(0		Input						
		1		Output						

X = Don't Care

INTERFACE LATCH STATES

Interface Latches configured as outputs assume the state determined by the appropriate data bit in the 2-byte instruction written to the Interface Latch Register (ILR) as shown in *Table 1* and *Table 4*. Latches configured as inputs will sense the state applied by an external source, such as the Off-Hook detect output of a SLIC. All bits of the ILR, i.e. sensed inputs and the programmed state of outputs, can be read back in the 2nd byte of a READ from the ILR.

It is recommended that during initialization, the state of IL pins to be configured as outputs should be programmed first followed immediately by the Latch Direction Register.

TABLE 4. Interface Latch Data Bit Order

			Bit Nu	umber			
7	6	5	4	3	2	1	0
D _o	D ₁	D_2	D ₃	D_4	D ₅	Χ	Χ

Programmable Functions (Continued)

TABLE 5. Coding Law Conventions

	μ255 Law	True A-Law with	A-Law without
		Even Bit Inversion	Even Bit Inversion
	MSB LSB	MSB LSB	MSB LSB
V _{IN} = +Full Scale	1000000	10101010	111111111
$V_{IN} = 0V$	11111111	11010101	10000000
	11111111	01010101	00000000
V _{IN} = -Full Scale	0000000	00101010	011111111

Note 5: The MSB is always the first PCM bit shifted in or out of COMBO II.

TABLE 6. Time-Slot and Port Assignment Instruction

		Bit Numb	er and I	Function						
7	6	5	4	3	2	1	0			
EN	PS	T ₅	T₄	T ₃	T ₂	T ₁	T_0			
	(Note 6)	(Note 7)								
0	1	Х	Х	Х	Х	Х	Χ	Disable D _X 1 Output (Transmit Instruction)		
								Disable D _R 1 Input (Receive Instruction)		
1	1	Assign One B	inary Co	ded Tim	e-Slot fro	om 0–63	Enable D _X 1 Output (Transmit Instruction)			
		Assign One B	Assign One Binary Coded Time-Slot from 0-63 Enable D _R 1 Input (Transmit Instruction)							

Note 6: The "PS" bit MUST be set to "1" for both transmit and receive for the TP3076.

Note 7: T5 is the MSB of the time-slot assignment bit field. Time-slot bits should be set to "000000" for both transmit and receive when operating in non-delayed data timing mode.

TIME-SLOT ASSIGNMENT

COMBO II can operate in either fixed time-slot or time-slot assignment mode for selecting the Transmit and Receive PCM time-slots. Following power-on, the device is automatically in Non-Delayed Timing mode, in which the time-slot always begins with the leading (rising) edge of frame sync inputs ${\sf FS}_{\sf X}$ and ${\sf FS}_{\sf R}$. Time-Slot Assignment may only be used with Delay Data timing; see ${\it Figure~3}$. ${\sf FS}_{\sf X}$ and ${\sf FS}_{\sf R}$ may have any phase relationship with each other in BCLK period increments.

Alternatively, the internal time-slot assignment counters and comparators can be used to access any time-slot in a frame, using the frame sync inputs as marker pulses for the beginning of transmit and receive time-slot 0. In this mode, a frame may consist of up to 64 time-slots of 8 bits each. A time-slot is assigned by a 2-byte instruction as shown in Table 1 and Table 6. The last 6 bits of the second byte indicate the selected time-slot from 0-63 using straight binary notation. When writing a time-slot and port assignment register, if the PCM interface is currently active, it is immediately deactivated to prevent possible bus clashes. A new assignment becomes active on the second frame following the end of the Chip-Select for the second control byte. Rewriting of the register contents should not be performed during the talking period of a connection to prevent waveform distortion caused by loss of a sample which will occur with each register write. The "EN" bit allows the PCM input, D_R1, or output, D_X1, as appropriate, to be enabled or disabled.

Time-Slot Assignment mode requires that the FS_X and FS_R pulses conform to the delayed data timing format shown in Figure 3.

PORT SELECTION

On the TP3076, the "PS" bit MUST always be set to 1.

Table 6 shows the format for the second byte of both transmit and receive time-slot and port assignment instructions.

TRANSMIT GAIN INSTRUCTION BYTE 2

The transmit gain can be programmed in 0.1 dB steps by writing to the Transmit Gain Register as defined in *Table 1* and *Table 7*. This corresponds to a range of 0 dBm0 levels at VF $_{\rm X}$ I between 1.375 Vrms and 0.074 Vrms (equivalent to +5.0 dBm to -20.4 dBm in 600 Ω).

To calculate the binary code for byte 2 of this instruction for any desired input 0 dBm0 level in Vrms, take the nearest integer to the decimal number given by:

and convert to the binary equivalent. Some examples are given in *Table 7*. A complete tabulation is given in Appendix I of AN-614.

It should be noted that the Transmit (idle channel) Noise and Transmit Signal to Total Distortion are both specified with transmit gain set to 0 dB (gain register set to all ones). At high transmit gains there will be some degradation in noise performance for these parameters. See Application Note AN-614 for more information on this subject.

TABLE 7. Byte 2 of Transmit Gain Instruction

Bit Number	0 dBm0 Test Level (Vrms)
76543210	at VF _x I
0000000	No Output (Note 8)
0000001	0.074
0000010	0.075
_	_
11111110	1.359

Programmable Functions (Continued)

TABLE 7. Byte 2 of Transmit Gain Instruction (Continued)

Bit Number	0 dBm0 Test Level (Vrms)
76543210	at VF _x I
11111111	1.375

Note 8: Analog signal path is cut off, but D_X remains active and will output codes representing idle noise.

RECEIVE GAIN INSTRUCTION BYTE 2

The receive gain can be programmed in 0.1 dB steps by writing to the Receive Gain Register as defined in *Table 1* and *Table 8*. Note the following restrictions on output drive capability:

- 1. 0 dBm0 levels \leq 1.96 Vrms at VF $_R$ O may be driven into a load of \geq 15 k Ω to GND; Receive Gain set to 0 dB (gain register set to all ones).
- 2. 0 dBm0 levels \leq 1.85 Vrms at VF_RO may be driven into a load of \geq 600 Ω to GND; Receive Gain set to 0.5 dB.
- 0 dBm0 levels ≤ 1.71 Vrms at VF_RO may be driven into a load of ≥ 300 Ω to GND. Receive Gain set to −1.2 dB.

To calculate the binary code for byte 2 of this instruction for any desired output 0 dBm0 level in Vrms, take the nearest integer to the decimal number given by:

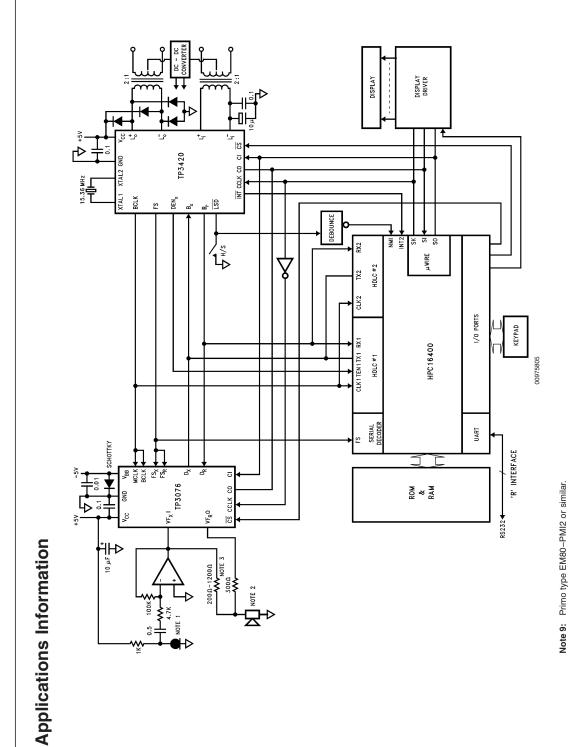
and convert to the binary equivalent. Some examples are given in *Table 8*. A complete tabulation is given in Appendix I or AN-614.

TABLE 8. Byte 2 of Receive Gain Instruction

Bit Number	0 dBm0 Test Level (Vrms)			
76543210	at VF _R O			
0000000	No Output (Low Z to GND)			
0000001	0 0 1 0.105			

Bit Number	0 dBm0 Test Level (Vrms)			
76543210	at VF _R O			
0000010	0.107			
_	_			
11111110	1.941			
11111111	1.964			

Applications Information


Figure 1 shows a typical ISDN phone application of the TP3076 together with a TP3420 ISDN Transceiver "S" Interface Device and HPC16400 High-Performance Microcontroller with HDLC Controller. The TP3076 device is programmed over its serial control interface via the HPC16400 MICROWIRE/PLUS™ serial I/O port.

POWER SUPPLIES

While the pins of the TP3076 COMBO II device are well protected against electrical misuse, it is recommended that the standard CMOS practice of applying GND to the device before any other connections are made should always be followed. In applications where the printed circuit card may be plugged into a hot socket with power and clocks already present, an extra long ground pin on the connector should be used and a Schottky diode connected between $V_{\rm BB}$ and $_{\rm GND}$

To minimize noise sources all ground connections to each device should meet at a common point as close as possible to the GND pin in order to prevent the interaction of ground return currents flowing through a common bus impedance. Power supply decoupling capacitors of 0.1 μF should be connected from this common point to V_{CC} and V_{BB} as close to the device pins as possible.

Further guidelines on PCB layout techniques are provided in Application Note AN-614, "COMBO II™ Programmable PCM CODEC/Filter Family Application Guide".

8

FIGURE 1. Typical Application in an ISDN Phone

Note 10: Primo type DH31 or similar. Note 11: Sidetone \approx -9.2 dB for 200Ω , Sidetone \approx -21.5 dB for 1200Ω .

Absolute Maximum Ratings (Note 12)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

V_{CC} to GND 7V

Voltage at VF_XI V_{CC} +0.5V to V_{BB} -0.5V

Voltage at Any Digital Input V_{CC} +0.5V to GND -0.5V

Storage Temperature Range -65° C to $+150^{\circ}$ C V_{BB} to GND -7V Current at VF_R0 ± 100 mA Current at Any Digital Output ± 50 mA Lead Temperature (Soldering, 10 sec.) 300° C

Electrical Characteristics

Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for V_{CC} = +5V ±5%, V_{BB} = -5V ±5%; T_A = 0°C to +70°C by correlation with 100% electrical testing at T_A = 25°C. All other limits are assured by correlation with other production tests and/or product design and characterization. All signals referenced to GND. Typicals specified at V_{CC} = +5V, V_{BB} = -5V, T_A = 25°C.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
DIGITAL	INTERFACES					
V_{IL}	Input Low Voltage	All Digital Inputs (DC Meas.)			0.7	V
V_{IH}	Input High Voltage	All Digital Inputs (DC Meas.) (Note 13)	2.0			V
V_{OL}	Output Low Voltage	D_X1 , \overline{TS}_X1 , and CO, $I_L = 3.2$ mA,			0.4	V
		All Other Digital Outputs, I _L = 1 mA				
V _{OH}	Output High Voltage	D_X 1 and CO, $I_L = -3.2$ mA,	2.4			V
		All Other Digital Outputs (except \overline{TS}_X), $I_L = -1 \text{ mA}$				
		All Digital Outputs, $I_L = -100 \mu A$	$V_{CC} - 0.5$			V
I _{IL}	Input Low Current	Any Digital Input, GND < V _{IN} < V _{IL}	-10		10	μΑ
I _{IH}	Input High Current	Any Digital Input, except MR, $V_{IH} < V_{IN} < V_{CC}$	-10		10	μA
		MR Only	-10		100	
l _{oz}	Output Current in	D _X 1, \overline{TS}_{X1} and CO				
	High Impedance	IL3-IL0 when Selected as Inputs	-10		10	μΑ
	State (TRI-STATE)	GND < V _{OUT} < V _{CC}				
ANALOG	INTERFACES	•	•			
I _{VFXI}	Input Current, VF _X I	-3.3V < VF _X I < 3.3V	-1.0		1.0	μA
R _{VFXI}	Input Resistance	-3.3V < VF _X I < 3.3V	1.0			МΩ
VOS _X	Input Offset Voltage	Transmit Gain = 0 dB			200	mV
	Applied at VF _X I	Transmit Gain = 25.40 dB			10	mV
RL _{VFRO}	Load Resistance	Receive Gain = 0 dB	15k			
		Receive Gain = -0.5 dB	600			Ω
		Receive Gain = −1.2 dB	300			
CL _{VFRO}	Load Capacitance	$RL_{VFRO} \ge 300\Omega$			200	pF
		CL _{VFRO} from VF _R O to GND				
RO _{VFRO}	Output Resistance	Steady Zero PCM Code Applied to D _R 1		1.0	3.0	Ω
VOSR	Output Offset Voltage	Alternating ± Zero PCM Code Applied	-200		200	mV
	at V _{FRO}	D _R 1, Maximum Receive Gain				
POWER I	DISSIPATION		•			
I _{CC} 0	Power Down Current	CCLK, CI, CO = $0.4V$, $\overline{CS} = 2.4V$				
		Interface Latches Set as Outputs with No Load,		0.1	0.6	mA
		All Other Inputs Active, Power Amp Disabled				
I _{BB} 0	Power Down Current	As Above		-0.1	-0.3	mA
I _{CC} 1	Power Up Current	CCLK, CI, CO = $0.4V$, $\overline{CS} = 2.4V$				
		No Load on Power Amp		8.0	11.0	mA
		Interface Latches Set as Outputs with No Load				
I _{BB} 1	Power Up Current	As Above		-8.0	-11.0	mA
I _{CC} 2	Power Down Current	As Above, Power Amp Enabled		2.0	3.0	mA
I _{BB} 2	Power Down Current	As Above, Power Amp Enabled	1	-2.0	-3.0	mA

Electrical Characteristics (Continued)

Note 12: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

Note 13: See definitions and timing conventions section.

Timing Specifications

Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{\rm CC}$ = +5V ±5%; $V_{\rm BB}$ = -5V ±5%; $T_{\rm A}$ = 0°C to +70°C by correlation with 100% electrical testing at $T_{\rm A}$ = 25°C. All other limits are assured by correlation with other production tests and/or product design and characterization. All signals referenced to GND. Typicals specified at $V_{\rm CC}$ = +5V, $V_{\rm BB}$ = -5V, $V_{\rm A}$ = 25°C. All timing parameters are measured at $V_{\rm CH}$ = 2.0V and $V_{\rm CL}$ = 0.7V. See Definitions and Timing Conventions section for test methods information.

Symbol	l Parameter	Conditions	Min	Тур	Max	Units
MASTE	R CLOCK TIMING					
f_{MCLK}	Frequency of MCLK	Selection of Frequency is Programmable		512		kHz
		(See Table 5)		1536		kHz
				1544		kHz
				2048		kHz
				4096		kHz
t _{WMH}	Period of MCLK High	Measured from V _{IH} to V _{IH} (Note 14)	80			ns
t _{WML}	Period of MCLK Low	Measured from V _{IL} to V _{IL} (Note 14)	80			ns
t _{RM}	Rise Time of MCLK	Measured from V _{IL} to V _{IH}			30	ns
t _{FM}	Fall Time of MCLK	Measured from V _{IH} to V _{IL}			30	ns
t _{HBM}	HOLD Time, BCLK LOW		50			ns
	to MCLK HIGH					
t _{WFL}	Period of FS _x	Measured from V _{IL} to V _{IL}	1			MCLk
*** =	or FS _B Low					Period
PCM IN	TERFACE TIMING					
f _{BCLK}	Frequency of BCLK	May Vary from 64 kHz to 4096 kHz	64		4096	kHz
BOLK		in 8 kHz Increments				
t _{WBH}	Period of BCLK High	Measured from V _{IH} to V _{IH}	80			ns
t _{WBL}	Period of BCLK Low	Measured from V _{IL} to V _{IL}	80			ns
t _{RB}	Rise Time of BCLK	Measured from V _{IL} to V _{IH}			30	ns
t _{FB}	Fall Time of BCLK	Measured from V _{IH} to V _{IL}			30	ns
t _{HBF}	Hold Time, BCLK Low	III O TIL	30			ns
пог	to FS _{X/R} High or Low					
t _{SFB}	Setup Time, FS _{X/B}		30			ns
SEB	High to BCLK Low					
t _{DBD}	Delay Time, BCLK High	Load = 100 pF Plus 2 LSTTL Loads			80	ns
DBD	to Data Valid	2000 = 100 pr 1 100 2 20112 20000				110
t _{DBZ}	Delay Time, BCLK Low to D _x 1	D _X 1 disabled is measured				
DBZ	Disabled if FS _x Low, FS _x Low to	at V _{OL} or V _{OH} according				
	D _x 1 disabled if 8th BCLK	to Figure 4	15		80	ns
	Low, or BCLK High to D _x 1	to rigure 4	.0			110
	Disabled if FS _x High					
+	Delay Time, BCLK High to	Load = 100 pF Plus 2 LSTTL Loads				
t _{DBT}	TS _x Low if FS _x High, or	Load = 100 pr 11d3 2 Lot 12 Loads			60	ns
	FS_X High to \overline{TS}_X Low if				00	115
	BCLK High (Nondelayed mode); BCLK					
+	High to \overline{TS}_X Low (delayed data mode)					
t _{ZBT}	TRI-STATE Time, BCLK Low to					
	TS _x High if FS _x Low, FS _x Low				00	
	to \overline{TS}_X High if 8th BCLK Low, or		15		60	ns
	BCLK High to \overline{TS}_X High if FS_X High					

Timing Specifications (Continued) Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for V_{CC} = +5V ±5%; V_{BB} = -5V ±5%; T_A = 0°C to +70°C by correlation with 100% electrical testing at T_A = 25°C. All other limits are assured by correlation with other production tests and/or product design and characterization. All signals referenced to GND. Typicals specified at V_{CC} = +5V, V_{BB} = -5V, V_{AB} = 25°C. All timing parameters are measured at V_{CD} = 2.0V and V_{CD} = 0.7V. See Definitions and Timing Conventions section for test methods information tion for test methods information.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
PCM INT	ERFACE TIMING		'			
t _{DFD}	Delay Time, FS _{X/R}	Load = 100 pF Plus 2 LSTTL Loads,				
	High to Data Valid	Applies if FS _{X/R} Rises Later Than			80	ns
		BCLK Rising Edge in Non-Delayed Data				
		Mode Only				
t _{SDB}	Setup Time, D _R 1		30			ns
	Valid to BCLK Low					
t _{HBD}	Hold Time, BCLK		15			ns
	Low to D _R 1 Invalid					
SERIAL (CONTROL PORT TIMING		'			
f _{CCLK}	Frequency of CCLK				2048	kHz
t _{wch}	Period of CCLK High	Measured from V _{IH} to V _{IH}	160			ns
t _{wcL}	Period of CCLK Low	Measured from V _{IL} to V _{IH}	160			ns
t _{RC}	Rise Time of CCLK	Measured from V _{IL} to V _{IH}			50	ns
t _{FC}	Fall Time of CCLK	Measured of V _{IH} to V _{IL}			50	ns
t _{HCS}	Hold Time, CCLK Low	CCLK1	10			ns
	to CS Low					
t _{HSC}	Hold Time, CCLK	CCLK8	100			ns
	Low to CS High					
t _{ssc}	Setup Time, CS		60			ns
	Transition to CCLK Low					
t _{ssco}	Setup Time, CS	To Insure CO is Not Enabled	60			ns
	Transition to CCLK High	for Single Byte				
t _{SDC}	Setup Time, CI		50			ns
	Data In to CCLK Low					
t _{HCD}	Hold Time, CCLK		50			ns
	Low to CO Invalid					
t _{DCD}	Delay Time, CCLK High	Load = 100 pF Plus 2 LSTTL Loads			80	ns
	to CO Data Out Valid					
t _{DSD}	Delay Time, CS Low	Applies Only if Separate			80	ns
	to CO Valid	CS Used for Byte 2				
t _{DDZ}	Delay Time, CS or 9th CCLK	Applies to Earlier of CS	15		80	ns
	High to CO High Impedance	High or 9th CCLK High				
INTERFA	CE LATCH TIMING	-				
t _{sLC}	Setup Time, IL to	Interface Latch Inputs Only	100			ns
-	CCLK 8 of Byte 1					
t _{HCL}	Hold Tme, IL Valid from		50			ns
-==	8th CCLK Low (Byte 1)					
t _{DCL}	Delay Time CCLK8 of	Interface Latch Outputs Only			200	ns
	Byte 2 to IL	C _L = 50 pF				

Note 14: Applies only to MCLK Frequencies ≥ 1.536 MHz. At 512 kHz a 50:50 ±2% Duty Cycle must be used.

Timing Diagrams

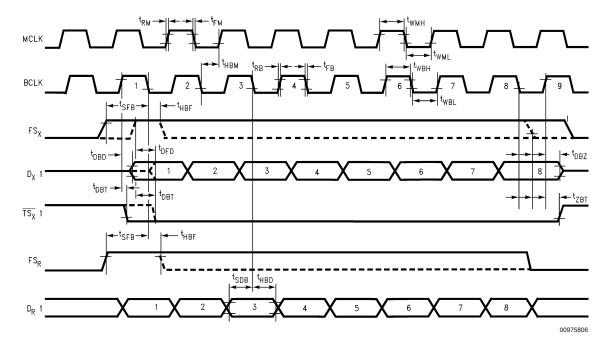


FIGURE 2. Non-Delayed Data Timing Mode

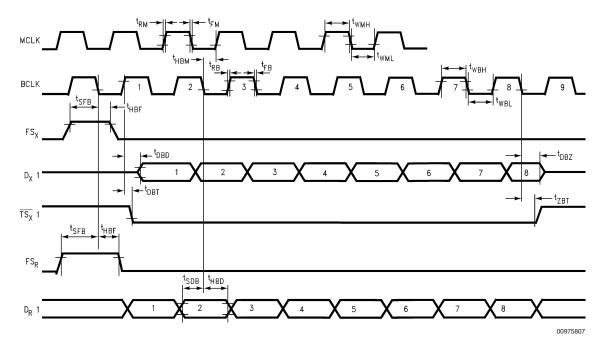


FIGURE 3. Delayed Data Timing Mode

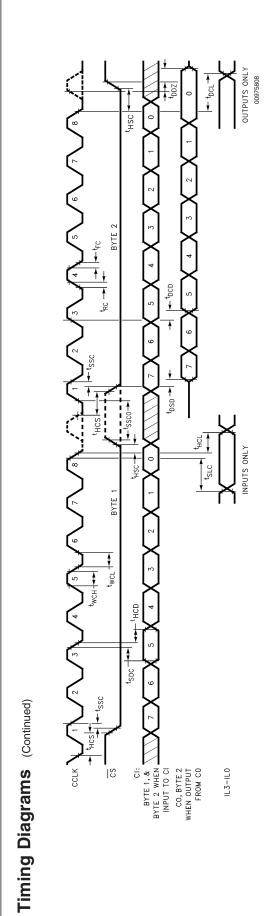


FIGURE 4. Control Port Timing

Transmission Characteristics

Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for V_{CC} = +5V ±5%, V_{BB} = -5V ±5%; T_A = 0°C to +70°C by correlation with 100% electrical testing at T_A = 25°C. f = 1015.625 Hz, $V_{F_X}I$ = 0 dBm0, D_R1 = 0 dBm0 PCM code. Transmit and receive gains programmed for maximum 0 dBm0 test levels (0 dB Gain). All other limits are assured by correlation with other production tests and/or product design and characterization. All signals referenced to GND. Typicals specified at V_{CC} = +5V, V_{BB} = -5V, T_A = 25°C.

Symbol		Conditions	Min	Тур	Max	Units
AMPLIT	UDE RESPONSE					
	Absolute Levels	The Maximum 0 dBm0 Levels Are:				
		VF _X I		1.375		Vrms
		VF _R O (15 kΩ Load)		1.964		Vrms
		The Minimum 0 dBm0 Levels are:				
		VF _X I		73.8		mVrm
		VF_{RO} (Any Load $\geq 300\Omega$)		105.0		mVrm
G _{XA}	Transmit Gain	Transmit Gain Programmed for Maximum				
	Absolute Accuracy	0 dBm0 Test Level.				
		Measure Deviation of Digital Code from				
		Ideal 0 dBm0 PCM Code at D _x 1.				
		T _A = 25°C	-0.15		0.15	dB
G _{XAG}	Transmit Gain	$T_A = 25^{\circ}C, V_{CC} = 5V, V_{BB} = 5V$				
AAG	Variation with	Programmed Gain from 0 dB to 19 dB				
	Programmed Gain	(0 dBm0 Levels of 1.619 Vrms to 0.182 Vrms)	-0.1		0.1	dB
	l regrammed dam	Programmed Gain from 19.1 dB to 25.4 dB	0		0	u u u
		(0 dBm0 Levels of 0.180 Vrms to 0.087 Vrms)	-0.3		0.3	dB
			-0.0		0.0	uD
	Transmit Gain	Note: ±0.1 dB Min/Max is Available as a Selected Part				
G_{XAF}		Relative to 1015.625 Hz, (Note 18)				
	Variation with	Minimum Gain < G _X < Maximum Gain			00	-10
	Frequency	f = 60 Hz	1		-26	dB
		f = 200 Hz	-1.8		-0.1	dB
		f = 300 Hz to 3000 Hz	-0.15		0.15	dB
		f = 3400 Hz	-0.7		0.0	dB
		f = 400 Hz			-14	dB
		f ≥ 4600 Hz. Measure Response			-32	dB
		at Alias Frequency from 0 kHz to 4 kHz				
		$G_X = 0.0 \text{ dB}, VF_XI = 1.375 \text{ Vrms}$				
		Relative to 1015.625 Hz				
		f = 62.5 Hz			-24.9	dB
		f = 203.125 Hz	-1.7		-0.1	dB
		f = 343.75 Hz	-0.15		0.15	dB
		f = 515.625 Hz	-0.15		0.15	dB
		f = 2140.625 Hz	-0.15		0.15	dB
		f = 3156.25 Hz	-0.15		0.15	dB
		f = 3406.250 Hz	-0.74		0.0	dB
		f = 3984.375 Hz			-13.5	dB
		Relative to 1062.5 Hz (Note 18)				
		f = 5250 Hz, Measure 2750 Hz			-32	dB
		f = 11750 Hz, Measure 3750 Hz			-32	dB
		f = 49750 Hz, Measure 1750 Hz			-32	dB
G _{XAT}	Transmit Gain	Measured Relative to G_{XA} , $V_{CC} = 5V$,	+		- VE	40
✓XAT	Variation with	$V_{BB} = -5V$,	-0.1		0.1	dB
	Temperature	$v_{BB} = -5v$, Minimum gain $< G_X < Maximum Gain$	-0.1		0.1	45

Transmission Characteristics (Continued)

Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for V_{CC} = +5V ±5%, V_{BB} = -5V ±5%; T_A = 0°C to +70°C by correlation with 100% electrical testing at T_A = 25°C. f = 1015.625 Hz, V_{T} = 0 dBm0, D_{R} 1 = 0 dBm0 PCM code. Transmit and receive gains programmed for maximum 0 dBm0 test levels (0 dB Gain). All other limits are assured by correlation with other production tests and/or product design and characterization. All signals referenced to GND. Typicals specified at V_{CC} = +5V, V_{BB} = -5V, T_A = 25°C.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
AMPLIT	UDE RESPONSE					
G_{XAL}	Transmit Gain	Sinusoidal Test Method.				
	Variation with	Reference Level = 0 dBm0				
	Signal Level	$VF_XI = -40 \text{ dBm0 to } +3 \text{ dBm0}$	-0.2		0.2	dB
		$VF_XI = -50 \text{ dBm0 to } -40 \text{ dBm0}$	-0.4		0.4	dB
		$VF_XI = -55 \text{ dBm0 to } -50 \text{ dBm0}$	-1.2		1.2	dB
G _{RA}	Receive Gain	Receive Gain Programmed for Maximum				
	Absolute Accuracy	0 dBm0 Test Level. Apply 0 dBm0	-0.15		0.15	dB
		PCM Code to D _R 1. Measure VF _R 0.				
		$T_A = 25^{\circ}C$				
G _{RAG}	Receive Gain	$T_A = 25^{\circ}C, V_{CC} = 5V, V_{BB} = -5V$				
	Variation with	Programmed Gain from 0 dB to 19 dB				
	Programmed Gain	(0 dBm0 Levels of 1.964 Vrms to 0.220 Vrms)	-0.1		0.1	dB
		Programmed Gain from 19.1 dB to 25.4 dB				
		(0 dBm0 Levels of 0.218 Vrms to 0.105 Vrms)	-0.3		0.3	dB
		Note: ±0.1 dB Min/Max is Available as a Selected Part				
3 _{RAT}	Receive Gain	Measured Relative to G _{BA} .				
	Variation with	$V_{CC} = 5V, V_{BB} = -5V.$	-0.1		0.1	dB
	Temperature	Minimum Gain < G _R < Maximum Gain				
G _{RAF}	Receive Gain	Relative to 1015.625 Hz, (Note 18)				
	Variation with	$D_B 1 = 0 \text{ dBm0 Code.}$				
	Frequency	Minimum Gain < G _R < Maximum Gain				
	. ,	f = 200 Hz	-0.25		0.15	dB
		f = 300 Hz to 3000 Hz	-0.15		0.15	dB
		f = 3400 Hz	-0.7		0.0	dB
		f = 4000 Hz			-14	dB
		$G_B = 0$ dB, $D_B 1 = 0$ dBm0 Code,				
		$G_X = 0 \text{ dB (Note 18)}$				
		f = 296.875 Hz	-0.15		0.15	dB
		f = 1875.00 Hz	-0.15		0.15	dB
		f = 2906.25 Hz	-0.15		0.15	dB
		f = 2984.375 Hz	-0.15		0.15	dB
		f = 3406.250 Hz	-0.74		0.0	dB
		f = 3984.375 Hz			-13.5	dB
S _{RAL}	Receive Gain	Sinusoidal Test Method.				
TIAL	Variation with	Reference Level = 0 dBm0.				
	Signal Level	$D_B1 = -40 \text{ dBm0 to } +3 \text{ dBm0}$	-0.2		0.2	dB
		$D_B 1 = -50 \text{ dBm0 to } -40 \text{ dBm0}$	-0.4		0.4	dB
		$D_{\rm B}1 = -55 \text{ dBm0 to } -50 \text{ dBm0}$	-1.2		1.2	dB
		$DR_1 = 3.1 \text{ dBm0} -0.5$				
		$R_L = 600\Omega$, $G_B = -0.5$ dB	-0.2		0.2	dB
		$R_L = 300\Omega$, $G_B = 1.2 \text{ dB}$	-0.2		0.2	dB
NVELO	│ ○PE DELAY DISTORTION W		J			
O _{XA}	Tx Delay, Absolute	f = 1600 Hz			315	μs
- AA	1 2 5, 7 10001010		1		J.5	μО

Transmission Characteristics (Continued)

Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = +5V \pm 5\%$, $V_{BB} = -5V \pm 5\%$; $T_A = 0^{\circ}C$ to $+70^{\circ}C$ by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. f = 1015.625 Hz, $V_{T} = 0$ dBm0, $V_{T} = 0$ dBm0 PCM code. Transmit and receive gains programmed for maximum 0 dBm0 test levels (0 dB Gain). All other limits are assured by correlation with other production tests and/or product design and characterization. All signals referenced to GND. Typicals specified at $V_{CC} = +5V$, $V_{BB} = -5V$, $V_{BB} = -5V$, $V_{BB} = -5V$, $V_{CC} = +5V$

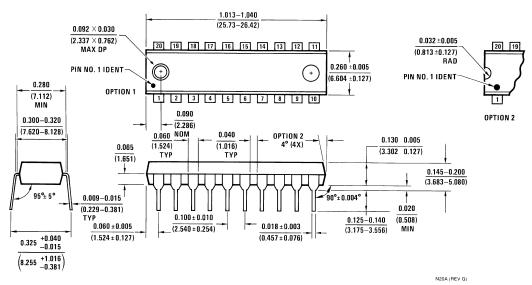
Symbol	Parameter	Conditions	Min	Тур	Max	Units
ENVELO	PE DELAY DISTORTION WITH	FREQUENCY				
D_XR	Tx Delay, Relative to DXA	f = 500 Hz-600 Hz			220	μs
		f = 600 Hz-800 Hz			145	μs
		f = 800 Hz-1000 Hz			75	μs
		f = 1000 Hz-1600 Hz			40	μs
		f = 1600 Hz-2600 Hz			75	μs
		f = 2600 Hz-2800 Hz			105	μs
		f = 2800 Hz-3000 Hz			155	μs
D_RA	Rx Delay, Absolute	f = 1600 Hz			200	μs
D _{RR}	Rx Delay, Relative to DRA	f = 500 Hz-1000 Hz	-40			μs
		f = 1000 Hz-1600 Hz	-30			μs
		f = 1600 Hz-2600 Hz			90	μs
		f = 2600 Hz-2800 Hz			125	μs
		f = 2800 Hz-3000 Hz			175	μs
NOISE						
N_{XC}	Transmit Noise, C Message	(Note 15) 11111111		12	15	dBrnC
	Weighted, µ-Law Selected	in Gain Register				
N_{XP}	Transmit Noise, P Message	(Note 15) 11111111		-74	-67	dBm0 _l
	Weighted, A-Law Selected	in Gain Register				
N _{RC}	Receive Noise, C Message	PCM Code is Alternating Positive		8	11	dBrnC
	Weighted, µ-Law Selected					
N _{RP}	Receive Noise, P Message	PCM Code Equals Positive Zero		-82	-79	dBm0
	Weighted, A-Law Selected					
N _{RS}	Noise, Single Frequency	f = 0 kHz to 100 kHz, Loop Around			-53	dBm0
		Measurement, VF _X I = 0 Vrms				
PPSR _X	Positive Power Supply	$V_{CC} = 5.0 V_{DC} + 100 \text{ mVrms}$				
	Rejection, Transmit	f = 0 kHz-4 kHz (Note 16)	36			dBC
		f = 4 kHz-50 kHz	30			dBC
NPSR _X	Negative Power Supply	$V_{BB} = -5.0 \ V_{DC} + 100 \ mVrms$				
	Rejection, Transmit	f = 0 kHz-4 kHz (Note 16)	36			dBC
		f = 4 kHz-50 kHz	30			dBC
PPSR _R	Positive Power Supply	PCM Code Equals Positive Zero				
	Rejection, Receive	$V_{CC} = 5.0 V_{DC} + 100 \text{ mVrms}$				
		Measure VF _R O				
		f = 0 Hz-4000 Hz	36			dBC
		f = 4 kHz-25 kHz	40			dB
		f = 25 kHz-50 kHz	36			dB
NPSR _R	Negative Power Supply	PCM Code Equals Positive Zero				
	Rejection, Receive	$V_{BB} = -5.0 V_{DC} + 100 \text{ mVrms}$				
		Measure VF _R O				
		f = 0 Hz-4000 Hz	36			dBC
		f = 4 kHz-25 kHz	40			dB
		f = 25 kHz-50 kHz	36			dB

Transmission Characteristics (Continued)

Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = +5V \pm 5\%$, $V_{BB} = -5V \pm 5\%$; $T_A = 0^{\circ}C$ to $+70^{\circ}C$ by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. f = 1015.625 Hz, $VF_XI = 0$ dBm0, $D_R1 = 0$ dBm0 PCM code. Transmit and receive gains programmed for maximum 0 dBm0 test levels (0 dB Gain). All other limits are assured by correlation with other production tests and/or product design and characterization. All signals referenced to GND. Typicals specified at $V_{CC} = +5V$, $V_{BB} = -5V$, $T_A = 25^{\circ}C$.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
NOISE						
SOS	Spurous Out-of-Band	0 dBm0 300 Hz to 3400 Hz Input PCM Code				
	Signals Applied at the	at D _R 1				
	Channel Output	4600 Hz-7600 Hz			-30	dB
		7600 Hz-8400 Hz			-40	dB
		8400 Hz-50,000 Hz			-30	dB
DISTOR	ΓΙΟΝ		'			
STD _X	Signal to Total Distortion	Sinusoidal Test Method				
STD _R	Transmit or Receive	Level = 3.0 dBm0	33			dBC
	Half-Channel, µ-Law	= 0 dBm0 to -30 dBm0	36			dBC
	Selected	= -40 dBm0	30			dBC
		= -45 dBm0	25			dBC
STD _{RL}	Single to Total Distortion	Sinusoidal Test Method				
	Receive with Resistive	Level = +3.1 dBm0				
	Load	$R_L = 600\Omega, G_R = -0.5 \text{ dB}$	33			dBC
		$R_L = 300\Omega, G_R = -1.2 \text{ dB}$	33			dBC
SFD _X	Single Frequency				-46	dB
	Distortion, Transmit					
SFD _R	Single Frequency				-46	dB
	Distortion, Receive					
IMD	Intermodulation Distortion	Transmit or Receive				
		Two Frequencies in the Range			-41	dB
		300 Hz-3400 Hz				
CROSST	ALK					
CT _{X-R}	Transmit to Receive Crosstalk,	f = 300 Hz-3400 Hz		-90	-75	dB
	0 dBm0 Transmit Level	D _R = Idle Code				
CT _{R-X}	Receive to Transmit Crosstalk,	f = 300 Hz-3400 Hz		-90	-70	dB
	0 dBm0 Receive Level	(Note 16)				

Note 15: Measured by grounded input at V_{FXI}.


Note 16: PPSR_X, NPSR_X, and CT_{R-X} are measured with a -50 dBm0 activation signal applied to VF_XI.

Note 17: A signal is Valid if it is above V_{IH} or below V_{IL} and Invalid if it is between V_{IL} and V_{IH} . For the purposes of this specification the following conditions apply:

- a) All input signals are defined as: $\rm V_{IL}$ = 0.4V, $\rm V_{IH}$ = 2.7V, $\rm t_R$ < 10 ns, $\rm t_F$ < 10 ns.
- b) t_R is measured from V_{IL} to V_{IH} . t_F is measured from V_{IH} to V_{IL} .
- c) Delay Times are measured from the input signal Valid to the output signal Valid.
- d) Setup Times are measured from the data input Valid to the clock input Invalid.
- e) Hold Times are measured from the clock signal Valid to the data input Invalid.
- f) Pulse widths are measured from V_{IL} to V_{IL} or from V_{IH} to V_{IH} .

Note 18: A multi-tone test technique is used.

Physical Dimensions inches (millimeters) unless otherwise noted

Molded Dual-In-Line Package (N) Order Number TP3076N-G NS Package Number N20A

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560